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Abstract: This paper proposes a novel technique to obtain sufficient conditions for the existence and
stabilization of positive solutions for a kind of hyper-chaotic financial model. Since some important
economic indexes are heavily related to region, the authors consider a nonlinear chaotic financial
system with diffusion, which leads to some mathematical difficulties in dealing with the infinite-
dimension characteristic. In order to overcome these difficulties, novel analysis techniques have to
be proposed on the basis of Laplacian semigroup and impulsive control. Sufficient conditions are
provided for existence and global exponential stabilization of positive solution for the system. It is
interesting to discover that the impulse strength can be larger than 1 in the newly obtained stability
criterion. Numerical simulations show the effectiveness of theoretical analysis.
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1. Introduction

Nonlinear financial systems, which are related to the security sub-block, currency
sub-block, labor sub-block, and production sub-block, have been attracting extensive
attentions during recent decades [1–6]. For example, the authors of [7] introduce the
APM into chaotic financial system, which simulates the chaotic complex dynamics of real
finance markets. Of course, the new financial model brings greater complexity. Com-
puter simulation shows that it is a hyperchaotic nonlinear system ([7]). In fact, various
hyperchaotic systems or complex chaotic systems have already been studied by many re-
searchers [7–9]. In fact, chaotic control is widely used in neural networks, financial systems
and ecosystems. For example, chaotic control of chaotic oscillators with fractional order
memristor and fuzzy predictive controller for chaotic flows are the important field in engi-
neering technology ([10,11]). Chaotic control of fractional financial system is also a common
macroeconomic means ([12–14]). However, reaction-diffusion financial systems are seldom
investigated. Indeed, due to the imbalance and difference of regional economic develop-
ment, many important economic indicators are related to region. Therefore, it is practical to
consider financial systems by using nonlinear models with reaction-diffusion terms, which
may better reflect the relationship between commodity demand and different regions in
the real financial market. Financial systems with diffusion and Neumann boundary values
imply that in the marginal areas of the economic circle, many important indicators do not
change, precisely simulating the real financial market. However, the reaction-diffusion
model with a Neumann boundary value leads to analysis difficulties in studying the the ex-
istence and global exponential stabilization of positive solutions since this kind of financial
mathematical model is always considered in infinite-dimension space. Fortunately, some
methods of the known literature give us useful enlightenment ([15–18]). For example, the
authors in [15] successfully studied delayed model with a Neumann boundary value via
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adopting Sobolev space H1
0(Ξ). So we are willing to consider this Sobolev space in this

paper. It should be pointed out that only the dynamics of hyperchaotic financial system
was investigated in many research papers (see, e.g., [7]), and they did not reflect how
the government or management actively control the economy. In particular, in the actual
financial market, the unbalanced development of regional economies implies that the real
financial system should be a reaction-diffusion chaotic financial system, so the dynamics of
the system need to be considered in infinite dimensional space. Therefore, the methods and
techniques in finite dimensional space in the previous literature are no longer applicable
to the reaction-diffusion chaotic financial system in this article. We need to find a positive
stationary solution in the reaction-diffusion financial model. In fact, the positive economic
indicators of the financial system are in line with the national conditions of most countries.
Positive interest rate is conducive to the stability of the banking industry, and a smaller
positive interest rate is also conducive to promoting the increase of investment.

On the other hand, impulsive control is always an effective method in stabilizing
nonlinear systems ([19–23]). Unlike intermittent control for a short period of time ([24]), im-
pulsive control only takes place in a moment. It can be shown in [19,21–23] that sometimes
impulsive control occurs at a fixed time, and sometimes at the critical time point under
some designed event triggering mechanisms. Different from neural network whose activa-
tion function can be assumed to satisfy Lipschitz continuity, essentially linear, the so-called
activation function of chaotic system can not be assumed, especially the activation function
of financial system is truly nonlinear, which brings fundamental difficulties to controlling
chaotic financial system. In fact, similarly as that of [20], some authors in [6] utilized
impulsive control to make an equilibrium solution of the chaotic financial system stabilized
globally. However, the equilibrium solution is not positive solution of the chaotic financial
system. Similarly, some effective impulsive controls also used to study the stabilization
of complex and chaotic financial models in [5,6]. However, any positive solution of the
chaotic financial system has never studied before, let alone stability analysis on the positive
solution. Such a case inspires our current study. Besides, the impulse was required to be
less than 1 in [25], in which the active functions were assumed to be Lipscitz continuous.
Although the "active functions" of chaotic financial system are truly nonlinear, we want
to design the impulse control that is bigger than 1 in this paper. Moreover, such a bigger
impulse will make the positive solution stabilized globally. This is another purpose of
writing this paper. Finally, it is known from numerical simulations of [7] that the dynamic
trajectory of hyper-chaotic financial model of this paper is more complex than that of
chaotic financial system. By employing fixed point theorem and Laplacian semigroup,
this paper gives the existence result of positive stationary solution (PSS) for the diffusion
financial system. Moreover, the PSS is stabilized by designing impulsive control.

The main contributions are as follows.

� The newly obtained stability criterion admits big impulse, reducing some conservatism
of criteria. Particularly, one of numerical examples shows that the new stability
criterion allows the impulse strength to be bigger than 1. In fact, impulse was actually
required to be less than 1 in some of the literature ([25,26]).

� The financial system is stable with positive interest rates and other economic in-
dicators, which is in line with the national conditions of most countries. Particu-
larly, in previous research papers ([5,6,9]), for example, in [6], the equilibrium point
P1(θ, k+ack

c(k−d) ,− θ
c , dθ(1+ac)

cd−ck ) only involves positive interest rate θ > 0, but other eco-
nomic indicators are negative. However, positive stationary solution in this paper
implies that all economic indicators are not negative. Particularly, Examples 1 and 2 in
this article illustrate that all economic indicators are bigger than 0.01, which means
newly derived criteria really have some advantages over those in previous articles.

� Diffusion leads to more complexity and chaos on the dynamic behavior of the system,
and hence we have to adopt new methods, which are different from the known
literature without diffusion, to solve the stabilization of reaction-diffusion financial
system. In fact, it is the first article to employ Laplacian semigroup together with two
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different fixed point theorems to get the existence of PSS and its global stabilization
for the hyper-chaotic financial system.

The rest of this paper is organized as follows. In Section 2, we present some prelimi-
naries about the reaction-diffusion financial model, two fixed point theorems, Laplacian
semigroup, some definitions and assumptions. In Section 3, by using variational methods
and a fixed point theorem to derive the existence of PSS. Moreover, employing Laplacian
semigroup, another fixed point theorem and impulsive control to get the stability of the
PSS. In Section 4, two numerical example are provided to illustrate the effectiveness of
newly obtained results. Finally, some conclusions are written in Section 5.

Comparison 1. Figures (a)–(j) of Figure 2 in [7] are the computer simulations of chaos of finan-
cial system without diffusions. Now, in this paper, the following Figures 1–9 are the computer
simulations of chaos of financial system with diffusion coefficients (0.01, 0.02, 0.03, 0.04). It is
shown by Figures 1–9 that diffusion brings more complex to financial system, and the impact of
tiny diffusions or regional economy affects the hyper-chaotic financial system continuously.

Figure 1. Computer simulations of chaos of financial system under diffusions.

Figure 2. Computer simulations of chaos of financial system under diffusions.
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Figure 3. Computer simulations of chaos of financial system under diffusions.

Figure 4. Computer simulations of chaos of financial system under diffusions.

Figure 5. Computer simulations of chaos of financial system under diffusions.
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Figure 6. Computer simulations of chaos of financial system under diffusions.

Figure 7. Computer simulations of chaos of financial system under diffusions.

Figure 8. Computer simulations of chaos of financial system under diffusions.
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Figure 9. Computer simulations of chaos of financial system under diffusions.

2. Preliminaries

In [6], a hyper-chaotic financial model with APM was proposed as follows:
ẋ =− ax + (xy + u + z),

ẏ =1− x2 − b · y,

ż =− cz− x,

u̇ =− ku− dxy,

(1)

which can be written in compact form

Ẋ(t)− f (X(t)) = AX(t), t > 0, (2)

where X = (x, y, z, u)T ,

A =


−a 0 1 1
0 −b 0 0
−1 0 −c 0
0 0 0 −k

, f (X) = ( f1(X), f2(X), f3(X), f4(X))T =


xy

−x2 + 1
0
−dxy

. (3)

In consideration of the impact of regional economy on important indicators of the
financial system, this paper extend the system (1) to reaction-diffusion model as follows:{

∂tU(x, t) = D∆U(x, t) + f (U(x, t)) + AU(x, t), t > 0, x ∈ Ξ,

∂νU(x, t) = 0, t > 0, x ∈ ∂Ξ,
(4)

where ∂tU = ∂U�∂t, ∂νU = ∂U
∂ν , x ∈ Ξ ⊂ Rn(n 6 2) is a bounded domain, and its

boundary ∂Ξ is smooth, ν represents the external normal direction of ∂Ξ. Denote U =
(U1, U2, U3, U4)

T and ∆U = (∆U1, ∆U2, ∆U3, ∆U4)
T . Besides, D = diag(d1, d2, d3, d4) ∈

R4×4 is a positive diagonal matrix. Below, it can be shown that the reaction-diffusion
system (4) owns a positive equilibrium point U∗(x). Set W(t, x) = U(t, x)−U∗(x), then it
is obtained from (4) that{

∂tW(x, t) = F(W(x, t)) + D∆W(x, t) + AW(x, t), x ∈ Ξ, t > 0,

∂νW(x, t) = 0, x ∈ ∂Ξ, t > 0,
(5)
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where f (U(x, t))− f (U∗(x)) = F(W(x, t)). Considering the impulsive effects in (5), it is
obtained that

∂tW(x, t) = AW(x, t) + D∆W(x, t) + F(W(x, t)), t 6= tk, t > 0, x ∈ Ξ,

HkW(t−k , x) = W(t+k , x), k ∈ Z+, x ∈ Ξ,

∂νW(x, t) = 0, x ∈ ∂Ξ, t > 0,

φ(x) = W(0, x), x ∈ Ξ,

(6)

where φ = (φ1, φ2, φ3, φ4)
T , Hk = diag(hk1, hk2, hk3, hk4), 0 < t1 < t2 < · · · , and each

tk(k ∈ Z+) represents a fixed impulsive instant, W(x, t−k ) = lim
t→t−k

W(x, t) = W(x, tk),

W(x, t+k ) = lim
t→t+k

W(x, t).

As for system (6), the definition of mild solution is given below.

Definition 1. A L2(Ξ)-valued function W = {W(t)}[0,T] is said to be a mild solution of (6)

provided that Wi(t, x) ∈ C([0, T]; L2(Ξ)) satisfies
∫ t

0 ‖Wi(s)‖pds < ∞, i = 1, 2, 3, 4, and for any
x ∈ Ξ and t ∈ [0, T],

W1(t, x) = ed1t∆ ∑
t>tk>0

e−d1tk∆(hk1 − 1)W1(tk , x) + ed1t∆φ1(x) +
∫ t

0
ed1(t−r)∆[−aW1(x, r) + W3(x, r) + W4(x, r) + F1(W(x, r))]dr,

W2(t, x) = ed2t∆φ2(x) + ed2t∆ ∑
t>tk>0

e−d2tk∆(hk2 − 1)W2(tk , x) +
∫ t

0
ed2(t−r)∆[−bW2(x, r) + F2(W(x, r))]dr,

W3(t, x) = ed3t∆ ∑
t>tk>0

e−d3tk∆(hk3 − 1)W3(tk , x) + ed3t∆φ3(x) +
∫ t

0
ed3(t−r)∆[−W1(r, t)− cW3(r, t) + F3(W(x, r))]dr,

W4(t, x) = ed4t∆φ4(x) + ed4t∆ ∑
t>tk>0

e−d4tk∆(hk4 − 1)W4(tk , x) +
∫ t

0
ed4(t−r)∆[−kW4(x, r) + F4(W(x, r))]dr,

(7)

and
∂W(t, x)�∂ν = 0, x ∈ ∂Ξ, t > 0.

Before processing our study, the following preconditions are assumed.

(A1) ‖et∆‖ 6 e−tγ M, where constants γ, M > 0.
(A2) there are positive constants Mi > 0 such that

Mi > Ui > 0, x ∈ Ξ, t > 0, ∀ i.

In fact, due to the limitation of natural and social resources, economic indicators are
limited in the real economic market, and so (A2) is a suitable assumption (see, e.g., [6]).

Definition 2. The stationary solution U∗(x) is globally exponentially stable (GES) if W = 0 in
(6) is GES.

Lemma 1 ([27]). Suppose Q is a B space while S is a set of Q, which is closed and convex. Letting
the mapping E : S→ S be compact so that for T ∈ S with M = ‖T‖, T 6= rE(T) holds for each
0 6 r 6 1, then a fixed point E exits for the mapping such that ‖T‖ 6 M with T ∈ S.

Lemma 2 ([28]). If the mapping G is contractive on a metric space S that is complete, then u ∈ S
with u = G(u).

3. Main Results

Firstly, a PSS of (4) should be proved to exist, which actually involves in the existence
of positive solution for the corresponding elliptic equations. Furthermore, so variational
methods are always employed to solve such a problem.



Mathematics 2022, 10, 1866 8 of 18

Theorem 1. Assume (A2) holds, in addition, there is c0 > 0 such that

c0DE > f (U) + AU > 0, (8)

then (4) owns a PSS U∗(x), or equivalently, (5) owns a zero solution. where E = (1, 1, 1, 1)T ∈ R4.

Proof. Firstly, set H = H1
0(Ξ) with the norm ‖vi‖H =

√∫
Ξ |∇vi|2dx(See, Appendix A),

and ‖v‖H =
4
∑

i=1
‖vi‖H for v = (v1, v2, v3, v4)

T . If the PSS of (4) exists, it may be denote as

U∗(x).
LetW : [C(Ξ)]n → [C(Ξ)]n be the operator as follows,

W =


−∆ 0 0 0

0 −∆ 0 0
0 0 −∆ 0
0 0 0 −∆

. (9)

Then its inverse operatorW−1 is denoted as follows,

W−1 =


(−∆)−1 0 0 0

0 (−∆)−1 0 0
0 0 (−∆)−1 0
0 0 0 (−∆)−1

, (10)

obviously the operatorW−1 : [C(Ξ)]4 → [C(Ξ)]4 is positive, compact, and linear ([29]),
and

WU(x) = D−1[ f (U(x)) + AU(x)], x ∈ Ξ.

Define

S = {v(x) ∈ [C(Ξ)]4 : v(x) > 0, x ∈ Ξ;
∂v(x)

∂ν
|∂Ξ = 0; ‖v(x)‖H < +∞},

and so the cone S is positive and closed, and is a convex subset for [C(Ξ)]n. Let E : S→ S

be an operator such that

Eϕ =W−1
(

D−1 f (U(x)) + D−1 AU(x)
)

, ϕ ∈ S.

Due to the fact that the operatorW−1 is positive, linear and compact ([29]), and the
item D−1[ f (U) + AU] is continuous, and positive, so E : S→ S is positive and compact .

Next, it will be proved that E owns at least one fixed point in S .
In fact, if it does not hold, then there is {pn} ⊂ [0, 1] and {Ψn} ⊂ S with

Ψn = pnE(Ψn) = pnW−1
(

D−1 f (Ψn) + D−1 AΨn

)
(11)

and

‖Ψn‖H = Mn → +∞, n→ +∞.

Then there exists a subsequence of {pn}, say, {pn} such that lim
n→∞

pn = p0.
Let

An =
Ψn

‖Ψn‖H
,

then (11) and (8) yields that if pn → p0 ∈ [0, 1],

An → A0 ∈ S, ‖A0‖H = 1.



Mathematics 2022, 10, 1866 9 of 18

Indeed, if n→ ∞,

An = pnW−1
(

D−1 f (Ψn) + D−1 AΨn

‖Ψn‖H

)
→ 0 ∈ Rn.

Note that A0 = 0 means ‖A0‖H = 0 while An → A0 and ‖An‖H = 1 yield that
‖A0‖H = 1, is contradict with ‖A0‖H = 0, and now Lemma 1 yields, there must exist
U(x) ∈ S such that U(x) is a positive and bounded solution of (4).

Remark 1. It is the first paper to use the variational methods and fixed point theory (Lemma 1) to get
the existence of PSS for hyper-chaotic financial system (4) with diffusion under Neumann boundary.
In fact, even in the case of ordinary differential equations, the existence of positive solution for
chaotic financial system was not derived in many research papers ([5–9]). For example, although the
equilibrium solution of [9] is globally stable under impulsive control, the stable equilibrium solution
is not a positive solution. Similarly, the equilibrium solutions in [5,6] are also globally stable under
some suitable impulse control, the stable equilibrium solutions are still not positive. However, in this
paper, by employing a fixed point theorem and variational methods, we overcome the mathematical
difficulty, obtaining originally the existence of positive solution that will be proved to be globally
stable under impulsive control in the next theorem.

Theorem 2. Assume (A1), (A2) and (12) hold, besides,

0 < ω < 1, (12)

then, in model (6), W = 0 is GES in the pth moment (p > 1), or equivalently, the PSS U∗(x) is
GES in the pth moment, where the variable W(t, x) = U(t, x)−U∗(x) in (6), ω = max

i∈{1,2,3,4}
ωi,

µ = inf
k∈Z+

(tk+1 − tk), and

ω1 = 5p−1
[
(|a|p + 2)(

M
d1γ

)p + 2p−1(
M

d1γ
)p
(

Mp
2 + Mp

1

)
+ M2p(sup

k
|hk1 − 1|)p

(
1 +

1
d1µγ

)p]
, (13)

ω2 = 3p−1
[
(

M|b|
d2γ

)p + (
2M1M

d2γ
)p + M2p(sup

k
|hk2 − 1|)p

(
1 +

1
d2µγ

)p]
, (14)

ω3 = 4p−1
[
(1 + |c|p)( M

d3γ
)p + M2p(sup

k
|hk3 − 1|)p

(
1 +

1
d3µγ

)p]
, (15)

ω4 = 3p−1
[
(

M|k|
d4γ

)p + 2p−1(
M|d|
d4γ

)p
(

Mp
2 + Mp

1

)
+ M2p(sup

k
|hk4 − 1|)p

(
1 +

1
d4µγ

)p]
, (16)

Proof. Let the normed spaceH be such a functions space that all pth moment continuous
processes are consisting of W(t, x) at t > 0 with t 6= tk so that ‖Wi(t)‖petα → 0 for
i = 1, 2, 3, 4 and t→ +∞, where 0 < α < min{d1γ, d2γ, d3γ, d4γ}. Besides, W = U−U∗(x)
with 0 6 Ui 6 Mi. Furthermore, for any given x ∈ Ξ, lim

t→t−k
W(t, x) and lim

t→t+k
W(t, x) exist,

and lim
t→t−k

W(t, x) = W(tk, x). In addition, W(0, x) = φ(x).

Obviouly the metric spaceH is complete with the distance: for any W, V ∈ H,

dist
(

W, V
)
=

[
max

{
sup
t>0
‖W1(t)−V1(t)‖p, sup

t>0
‖W2(t)−V2(t)‖p, sup

t>0
‖W3(t)−V3(t)‖p, sup

t>0
‖W4(t)−V4(t)‖p}

] 1
p

. (17)

Construct an operator Θ = (Θ1, Θ2, Θ3, Θ4) such that for any given
W = (W1, W2, W3, W4)

T ∈ H,
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Θ1(W1)(t, x) = ed1t∆φ1(x) +
∫ t

0
ed1(t−s)∆[−aW1(s, x) + W3(s, x) + W4(s, x) + F1(W(s, x))]ds

+ ed1t∆ ∑
t>tk>0

e−d1tk∆(hk1 − 1)W1(tk, x), t > 0

Θ2(W2)(t, x) = ed2t∆φ2(x) +
∫ t

0
ed2(t−s)∆[−bW2(s, x) + F2(W(s, x))]ds + ed2t∆ ∑

t>tk>0
e−d2tk∆(hk2 − 1)W2(tk, x), t > 0

Θ3(t, x) = ed3t∆φ3(x) +
∫ t

0
ed3(t−s)∆[−W1(s, t)− cW3(s, t) + F3(W(s, x))]ds + ed3t∆ ∑

t>tk>0
e−d3tk∆(hk3 − 1)W3(tk, x), t > 0

Θ4(t, x) = ed4t∆φ4(x) +
∫ t

0
ed4(t−s)∆[−kW4(s, x) + F4(W(s, x))]ds + ed4t∆ ∑

t>tk>0
e−d4tk∆(hk4 − 1)W4(tk, x), t > 0

∂Θ(W)

∂ν
= 0, x ∈ ∂Ξ, t > 0,

(18)

Below, we claim that Θ : H → H.
Indeed, for any W = (W1, W2, W3, W4)

T ∈ H, it can be obtained by a routine proof
that eαt‖Θi(Wi)(t)‖p → 0 for i = 1, 2, 3, 4 and t→ +∞. Furthermore, for any given x ∈ Ξ,
lim

t→t−k
Θ(W)(t, x) and lim

t→t+k
Θ(W)(t, x) exist, and lim

t→t−k
Θ(W)(t, x) = Θ(W)(tk, x). In addition,

Θ(W)(0, x) = φ(x). That is, Θ(H) ⊂ H.
Below, it will be true that the mapping Θ is contractive onH.
Indeed, for any W, W̃ ∈ H with W = (W1, W2, W3, W4)

T and W̃ = (W̃1, W̃2, W̃3, W̃4)
T ,

the conditions (A1), (A2) and Holder inequality yield

sup
t>0
‖
∫ t

0
ed1(t−s)∆[F1(W(s, x))− F1(W̃(s, x))]ds‖p

= sup
t>0
‖
∫ t

0
ed1(t−s)∆[ f1(U(s, x))− f1(Ũ(s, x))]ds‖p

6Mp sup
t>0

[
2p−1Mp

2

(
[

1
d1γ

]
p−1

p · [
∫ t

0
e−d1γ(t−s)‖W1 − W̃1‖pds]

1
p

)p

+ 2p−1Mp
1

( ∫ t

0
e−d1γ(t−s)‖W2 − W̃2‖ds

)p]
6Mp

(
Mp

2 (
2

d1γ
)p−1 ·

∫ t

0
e−d1γ(t−s)ds + Mp

1 (
2

d1γ
)p−1 ·

∫ t

0
e−d1γ(t−s)

)
· [dist(W, W̃)]p

=2p−1(
M

d1γ
)p
(

Mp
2 + Mp

1

)
· [dist(W, W̃)]p,

(19)

sup
t>0
‖
∫ t

0
ed1(t−s)∆(−a)[W1(s, x)− W̃1(s, x)]ds‖p

6|a|p Mp sup
t>0

[ ∫ t

0
e−d1γ(t−s)‖W(s, x)− W̃(s, x)‖ds

]p

6|a|p Mp sup
t>0

(
[

1
d1γ

]
p−1

p · [
∫ t

0
e−d1γ(t−s)‖W1 − W̃1‖pds]

1
p

)p

6(
|a|M
d1γ

)p · [dist(W, W̃)]p,

(20)

sup
t>0
‖
∫ t

0
ed1(t−s)∆[W3(s, x)− W̃3(s, x)]ds‖p 6 (

M
d1γ

)p · [dist(W, W̃)]p, (21)

and

sup
t>0
‖
∫ t

0
ed1(t−s)∆[W4(s, x)− W̃4(s, x)]ds‖p 6 (

M
d1γ

)p · [dist(W, W̃)]p (22)

Let th > t > th−1, then
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sup
t>0

[
‖ed1t∆ ∑

t>tk>0
e−d1tk∆(hk1 − 1)[W1(x, tk)− W̃1(x, tk)]‖p

]

6M2p(sup
k
|hk1 − 1|)p

[
e−d1γt ∑

t>tk>0
ed1γtk [sup

t>0
‖W1(x, t)− W̃1(x, t)‖p]

1
p

]p

6M2p(sup
k
|hk1 − 1|)p

[
e−d1γt

(
ed1γth−1 +

1
µ ∑

0<tk6th−2

ed1γtk (tk+1 − tk)

)]p

· [dist(W, W̃)]p

6M2p
(

1 +
1

d1µγ

)p

(sup
k
|hk1 − 1|)p · [dist(W, W̃)]p

(23)

It follows from (23)–(28) that

sup
t>0
‖Θ1(W1)(t, x)−Θ1(W̃1)(t, x)‖p

65p−1
[

sup
t>0
‖
∫ t

0
ed1(t−s)∆(−a)[W1(s, x)− W̃1(s, x)]ds‖p + sup

t>0
‖
∫ t

0
ed1(t−s)∆[W3(s, x)− W̃3(s, x)]ds‖p

+ sup
t>0
‖
∫ t

0
ed1(t−s)∆[W4(s, x)− W̃4(s, x)]ds‖p

+ sup
t>0
‖
∫ t

0
ed1(t−s)∆[F1(W(s, x))− F1(W̃(s, x))]ds‖p + sup

t>0
‖ed1t∆ ∑

t>tk>0
e−d1tk∆(hk1 − 1)[W1(tk, x)− W̃1(tk, x)]‖p

]

65p−1
[
(|a|p + 2)(

M
d1γ

)p + 2p−1(
M

d1γ
)p
(

Mp
2 + Mp

1

)
+ M2p(sup

k
|hk1 − 1|)p

(
1 +

1
d1µγ

)p]
· [dist(W, W̃)]p

6ω · [dist(W, W̃)]p

(24)

Similarly,

sup
t>0
‖Θ2(W2)(t, x)−Θ2(W̃2)(t, x)‖p

63p−1
[

sup
t>0
‖
∫ t

0
ed2(t−s)∆(−b)[W2(s, x)− W̃2(s, x)]ds‖p + sup

t>0
‖
∫ t

0
ed2(t−s)∆[F2(W(s, x))− F2(W̃(s, x))]ds‖p

+ sup
t>0
‖ed2t∆ ∑

t>tk>0
e−d2tk∆(hk2 − 1)[W2(tk, x)− W̃2(tk, x)]‖p

]

63p−1
[
(

M|b|
d2γ

)p + (
2M1M

d2γ
)p + M2p(sup

k
|hk2 − 1|)p

(
1 +

1
d2µγ

)p]
· [dist(W, W̃)]p

6ω · [dist(W, W̃)]p

(25)

sup
t>0
‖Θ3(W3)(t, x)−Θ3(W̃3)(t, x)‖p

64p−1
[

sup
t>0
‖
∫ t

0
ed3(t−s)∆(−1)[W1(s, x)− W̃1(s, x)]ds‖p + sup

t>0
‖
∫ t

0
ed3(t−s)∆(−c)[W3(s, x)− W̃3(s, x)]ds‖p

+ sup
t>0
‖
∫ t

0
ed3(t−s)∆[F3(W(s, x))− F3(W̃(s, x))]ds‖p + sup

t>0
‖ed3t∆ ∑

t>tk>0
e−d3tk∆(hk3 − 1)[W3(tk, x)− W̃3(tk, x)]‖p

]

64p−1
[
(1 + |c|p)( M

d3γ
)p + M2p(sup

k
|hk3 − 1|)p

(
1 +

1
d3µγ

)p]
· [dist(W, W̃)]p

6ω · [dist(W, W̃)]p

(26)

sup
t>0
‖Θ4(W4)(t, x)−Θ4(W̃4)(t, x)‖p

6[dist(W, W̃)]p3p−1
[
(

M|k|
d4γ

)p + 2p−1(
M|d|
d4γ

)p
(

Mp
2 + Mp

1

)
+ (sup

k
|hk4 − 1|)p M2p

(
1

d4µγ
+ 1
)p]

6ω · [dist(W, W̃)]p

(27)
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Combining (21) and (28)–(31) results in

[dist(Θ(W), Θ(W̃))]p 6 ω · [dist(W, W̃)]p

or
dist(Θ(W), Θ(W̃)) 6 ω

1
p · dist(W, W̃),

which together with (16) implies that Θ : H → H is contractive so that there is the fixed
point W of Θ in H, satisfying eαt‖U(t, x)−U∗(x)‖p → 0 or eαt‖W(t, x)‖p → 0 , and the
proof is over.

Remark 2. Theorem 2 does not propose that the limiting pulse must be less than 1, which reduces
the conservatism of the algorithm. In fact, impulse was actually required to be less than 1 in some of
the literature ([25,26]).

In sum, Theorem 1 is actually a new result, because Theorem 1 shows an existence
of positive solution while the locally stable solution is non-positive in [12]. Similarly,
in [5,9,13,14], the so-called stable equilibrium solutions all are not truly positive solution.
In fact, below Examples 1 and 2 will give a true positive solution that is globally stable,
and this implies Theorems 1 and 2 both are truly new results. Of course, some ideas or
methods come from the above-mentioned literature.

4. Numerical Examples

The conditions of Theorem 1 are relaxed and easy to be satisfied, and now a numerical
example is designed to illuminate its feasibility as follows.

Example 1. Let 0.15 6 U1 6 0.25, 0.05 6 U2 6 0.15, 0.3 6 U3 6 0.425, 0.01 6 U4 6 0.05.
In addition, set c0 = 10,000, D = diag(d1, d2, d3, d4) = diag(0.27, 0.05, 0.21, 0.03) , then M1 =
0.25, M2 = 0.15, M3 = 0.425, M4 = 0.05, and the condition (A2) is satisfied. Let Ξ = [0, π], then
‖et∆‖ 6 e−π2t with γ = π2 and M = 1. Set (a, b, c, d, k) = (0.05, 0.25,−0.85,−0.25, 0.075),
then (3.1) holds. Now, it shows by Theorem 3, the considered system (4) owns the PSS u∗(x).

Below, another numerical example is given to show the stability of the above PSS u∗(x).

Example 2. Adopt all the data of the above example, and suppose p = 1.001, µ = 2,

Case 1: hki = 0.999, ∀ i = 1, 2, 3, 4.

ω1 = 5p−1
[
(|a|p + 2)(

M
d1γ

)p + 2p−1(
M

d1γ
)p
(

Mp
2 + Mp

1

)
+ M2p(sup

k
|hk1 − 1|)p

(
1 +

1
d1µγ

)p]
= 0.9210, (28)

ω2 = 3p−1
[
(

M|b|
d2γ

)p + (
2M1M

d2γ
)p + M2p(sup

k
|hk2 − 1|)p

(
1 +

1
d2µγ

)p]
= 0.6607, (29)

ω3 = 4p−1
[
(1 + |c|p)( M

d3γ
)p + M2p(sup

k
|hk3 − 1|)p

(
1 +

1
d3µγ

)p]
= 0.8943, (30)

ω4 = 3p−1
[
(

M|k|
d4γ

)p + 2p−1(
M|d|
d4γ

)p
(

Mp
2 + Mp

1

)
+ M2p(sup

k
|hk4 − 1|)p

(
1 +

1
d4µγ

)p]
= 0.5937, (31)

Case 2: hki = 1.001, ∀ i = 1, 2, 3, 4.

ω1 = 5p−1
[
(|a|p + 2)(

M
d1γ

)p + 2p−1(
M

d1γ
)p
(

Mp
2 + Mp

1

)
+ M2p(sup

k
|hk1 − 1|)p

(
1 +

1
d1µγ

)p]
= 0.9210, (32)

ω2 = 3p−1
[
(

M|b|
d2γ

)p + (
2M1M

d2γ
)p + M2p(sup

k
|hk2 − 1|)p

(
1 +

1
d2µγ

)p]
= 0.6607, (33)
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ω3 = 4p−1
[
(1 + |c|p)( M

d3γ
)p + M2p(sup

k
|hk3 − 1|)p

(
1 +

1
d3µγ

)p]
= 0.8943, (34)

ω4 = 3p−1
[
(

M|k|
d4γ

)p + 2p−1(
M|d|
d4γ

)p
(

Mp
2 + Mp

1

)
+ M2p(sup

k
|hk4 − 1|)p

(
1 +

1
d4µγ

)p]
= 0.5937, (35)

Whether Case 1 or Case 2, we have the same conclusion: ω = 0.9210 ∈ (0, 1). There-
fore, Theorem 2 yields that the positive steady state solution U∗(x) is GES in the pth
moment with p = 1.001.

Remark 3. Example 2 illuminates the effectiveness of Theorem 2. Indeed, Table 1 shows that
Theorem 2 admits the impulse is bigger than 1, and Figures 10–13 show the boundedness and stability
of U, where W(t, x) = U(t, x) − U∗(x) in (6). i.e., W1(t, x) = U1(t, x) − U∗1, W2(t, x) =
U2(t, x)−U∗2, W3(t, x) = U3(t, x)−U∗3, and W4(t, x) = U4(t, x)−U∗4. Speaking specifically,
it is shown from Figures 1–4 that 0.15 6 U1(t, x) 6 0.25, 0.05 6 U2(t, x) 6 0.15, 0.3 6
U3(t, x) 6 0.425, 0.01 6 U4(t, x) 6 0.05, and 0.15 6 U∗1 6 0.25, 0.05 6 U∗2 6 0.15,
0.3 6 U∗3 6 0.425, 0.01 6 U∗4 6 0.05. This implies that the globally stable stationary solution
U∗ is positive and bounded.

Table 1. Comparisons the influences between big impulse and small impulse when other data
are unchanged.

Case 1: hki = 0.999 Case 2: hki = 1.001

ω1 0.9210 0.9210

ω2 0.6607 0.6607

ω3 0.8943 0.8943

ω4 0.5937 0.5937

ω 0.6665 ∈ (0, 1) 0.6665 ∈ (0, 1)

Figure 10. Computer simulation of dynamics of the interest rate U1.
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Figure 11. Computer simulation of dynamics of the investment demand U2.

Figure 12. Computer simulation of dynamics of the price exponent U3.

Figure 13. Computer simulation of dynamics of the average profit margin U4.
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Finally, we consider the mean square stability in the case of p = 2:

Example 3. Let 0.0001 6 U1 6 3, 0.48 6 U2 6 5, 0.5 6 U3 6 5, 0.015 6 U4 6 5. In addition,
set c0 = 10,000, D = diag(d1, d2, d3, d4) = diag(2.5, 2.3, 2.2, 0.03) , then M1 = 3; M2 = M3 =

M4 = 5, and the condition (A2) is satisfied. Let Ξ = [0, π], then ‖et∆‖ 6 e−π2t with γ = π2

and M = 1. Set (a, b, c, d, k) = (0.1,−10,−10, 0.01,−10), then (3.1) holds. Now, it shows by
Theorem 1, the considered system (4) owns the PSS u∗(x). Let p = 2, hk1 ≡ 1.000001, µ = 2,
then direct calculation leads to the following data:

ω1 = 5p−1
[
(|a|p + 2)(

M
d1γ

)p + 2p−1(
M

d1γ
)p
(

Mp
2 + Mp

1

)
+ M2p(sup

k
|hk1 − 1|)p

(
1 +

1
d1µγ

)p]
= 0.5750, (36)

ω2 = 3p−1
[
(

M|b|
d2γ

)p + (
2M1M

d2γ
)p + M2p(sup

k
|hk2 − 1|)p

(
1 +

1
d2µγ

)p]
= 0.7919, (37)

ω3 = 4p−1
[
(1 + |c|p)( M

d3γ
)p + M2p(sup

k
|hk3 − 1|)p

(
1 +

1
d3µγ

)p]
= 0.8570, (38)

ω4 = 3p−1
[
(

M|k|
d4γ

)p + 2p−1(
M|d|
d4γ

)p
(

Mp
2 + Mp

1

)
+ M2p(sup

k
|hk4 − 1|)p

(
1 +

1
d4µγ

)p]
= 0.8533, (39)

Now we have the conclusion: ω = 0.8570 ∈ (0, 1). Therefore, Theorem 2 yields that the
positive steady state solution U∗(x) is GES in the mean square (p = 2) (see Figures 14–17).

Figure 14. Computer simulation of dynamics of the interest rate U1.
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Figure 15. Computer simulation of dynamics of the investment demand U2.

Figure 16. Computer simulation of dynamics of the price exponent U3.

Figure 17. Computer simulation of dynamics of the average profit margin U4.
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5. Conclusions

Different from much of the previous literature, this paper has studied the stabilization
of PSS in hyper-chaotic financial system. In fact, the financial system is stable at positive
interest rates and other economic indicators, which is in line with the national conditions
of most countries while many previous only involved in positive interest rates. In addition,
numerical examples show that the new theorem has a larger allowable range of pulses and
does not limit that the pulses must be less than 1, by which the conservatism is reduced.
Particularly, in this article, Examples 1 and 2 illuminate that all economic indicators are
bigger than 0.01, which means newly derived criteria really have advantage over those
of previous research papers. Indeed, in [5,6,9], all the stable equilibrium solutions are
not positive, because only the interest rate of equilibrium solutions is positive, but other
economic indicators are not all positive. Many important economic indicators, such as
investment demand, price index, and so on, are actually related to the regional economy.
So we choose reaction-diffusion model in this paper. Of course, we may consider a discrete
network of the system (1) in designing our next paper.
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Appendix A

For convenience, some marks and symbols are listed below:

� Denote by Ξ a bounded domain in Rn(n 6 2) with smooth boundary ∂Ξ ;
� Denote by ν the external normal direction of ∂Ξ ;
� ∂νU = ∂U

∂ν ;
� ∂tU = ∂U�∂t ;

� Denote by ‖ϕ‖H =
√∫

Ω |∇ϕ(x)|2dx the norm of the Sobolev space H1
0(Ξ) ;

� Denote by ∆ =
m
∑

j=1

∂2

∂x2
j

Laplace operator, and by et∆ the Laplacian semigroup ;

� Ξ = Ξ
⋃

∂Ξ
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