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Abstract: The goal of the recommender system is to learn the user’s preferences from the entity (user–
item) historical interaction data, so as to predict the user’s ratings on new items or recommend new
item sequences to users. There are two major challenges: (1) Datasets are usually sparse. The item
side is often accompanied by some auxiliary information, such as attributes or context; it can help to
slightly improve its representation. However, the user side is usually presented in the form of ID due
to personal privacy. (2) Due to the influences of confounding factors, such as the popularity of items,
users’ ratings on items often have bias that cannot be recognized by the traditional recommendation
methods. In order to solve these two problems, in this paper, (1) we explore the use of a graph model
to fuse the interactions between users and common rating items, that is, incorporating the “neighbor”
information into the target user to enrich user representations; (2) the do() operator is used to deduce
the causality after removing the influences of confounding factors, rather than the correlation of the
data surface fitted by traditional machine learning. We propose the EGCI model, i.e., enhanced graph
learning for recommendation via causal inference. The model embeds user relationships and item
attributes into the latent semantic space to obtain high-quality user and item representations. In
addition, the mixed bias implied in the rating process is calibrated by considering the popularity of
items. Experimental results on three real-world datasets show that EGCI is significantly better than
the baselines.

Keywords: causal inference; enhanced graph learning; do() operation; graph model; recommender system

MSC: 65-04

1. Introduction

Personalized recommendations can be used as an effective means of online marketing
and can bring great benefits to e-commerce websites. The goal is to recommend new
products to target users based on the opinions of users with similar preferences [1]. A good
personalized recommendation system is able to discover the products that users like and
recommend them to said users. It is conceivable that if users can find their favorite products
by opening a link to a website and logging in, it will save them a lot of time and effort
otherwise spent looking through web pages, and such a website would definitely be favored
by users. A good personalized recommendation system can provide convenience for users;
at the same time, it would make users have better adhesion to websites to improve the
market competitiveness of e-commerce websites.

Usually, in e-commerce websites, the items purchased or rated by users only account
for a limited percentage of the total number of items, less than 1%, which leads to a sparse
user–item rating dataset. In this case of large data volume and extreme sparsity of rating
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data, on the one hand, it is difficult to successfully locate the set of neighboring users,
which affects the recommendation accuracy; on the other hand, the process of computing
similar user groups over the entire user space inevitably becomes a bottleneck of the
algorithm [2], which subsequently increases the response time. The complex model design
also leads to the unsatisfactory interpretability of the recommender system. Therefore,
how to make full use of interactions, attributes, and various auxiliary information to
improve the performance and interpretability of recommendations is the core problem
of recommendation systems. As a method to comprehensively model the rich structural
and semantic information in complex systems, heterogeneous information networks have
significant advantages in fusing multiple sources of information and capturing structural
semantics; and they have been successfully applied to various data mining tasks, such as
similarity metrics, node clustering, link prediction, and ranking.

Recommendation models based on graph neural networks learn the rich structural
and semantic information in graph data with powerful feature fusion capabilities and
the flexibility and scalability of model architecture design. Early approaches use user
and item features as auxiliary data. Real interactive systems usually consist of large-
scale heterogeneous graphs containing different types of nodes and edges, which poses
a challenge to pre-training features for graphs. However, traditional neural networks
do not directly model graph structures. With the rise of graph representation learning
techniques, researchers have attempted to design recommendation models that incorporate
graph representation learning techniques to better learn the rich structural and semantic
information in graph data.

The contributions of this paper are as follows:

• We explore the effectiveness of neighbor information of entities (including users and
items) for enhancing entity representation.

• We propose enhanced graph learning for recommendation via causal inference (EGCI).
On both the user side and the item side, we aggregate the neighborhood information
of entities through graph convolutional networks to help improve the accuracy of
recommendations.

• We introduce the do() operator to understand the causality in the data and remove
the effects of confounding factors.

• Ablation experiments were conducted with different settings of key hyperparameters,
and the effectiveness of EGCI was verified on each of three widely used datasets.

2. Related Work

In this section, we summarize the latest research results in the field of recommender
systems, including sequential recommendation, rating prediction, causal inference, de-
biased estimation, multi-task learning, Bayesian models, self-attentiveness, interpretable
recommendation, accelerated recommendation, hyperbolic metric learning, natural lan-
guage processing, and knowledge graphs, among others. Next, we list these works of
researchers in detail.

Seol [2] proposed a Bert-based sequential recommendation model. This model com-
bines session information and temporal awareness to overcome the complexity drawbacks
of hierarchical models. Marin [3] corrects rating bias caused by evaluation habits by intro-
ducing a similarity matrix of evaluations to identify and quantify the variability of different
users’ evaluation styles. The NCF model proposed by He [4] introduced deep learning
techniques into recommendation models for the first time and established a two-tower
structure of user embedding and item embedding interaction. Carroll [5] argues that
popular recommender systems induce shifts in users’ preferences, resulting in gradual
manipulation of users. For this reason, this paper proposes a "safe shifts" mechanism to eval-
uate the possibility of recommenders inducing user shifts and to correct them. Ferrara [6]
used different synthetic networks to understand when linked recommendation algorithms
are beneficial or harmful to minority groups in social networks, in order to correct for
social biases that may arise from feedback loops in the network structure. Manoj [7] used
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Bayesian models to model the next item prediction problem and captured the probability
of occurrence of a sequence by the posterior mean of a beta distribution. Yabo [8] used a
multi-task training approach to learn generic features of users. Users were shared across
multiple tasks to achieve effective personalized recommendations. Rashed [9] proposed
an attribute and context-aware recommendation model which uses a multi-headed self-
attentive mechanism to capture the dynamic properties of users in terms of contextual
features and item attributes to extract user features and predict item ratings. Bibek [10] built
a recommendation algorithm based on random walks to generate diverse personalized
recommendations by estimating the ideological stances of users and the content they share.
Balloccu [11] proposed three new metrics to explain the rationale of recommendations and
achieve explainable recommendations while preserving the utility of recommendations.
Sheth [12] modeled recommendation systems from the perspective of causal analysis to
eliminate bias caused by confounding factors.

Yang [13] proposed the GRAM method to achieve acceleration of recommendation
model training while maintaining recommendation accuracy. Tran [14] proposed HyperML
(hyperbolic metric learning), which aims to bridge the gap between Euclidean and hy-
perbolic geometry in recommender systems through metric learning methods. Otter [15]
discussed the application of deep learning techniques to natural language processing,
which also includes natural language processing in recommender systems, such as product
description documents and movie plot documents. Lee [16] used knowledge graphs to
implement an enhanced topic model to help achieve news recommendations. Nazari [17]
used podcasting to infer user preferences for music to improve the performance of music
recommendation systems. Satuluri [18] implemented heterogeneous recommendations on
Twitter by introducing community-based representations. Le [19] proposed a CNSR model
which organically combines social networks with the interactive behavior of user items.
Rendle [20] revisited the relationship between two classical recommendation strategies,
that is, neural collaborative filtering and matrix decomposition.

In summary, recommender systems have been shown to solve the information over-
load problem by actively rather than passively mining user interest characteristics from peo-
ple’s information usage history data and enabling personalized recommendations [21–25].

In this paper, we design graph convolutional network modules to fuse the feature
information of an entity’s neighbors to provide personalized recommendations to users
and achieve a breakthrough in accuracy.

3. Problem Definition and Notation

Suppose Ym×k is a rating matrix composed of m users for k items. yui ∈ Ym×k denotes
the ratings. Since most of the ratings are missing, Ym×k is a sparse matrix. That is, most
of the yui entries are unobserved. The goal of recommendation is to get the trend of the
data distribution of the whole matrix based on the existing yui entries and estimate the
missing yui entries. However, because the rating matrix is often too sparse, it is often not
enough to simply observe the ratings that are already available, because there is too little
semantic information. Therefore, popular recommendation algorithms learn the auxiliary
information provided by the dataset, such as social information, review text, attributes,
or knowledge graphs, to enhance the representation of u or i. To describe our approach
more clearly, we summarize all the data or information to be used in the form of symbols
or definitions in Table 1.
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Table 1. Summary of terminologies used.

Notataions Descripition

U = {u1, u3, . . . , um} Set of all users

I = {i1, i2, . . . , ik} Set of all items

u ∈ U User u

i ∈ I Item i

Ym×k User–item rating matrix

pi Popularity of item i

Au Adjacency matrix between all users

Ai Adjacency matrix between all items

Fu Features matrix of all users

Fi Features matrix of all items

eu user u embedding representiation

ei item i embedding representiation

yui True rating of u to i, stored in Ym×k

ŷui Predicted u rating for i

4. Proposed Methodology

We first outline the framework of EGCI, followed by describing EGCI’s components
one by one, including causal inference for de-biasing user representation, item representa-
tion, user–item interaction, and optimization methods.

The overall model of EGCI is shown in Figure 1. It consists of three branches: the upper
branch is the generation process of user’s high-order representation, and the lower branch
is the high-order modeling representation of items. The middle branch is the popularity
expression of item i, which is used to eliminate the biases from the perspective of causality
and correct the user’s prediction rating of the item.

Figure 1. Enhanced graph learning for recommendation via causal inference.
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4.1. Biases Caused by Confounding Factors in the Recommender System

There are often biases caused by the popularity as a confounding factor in the recom-
mendation system. We take Figure 2 as an example to explain this phenomenon.

In Figure 2, user u notices and scores i. There are two questions behind this behavior.
(1) Why do users u pay attention to item i? Is it because u really likes i, or the high
popularity of i causes u to pay attention to it? If it is the latter, then u may not really like
it, and the rating is only because its popularity influences him. In essence, the reason for
this phenomenon is the existence of popularity as a confounding factor. This is one of
the key insights that supports the strong artificial intelligence of causal inference being
better than the traditional correlation fitting. In the recommender system, the biases caused
by confounding factors easily appear. For an example, there is a sample in the training
set, as shown in Figure 2a, (u, i, yui). Due to the high popularity of i, the yui is also high.
If there is another sample in the test set, (u, i, yui′) and it is known that i′ and i are very
similar items, should yui′ be as high as yui? In fact, if the popularity of i′ is very low, it
is very likely that yui′ is very low. In the final analysis, yui is high because the popularity
of i affects u’s rating. In fact, since the popularity of i′ is very low, yui′ is also very low.
However, the traditional machine learning model cannot recognize the existence of this
popularity bias. If the sample of "u scores high on i" is used to fit the model in the training
phrase, this model will predict that "u scores high on i′ for similar item" in the test phrase.
Unfortunately, this is a wrong prediction, because yui′ is in fact very low.

(a) P(Rating=yui|User=u, Item=i), training set (b) P(Rating=yui′|User=u, Item=i′), test set

Figure 2. Two samples in a training set (a) and test set (b). Although the entities are the same or
similar (u = u, i ≈ i′ ), the popularity of the items is very different, which is not known by the
traditional machine learning model.

4.2. Introducing Causal Inference to Identify and Remove Confounding Biases

In order to identify and solve the biases caused by popularity, we use the do() operator
in causal inference theory to deduce and remove of confounding effects.

Let us first compare Figure 2 and Figure 3:

• Figure 2 shows the real world (i.e., observation data, provided by the dataset), users
and items will be simultaneously affected by confounding factors, so they cannot be
independent.

• Figure 3 shows the imaginary world (i.e., experimental data, which cannot be provided
by datasets, and therefore, do not exist in reality). In this ideal world, users and items
are not affected by confounding factors, so they are independent.

(a) P(Rating=yui|do(User=u, Item=i)) (b) P(Rating=yui′|do(User=u, Item=i′))

Figure 3. Using the do() operator to block the path directed to u, i, or i′ to identify and eliminate the
influences of confounding factors.
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The goal of the do() operator is to model the world imagined by the former, and obtain
the real causality from this world. Specifically, the do() operator models the context
of switching from observed data to experimental data. As shown in Figure 3, the do()
operator will block all the paths of popularity to users and items, and the false correlation
between u and i is eliminated. We get the real causal data, namely, the unbiased interaction
relationship that is not affected by the confounding of popularity. It should be noted that
the do() operator cannot be calculated directly. After all, the dataset can only provide
observational data rather than ideal experimental data. In order to model the experimental
data imagined by the do() operator, we use the following formula to circuitously realize
the computable and programmable operation between Figures 2 and 3.

P(y|do(u, i)) = Pc(y|u, i)

= ∑
p

Pc(y|u, i, p)Pc(p|u, i)

= ∑
p

Pc(y|u, i, p)Pc(p)

= ∑
p

Pc(y|u, i, p)P(p)

(1)

In Formula (1), P() represents the probability of Figure 2 and Pc() represents the
probability of Figure 3. The operation do(u, i) makes Figure 2 become the state of Figure 3.
At this time, popularity is independent of users or items, so P(y|do(u, i)) = Pc(y|u, i).
Using the full probability formula, we introduce the hidden popularity variable p into
the formula to get the result ∑p Pc(y|u, i, p)Pc(p|u, i). In Figure 3, since popularity p is not
related to u and i, Pc(p|u, i) = Pc(p). Looking at Figures 2 and 3 from the perspective of
a Bayesian network, we can get Pc(y|u, i, p) = P(y|u, i, p) and Pc(p) = P(p). Finally, we
convert the non-computable P(y|do(u, i)) into computable ∑p P(y|u, i, p)P(p), and we get
the (u, i) relationship that is not affected by popularity.

It should be noted that there is an interesting fact that seems contradictory: there is
no popularity p in the formula P(y|u, i), but its result will be affected p as a confounding
factor; there is p in the formula ∑p P(y|u, i, p)P(p), but its purpose is precisely to eliminate
the influence of p.

The procedure of calculating pi is shown in the middle branch of Figure 1.

4.3. User Representation

In many previous works, user representation is simply a mapping of the user ID
one-hot vector to user embeddings. This representation is coarse and rigid because the ID
does not have any information describing the characteristics other than identifying a user.

By observing the interaction between u and i, we draw some conclusions. If two users
rate the same item at the same time, then there is some similarity in the preferences or
interests of these two users. The more items that are jointly rated, the higher the similarity.
Based on the above observation, in this paper, we consider two users with commonly rated
items as neighbors with similar interests, and extract the user-user adjacency matrix from
the user–item bipartite graph.

The neighbors in the matrix can be considered as people who may have similar interests
because they have rated the same items. If a person has multiple neighbors, we can
aggregate the characteristics of the neighbors into the representation of the person instead
of using only the ID representation. This aggregation results in a richer and more accurate
representation of the target user. We will demonstrate this later in the experimental analysis.

Next, we illustrate the process of generating the user-user adjacency matrix and user–
item rating matrix from the bipartite graph with the following example, as shown in
Figure 4.
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(a) u-i bipartite graph (b) Aggregation process of user neighbor

Figure 4. Generating user adjacency matrix from user–item bipartite graph.

The user–item interaction bipartite graph is shown on the left in Figure 4a. Figure 4b
shows the adjacency matrix Au and the feature matrix Fu(composed of the rating sequences
of individual users) extracted from the bipartite graph. The generation process is as follows.

From the bipartite graph, it can be seen that both u1 and u2 have scored i1. Thus,
Au(u1, u2) = 1 in adjacency matrix Au. It can also be seen that u1 and u4 both rated i5, so
Au(u1, u4) = 1. All the values on the main diagonal of Au are set to 1, indicating that each
user has a common rating with itself. In this way, we obtain the user adjacency matrix Au,
which is a symmetric matrix, as shown in Figure 4b.

The user feature matrix F0
u in Figure 4b uses a rating matrix, where each row represents

a user’s rating of each item. All ratings are extracted from the dataset. Since the rating data
are sparse, we use 0 to represent the missing entries.

We use a graph convolutional network to aggregate information about its neighbors
for each user.

F1
u = Relu(Au ∗ F0

u ∗W0 + b0) (2)

Equation (2) is a first-order aggregation of the feature matrix. Each row in F0
u rep-

resents each user’s original characteristics and does not yet fuse their neighbor informa-
tion at this point. Thus, after multiplying with the adjacency matrix Au, the first-order
neighbor information of each user is aggregated. This generates a new feature matrix
F1 containing information about the neighbors. For example, as shown the dashed box
in Figure 4b, u1 has 2 first-order neighbors, u2 and u4 (1, 1, 0, 1). u3 is not a neighbor
of u1, so it is shown as 0 in the vector. i4 in F is also rated separately by all users (0, 0,
2, 0). F1(u1, i4) = 1 ∗ 0 + 1 ∗ 0 + 0 ∗ 2 + 1 ∗ 0. This process shows that u1, u2, and u4 are
neighbors of each other, and their values for the corresponding features will be aggregated
together. u3 is not a neighbor of u1, so it does not aggregate its information (i.e., 0 ∗ 2).

With Equation (2), the information of all users’ first-order direct neighbors is aggre-
gated for the target user. Thus, each row in the new feature matrix F1 is no longer the
features of each user itself, but the fusion of features of each user and its first-order direct
neighbors. By analogy, we can also continue to aggregate second-order neighbor features
as follows.

F2
u = Relu(Au ∗ F1

u ∗W1 + b1)

...

Fn
u = Relu(Au ∗ Fn−1

u ∗Wn−1 + bn−1)

(3)

The second aggregation result F2 indicates further aggregation of information about
second-order neighbors. We can continue this operation until the nth aggregation, whose
result Fn contains information about the nth-order neighbors (as in Equation (3)).

Note that the final obtained Fn
u is a matrix whose every row represents a user’s feature

vector after aggregating information about its own neighbors. Additionally, our task in the
model of Figure 1 is to predict the ratings of specific users for specific items. Therefore,
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for a particular user u, we multiply its one-hot vector with Fn
u to obtain the row vector

representing user u in Fn
u as the final representation of u, eu (see Equation (4)). eu will be

involved in the subsequent computation of the interaction with the particular item.

eu = u× Fn
u (4)

4.4. Item Representation

The item representation is similar to the user representation, and the item adjacency
matrix is also generated from the bipartite graph in the reverse order of the user adjacency
matrix. Let us take Figure 5 as an example to illustrate the process of generating the item
adjacency matrix.

(a) i-u bipartite graph (b) Aggregation process of item neighbor

Figure 5. Generating process for an item adjacency matrix and item feature matrix.

The item–user bipartite graph in Figure 5a and the user–item bipartite graph in
Figure 4a are actually the same graph, representing the exact same user–item rating data.
However, the two graphs are flipped exactly in position. Here, we are targeting the items,
so we want to generate the adjacency matrix and feature matrix of the items, and thus
aggregate the neighbors’ information about the items. In the following, we describe in
detail the process of fusion of item features in Figure 5.

The item–user interaction bipartite graph is shown in Figure 5a. Figure 5b shows the
item adjacency matrix Ai and the item feature matrix Fi extracted from the bipartite graph,
which is composed of a sequence of attributes of each item. The generation process is as
follows. From the bipartite graph, we can see that both i1 and i5 are rated by u1. Thus, in
the adjacency matrix Ai, A(i1, i5) = 1. It can also be seen that both i1 and i3 are rated by u2,
so A(i1, i3) = 1. The elements on the main diagonal of Ai are all set to 1, indicating that
each item has a rating from another user. Therefore, the first row of Ai is vector (1, 0, 1,
0, 1), indicating that i1’s neighbors are i1, i3, and i5; while i2 and i4 are not i1’s neighbors.
Then, we can get the item adjacency matrix Ai, which is a symmetric matrix.

The item feature matrix F0
i in Figure 5b consists of the set of attributes of each item.

Each row represents the individual attributes of an item (e.g., movie) (A: actor, D: director,
G: genre, C: country, T: time). These attributes are also extracted from the dataset.

We use a graph convolutional network to aggregate information about its neighbors
for each item, as specified in Equation (5).

F1
i = Relu(Ai ∗ F0

i ∗W0 + b0) (5)

Equation (5) is first-order aggregation of the feature matrix. Each row in F0
i represents

an item-specific feature, so after multiplying with the adjacency matrix Ai, the first-order
neighbor information for each user is aggregated for that user. This generates a new
feature matrix F1

i containing the neighbors’ information. For example, as can be seen
from the dashed box in Figure 5b, i1 has two first-order neighbors i3 and i5(1, 0, 1, 0, 1)
(i2 and i4 are not neighbors of i1, so they are shown as 0 in the vector). The column
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director (D) in F0
i shows the director numbers corresponding to all movies (56,38,25,61,52).

F1(i1, D) = 1 ∗ 56 + 0 ∗ 38 + 1 ∗ 25 + 0 ∗ 61 + 1 ∗ 52, this process shows that i1, i3, and i5 are
neighbors of each other, and their values for the corresponding features will be aggregated
together. Additionally, i2 and i4 are not neighbors of i1, so they do not aggregate their
information (i.e., 0 ∗ 38 and 0 ∗ 61).

With Equation (5), the information of all the first-order direct neighbors of the items
is aggregated to the target item. Thus, each row in the new feature matrix F1

i is no longer
a fusion of each item’s own features, but a fusion of each item’s features with those of its
neighbors. In this way, we can also continue to aggregate second-order up to higher-order
neighbor features as Equation (6).

F2
i = Relu(Ai × F1

i ×W1 + b1)

...

Fn
i = Relu(Ai × Fn−1

i ×Wn−1 + bn−1)

(6)

The second aggregation result F2
i represents the information of further aggregated

second-order neighbors. This continues until the nth aggregation, whose result Fn
i contains

the information of nth-order neighbors.
It should be noted that in Equation (6), the shape of Fn

i is controlled by the shape of
the weight matrix Wn−1 in the last step, which makes ei a vector of the same length as eu.
This is done so that the two vectors can be computed as a dot product in the later operation.

After a series of calculations in Equation (6), the final Fn
i is a matrix whose each row

represents the combined feature vector of an item after aggregating information about its
own neighbors. Additionally, our model of Figure 1 is used to predict the ratings of specific
users for specific items. Therefore, for a particular item i, we multiply its one-hot vector
with Fn

i to obtain the row vector representing item i in Fn
i as the final representation of i, ei

(see Equation (7)). ei will be involved in the subsequent interaction calculation with the
particular user.

ei = i× Fn
i (7)

4.5. User–Item Interaction

Through the operations in Sections 4.3 and 4.4, we obtain the user representation eu
and the item representation ei with rich semantics after fusing the neighbor information.
The user’s preference for the item is also fitted with a mathematical calculation. Next, we
model the prediction of users’ ratings of items using two methods: element-wise product
and concatenation. The process is described in Equation (8):

h0 = eu � ei × pi (Element− wise product)

or

h0 = eu ⊕ ei × pi (Concatenation)

(8)

In our model, the method with � interaction is referred to as EGCI-product and the
method with ⊕ interaction is referred to as EGCI-con. The h0 vector generated by the
above methods is used as the input layer of the neural network in the interaction part of
the model. On the basis of h0, a deep nonlinear fully connected work is passed through the
L-layer (Equation (9)).

h1 = Relu(WT
1 ho + b1)

...

hL−1 = Relu(WT
L−1hL−2 + bL−1)

ŷui = WT
L hL−1 + bL

(9)
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4.6. Optimization Methods

To validate the effectiveness of our proposed model, we will compare its performance
with the baseline on two tasks. These two tasks are rating prediction and Top-N recom-
mendation. Rating prediction is the use of a model to predict the rating of a specific user
for a specific item. This is a regression task, and the error of the regression is generally
considered to obey a Gaussian distribution. By optimizing the probability density function
of the Gaussian distribution, we will obtain the following mean square error Equation (i.e.,
MSE) as the loss function (Equation (10)).

Loss =
1
|R| ∑

(u,i)∈R
(yui − ŷui)

2 + λ ‖W ‖2 (10)

where R represents the set of all entries in the rating matrix. yui represents true rating of u
to i in entry (u, i); ŷui is predicted rating of user u on item i by our model. W represents all
the weight parameters in our model, and λ ‖W ‖2 is the regularization term, which aims
to prevent overfitting of the model.

The second task, Top-N recommendation, is to predict the probability value of a
particular user’s preference for all candidate items. These probabilities are ranked from
largest to smallest, and then the top N items with large probabilities are recommended to
that user. Essentially, Top-N recommendation is a classification problem (class 1 means
recommended and class 0 means not recommended). The binary classification problem for
multiple items is to satisfy the Bernoulli distribution. By optimizing the probability density
function of the Bernoulli distribution, we will obtain the following binary cross-entropy
function as the loss function (Equation (10)).

Loss = −
1
N ∑

(u,i)∈R
(yui × log ŷui + (1− yui)× log(1− ŷui)) + λ ‖W ‖2 (11)

R represents the set of samples, where positive and negative samples are collected in
the ratio of 1:1. yui denotes the label of the sample (u, i): 1 represents the positive class and
0 represents the negative class. ŷui represents the probability that sample is predicted to be
a positive class. N denotes the total number of samples in R. W represents all the weight
parameters of the model. λ ‖W ‖2 is the L2 regularization term.

5. Experimental Results and Analysis

To fully validate the validity of our model, on three real datasets, compared to state-of-
the-art methods, we evaluate the performance of the EGCI model and answer the following
research questions.

RQ1. Does the EGCI model outperform baseline 1 in the rating prediction task?
RQ2. Does the EGCI model outperform baseline 2 in the Top-N recommendation task?
RQ3. How does auxiliary feature information, i.e., attributes of item, affect the perfor-

mance of the EGCI model?
RQ4. How do the model depth and embedding size affect EGCI’s performance?
In the following, we first describe the experimental setup (including dataset descrip-

tion, evaluation metrics, baselines, and parameter settings). Then, we compare the experi-
mental results of EGCI with the baseline methods on two recommendation tasks (rating
prediction and Top-N recommendation) and report performance analysis. Finally, we
discuss the impacts of key hyperparameters on model performance, including the num-
ber of feature attributes, the number of interaction layers, and the size of embedding,
among others.
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5.1. Experimental Setup
5.1.1. Dataset Description

We performed extensive ablation experiments on the following real-world datasets:
Hetrec2011-delicious-2k, Hetrec2011-lastfm-2k, and Hetrec2011-movielens-2k. These
datasets were released in the framework of the 2nd International Workshop on Infor-
mation Heterogeneity and Fusion in Recommender Systems ( HetRec 2011), from Delicious,
Last.fm Web 2.0, MovieLens, IMDb, and Rotten Tomatoes. They contain information on
social networks, tags, web bookmarks, and artists listening to music for about 2000 users.

Hetrec2011-delicious-2k: It includes 104,799 bookmarks for 1867 users for 69,226 URLs.
It also has 7668 bi-directional user relations, i.e., 15,328 (user i, user j) pairs, 53,388 tags, and
437,593 tag assignments (tas)—i.e., tuples (user, tag, URL).

Hetrec2011-lastfm-2k: This dataset includes 92,834 listening records for 1892 users
to 17,632 artists; each record is a triple, i.e., 92,834 tuples (user, artist, listeningCount). It
also includes 12,717 bi-directional user friend relations, i.e., 25,434 (user i, user j) pairs.
In addition, 11,946 tags and 186,479 tag assignments are included.

Hetrec2011-movielens-2k: It includes 855,598 ratings of 2113 users for 10,197 movies,
20 types of film attributes, 4060 directors, 72 countries, 13,222 tags, and 95,321 actors. The at-
tributes include 20,809 movie genre assignments, 10,197 country assignments, 47,899 loca-
tion assignments and 47,957 tag assignments (tas), i.e., tuples (user, tag, movie), etc.

Table 2 shows statistical data as follows.

Table 2. Statistics of the pre-processed data.

Dataset Hetrec2011-
movielens-2k

Hetrec2011-
lastfm-2k

Hetrec2011-
delicious-2k

#users 2113 1892 1867

#items 10,197
(movies)

17,632
(artists)

38,581
(URLs)

#interactions 855,598
(ratings) [1–5]

92,834
(user-listened

artist relations)

104,799
(user-bookmarks
-URLs relations)

#attribute1 20,809
(genre assignments)

186,479
(tag assignments)

437,593
(tag assignments)

#attribute2 4060
(directors)

17,632
(artist names and urls)

53,388
(tags)

#attribute3 95,321
(actor assignments)

12,717
(user friend relations)

7668
(user relations)

#attribute4 10,197
(country assignments) _ _

#attribute5 47,957
(tag assignments) _ _

Sparsity 3.97% 0.28% 0.15%

For each pre-processed dataset, we randomly sampled 80% for training and the
remaining 20% for testing. In the training set, another 2% of the samples were randomly
selected as the validation set to monitor and report the overfitting time points during
training. Each experiment was repeated five times, and the average of the five RMSE results
was recorded.

5.1.2. Evaluation Metrics

For rating prediction tasks, the error between the regression value and the true value is
generally considered to obey a Gaussian distribution. With such a premise, the evaluation
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metric can be derived using the least squares method, i.e., root mean square error (RMSE),
and we used it to evaluate our experimental results. The RMSE is defined as Equation (12):

RMSE =

√√√√√ ∑
(u,i)∈T

(yui − ŷui)
2

|T| (12)

where u denotes the interaction user in test set T, i denotes the interaction item in test set T,
yui is the true rating of the item, and ŷui is the predicted rating given by our recommendation
model. A smaller RMSE value means better performance.

For the Top-N recommendation task, we used precision and recall metrics with differ-
ent cutoff values (e.g., P@5, P@10, R@5, and R@10.) Precision is defined as Equation (13):

Precision =
1
|U| ∑

u∈U

|R(u)| ∩ |T(u)|
R(u)

(13)

Recall is defined as Equation (14):

Recall =
1
|U| ∑

u∈U

|R(u)| ∩ |T(u)|
T(u)

(14)

where U is the set of users; for each user u in U, T(u) represents the set of items that he really
likes; and R(u) is the set of the top N items recommended by the recommendation algorithm
for user u. Precision@N measures the ratio of the number of correctly recommended items
to the total number of recommendations, and Recall@N denotes the ratio of the number of
correctly recommended items to the total number of items that are really liked. Both of these
metrics represent better recommendation performance when they are larger. Generally,
these two metrics are used together to measure the performance of the system. The smaller
the N, the greater the precision, but the smaller the recall; conversely, the larger the N,
the smaller the precision and the larger the recall. Therefore, the use of one of these metrics
alone does not provide a pertinent response to the recommended performance. Only
when used in pairs, if both metrics are better, can they indicate that the recommendation
algorithm is excellent.

5.1.3. Baseline Approaches

Our experiments were conducted on two tasks, so we used two groups of baseline for
comparison. The first group mainly compared the values of RMSE. The second group was
to analyze the accuracy and recall.

Baseline 1:
NCF [4]. NCF is a particularly representative algorithm. It combines the deep neural

network with the traditional algorithm, and its effect is amazing.
U-CFN/ U-CFN++/I-CFN/I-CFN++ [26]. This set of CFN algorithms uses automatic

coding technology. It completes the construction of rating data from two perspectives:
users and goods. It not only makes use of user attribute data, but also fully excavates the
descriptive text of items. This improves the stubborn obstacle of a cold start.

SemRe-DCF [27]. DCF also takes the automatic encoder as the main method, and also
takes the attribute of the item as supplementary data to complete the prediction.

mSDA-CF [28]. mSDA-CF also uses an automatic encoder and combines probability
matrix factorization with it. The data are also denoised before rating prediction. mSDA-CF
reconstructs the expressions of users and items, and feeds back the rating to the intermediate
process for training. Finally, it predicts the scores of the missing items.

SemRec [29]. Semrec weights heterogeneous information and also uses Metapath data.
It combines the attributes and semantics of the path. On this premise, a recommendation
method related to the semantic information of the path is proposed.
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ADAR [30]. ADAR integrates attribute information into the embedded space from
the perspective of project attributes.

Baselines 2:
mostPoP. mostPoP recommends products to users based on how much they like

the projects.
BPR-MF [31]. BPRMF mainly starts with Bayesian theory and develops general

optimization criteria through maximum a posteriori estimation. It also develops a general
optimization framework BPR-Opt based on this idea.

GMF [4]. GMF mainly uses matrix factorization. It is different from the classical MF
algorithm. It combines the nonlinear activation function and inner products of neural
networks with the mining of semantic information.

SLIM [32]. SLIM makes good use of the feature of data sparsity to generate results
quickly. It uses a regularization method to obtain the aggregated information matrix. This
method aggregates the rating data to generate recommendations.

NeuMF [4]. The approach is stunning. It combines MLP with GMF. After the multi-
plication and splicing are combined, the algorithm is much more effective and performs
better in complex user interaction data.

ADAR [30]. This method is described in baseline 1.

5.1.4. Parameter Settings

We built our model in a Keras+Python3 environment and ran it on a GeForce GTX1080
GPU graphics card. Relu was used for the activation functions of all hidden layers.
The model parameters were initialized with a Lecun_ uniform distribution, and L2 regu-
larization was introduced in the optimization process. The optimization algorithm uses
mini-batch Adam.

To express the flexibility of the model, we also configured specific hyperparameters
for each dataset. After several rounds of experiments, we finalized the detailed hyperpa-
rameters as shown in Table 3. d denotes the final embedding dimensions of users and
items. L denotes the number of layers of user and item graph convolution (i.e., number of
aggregations). Sn denotes the size of each graph convolution layer embedding. λ is the
L2 regularization factor. η denotes the learning rate. Batch-size indicates the number of
samples sent into the model in each batch.

Table 3. Hyperparameter settings.

Dataset d L S1 S2 S3 λ η
Batch
Size

Hetrec2011-
movielens-2k 150 3 300 200 150 2 × 10−5 2 × 10−4 256

Hetrec2011-
lastfm-2k 150 3 300 200 150 10−4 5 × 10−2 128

Hetrec2011-
delicious-2k 200 3 400 300 200 10−3 10−3 128

5.2. Experimental Results and Analysis
5.2.1. Comparison of Performance with Baseline 1 Methods (RQ1)

Table 4 shows the performance of the EGCI model compared to those of the baseline
method 1 for rating prediction. Note that smaller RMSE values indicate better performance
for the rating prediction task.
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Table 4. Overall comparison of RMSE.

Method

Hetrec2011-
delicious-2k

Hetrec2011-
lastfm-2k

Hetrec2011-
movielens-2k

RMSE EGCI
Impr. RMSE EGCI

Impr. RMSE EGCI
Impr.

NCF 0.8764 13.48% 0.8794 14.91% 0.8693 13.99%

U-CFN 0.8741 13.25% 0.8709 14.08% 0.8584 12.90%

U-CFN++ 0.8476 10.54% 0.8435 11.29% 0.8406 11.05%

I-CFN 0.7992 5.12% 0.7968 6.09% 0.8137 8.11%

mSDA-CF 0.7884 3.82% 0.7884 5.09% 0.7827 4.47%

I-CFN++ 0.7802 2.81% 0.7781 3.83% 0.7689 2.76%

SemRe-DCF 0.7774 2.46% 0.7836 4.50% 0.7638 2.11%

SemRec 0.7736 1.98% 0.7643 2.09% 0.7536 0.78%

ADAR 0.7721 1.79% 0.7615 1.73% 0.7562 1.12%

EGCI 0.7583 - 0.7483 - 0.7477 -

Impr. Avg 6.14% 7.07% 6.37%

• From the data, EGCI has advantages. By carefully observing these three portions of
results, we can see the advantages and disadvantages of its performance. (1) With
hetrec2011-movielens-2k, the RMSE of EGCI was developing in a good direction.
The increase rate of data was in the range of 1.12% to 13.99%. The average value
reached 6.37%. EGCI is much better than NCF because the latter method was used for
a long time. However, NCF is a classical algorithm that cannot be ignored. Compared
with other algorithms in the table, the performance was superior. (2) The first two,
hetrec2011-delicious-2k and hetrec2011-lastfm-2k, improved by 6.14% and 7.07%
respectively. Compared with 6.37%, those results are similar, indicating that EGCI has
a certain amount of stability.

• Among the algorithms used for comparison, the trend was not completely consistent.
Although EGCI did not surpass them too much, EGCI was always the best. The reason
for this is that EGCI can alleviate the sparsity of data.

• In terms of data alone, NCF performed generally well. Second was CFN. This is
mainly because they are relatively early starters. Other algorithms do not put more
information into embedding.

• EGCI made some progress over our ADAR. This is mainly because EGCI adds user
relationships to embedding. The combination of item attributes and user embedding,
and adding these vectors to each other, changes the direction of the original vector,
and makes it possible to adjust the similarity deviation between users and items in the
dataset. The experimental results also confirm the rationality of this.

5.2.2. Comparison of Performance with Baseline 2 Methods (RQ2)

We used the EGCI model to perform the Top-N recommendation task, which is
essentially a binary classification task, unlike the regression task in the previous subsection.
The output of a binary classification task is generally a probability, and if the probability
is greater than a threshold (typically 0.5), it is put into the “1” class, and if it is less than a
threshold, it is put into the "0" class. To model the model output as a probability, i.e., the
range of values was set between 0 and 1, we fed the final model output in Equation (13)
into the Sigmoid function, as shown in Equation (15).

ŷui = σ(WT
L hL−1 + bL) (15)



Mathematics 2022, 10, 1881 15 of 20

The Sigmoid function mapped the results of the model to the [0, 1] interval and was
used to model the probability of the preference of user u for item i.

Furthermore, the goal of the dichotomous classification task was to determine whether
a sample belonged to a certain category, so in the supervised learning process, the labels
could no longer be set as true scores, but had to be changed to “1” (for positive samples
or liked ones) or “0” (for negative sample or disliked ones). Under this requirement, we
converted the observed values in the original rating matrix to 1 and the missing values to
0: 1 means u is related to i or u is interested in i, and the sample is positive; 0 means u is
not related to i or u is not interested in i, and the sample is negative. Since the number of
missing terms in the rating matrix is much higher than the number of observed terms, we
sample the missing terms according to the same number as the observed terms, so that the
ratio of the number of positive and negative samples is 1:1, which ensures the equilibrium
of model learning.

Tables 5–7 show the performance of the EGCI model compared to the baseline baseline
2 for ranking recommendations. From them, it can be seen that:

• Among all the data, EGCI is the most prominent. Among the four evaluation values,
although the best among other methods changes, EGCI is consistent. For example,
on the dataset hetrec2011-delicious-2k, the average improvement ratio of EGCI was
6.69%, 6.43%, 7.44%, or 3.80%. The other two experiments went the same.

• Compared with all models, except Adar, EGCI made more progress. From this point,
it can be observed that the improvement method of embedding in EGCI is better.
The ADAR method developed by using item attributes is also relatively advantageous,
which shows that our research direction is correct.

Table 5. Comparison of precision and recall on the Hetrec2011-delicious-2k dataset.

Method
Hetrec2011-delicious-2k

P@5 EGCI P@10 EGCI R@5 EGCI R@10 EGCI
↑ Impr. ↑ Impr. ↑ Impr. ↑ Impr.

mostPOP 0.487 13.96% 0.482 10.24% 0.049 12.50% 0.073 7.59%

BPRMF 0.515 9.01% 0.492 8.38% 0.050 10.71% 0.076 3.80%

GMF 0.524 7.42% 0.489 8.94% 0.051 8.93% 0.078 1.27%

SLIM 0.538 4.95% 0.508 5.40% 0.054 3.57% 0.076 3.80%

NeuMF 0.546 3.53% 0.515 4.10% 0.052 7.14% 0.075 5.06%

ADAR 0.559 1.24% 0.529 1.49% 0.055 1.79% 0.078 1.27%

EGCI 0.566 - 0.537 - 0.056 - 0.079 -

Impr. Avg 6.69% 6.43% 7.44% 3.80%

Table 6. Comparison of precision and recall on the Hetrec2011-lastfm-2k dataset.

Method
Hetrec2011-lastfm-2k

P@5 EGCI P@10 EGCI R@5 EGCI R@10 EGCI
↑ Impr. ↑ Impr. ↑ Impr. ↑ Impr.

mostPOP 0.487 15.89% 0.479 12.43% 0.049 14.04% 0.079 9.20%

BPRMF 0.519 10.36% 0.493 9.87% 0.049 14.04% 0.084 3.45%

GMF 0.536 7.43% 0.492 10.05% 0.052 8.77% 0.085 2.30%

SLIM 0.541 6.56% 0.512 6.40% 0.055 3.51% 0.085 2.30%

NeuMF 0.548 5.35% 0.517 5.48% 0.055 3.51% 0.086 1.15%

ADAR 0.561 3.11% 0.529 3.29% 0.056 1.75% 0.083 4.60%
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Table 6. Cont.

Method
Hetrec2011-lastfm-2k

P@5 EGCI P@10 EGCI R@5 EGCI R@10 EGCI
↑ Impr. ↑ Impr. ↑ Impr. ↑ Impr.

EGCI 0.579 - 0.547 - 0.057 - 0.087 -

Impr. Avg 8.12% 7.92% 7.60% 3.83%

Table 7. Comparison of precision and recall on the Hetrec2011-movielens-2k dataset.

Method
Hetrec2011-movielens-2k

P@5 EGCI P@10 EGCI R@5 EGCI R@10 EGCI
↑ Impr. ↑ Impr. ↑ Impr. ↑ Impr.

mostPOP 0.508 12.86% 0.485 11.17% 0.050 15.25% 0.081 11.96%

BPRMF 0.525 9.95% 0.498 8.79% 0.052 11.86% 0.087 5.43%

GMF 0.537 7.89% 0.497 8.97% 0.054 8.47% 0.087 5.43%

SLIM 0.546 6.35% 0.504 7.69% 0.057 3.39% 0.086 6.52%

NeuMF 0.551 5.49% 0.519 4.95% 0.055 6.78% 0.091 1.09%

ADAR 0.565 3.09% 0.532 2.56% 0.058 1.69% 0.086 6.52%

EGCI 0.583 - 0.546 - 0.059 - 0.092 -

Impr. Avg 7.61% 7.36% 7.91% 6.16%

5.2.3. Impact of the Number of Attribute Features on Performance (RQ3)

As typical auxiliary information, does the attribute of an item have an impact on
the performance of the recommendation system? In order to answer this question, we
try to modify the characteristic matrix of the item while keeping other hyperparameters
unchanged. In the experiment, 1, 2, and 3 attributes were added to the article features
in turn, and the outputs of accuracy and recall were recorded. The results are shown in
Table 8.

Table 8. Performance results.

Data Performance
Model

EGCI-a1 EGCI-a2 EGCI-a3

Hetrec2011-movielens-2k

P@5 ↑ 0.572 0.581 0.584

R@5 ↑ 0.052 0.058 0.060

P@10 ↑ 0.505 0.542 0.547

R@10 ↑ 0.080 0.082 0.093

Hetrec2011-lastfm-2k

P@5 ↑ 0.566 0.574 0.580

R@5 ↑ 0.051 0.052 0.057

P@10 ↑ 0.499 0.537 0.542

R@10 ↑ 0.072 0.078 0.091

Hetrec2011-delicious-2k

P@5 ↑ 0.552 0.564 0.575

R@5 ↑ 0.048 0.052 0.055

P@10 ↑ 0.486 0.490 0.528

R@10 ↑ 0.067 0.071 0.089
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• EGCI-a1 and EGCI-a2 are derived from EGCI. In fact, they are combined once and
twice by the latter. We can see from Table 8 that both of them are inferior to EGCI-a3,
that is, EGCI. This proves the validity of item attributes involved in user embedding.

• It can also be seen from the data in Table 8 that the performances of a1, a2, and a3

gradually increase. Among them, a1 is the worst and a3 is the best. This shows that
the idea of this paper is correct.

5.2.4. Impacts of Model Depth and Embedding Size on Performance (RQ4)

(1) Model depth

The success of deep learning stems from its "depth." EGCI is also a deep learning
framework. Therefore, the number of layers of the network is undoubtedly a key hyper-
parameter of EGCI. In order to verify the influence of “depth” on EGCI, we successively
have the multi-layer perceptron network of user–item interactions 1, 2, 3, 4, 5, or 6 layers
for comparative experiments and analysis. The results of models with different layers are
shown in Figures 6–8. Note that in the legends in Figures 7 and 8, because the dataset name
is long, we use 1, 2, and 3 to represent hetrec2011-movielens-2k, hetrec2011-lastfm-2k, and
hetrec2011-delicious-2k, respectively.

Figure 6. RMSE generated by models with different numbers of layers.

Figure 7. Precision generated by models with different numbers of layers.
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Figure 8. Recall generated by models with different numbers of layers.

• In Figures 6–8, we can see the influence of the number of layers on the algorithm.
Basically, the performances of all algorithms are directly proportional to the number of
layers. This is also the same in much of the literature. The number of layers is directly
proportional to the accuracy.

• Once the number of layers is sufficiently high, the performance will not be improved
indefinitely. In this round of experiments, when the number of layers was equal to
5, the effect was basically at its peak. Further increasing this value was no longer
beneficial in the experiment.

(2) Embedding size

Embedding thinking is currently a dominant feature representation approach in ma-
chine learning. In EGCI, we also map both users and items into their respective embedding
representations before feeding them into the computational components of the interactions
later on. Currently, the embedding vector is not easy to interpret as a representation of
entities, but it does in fact show excellent performance in practical engineering. On the
other hand, embedding is not completely uncontrollable. For example, we can control the
size of the embedding during its formation, which is one of the key parameters of the depth
model. For this, we try to generate embeddings of different lengths in order to observe the
variation of the model’s recommendation results and to analyze them.

We set the dimensions of each embedding layer in the model to 50, 100, 150, 200, 250,
and 300, respectively, and obtained the experimental results shown in Figure 9:

Figure 9. RMSE generated by models with different embedding sizes.



Mathematics 2022, 10, 1881 19 of 20

• Embedding is similar to the number of layers. It is also closely related to the advan-
tages and disadvantages of EGCI, and the two are directly proportional. The figure
shows that when the value of embedding is 150, the best results will be obtained in an
experiment on hetrec2011-movielens-2k.

• When the size of embedding is 200, the best result is obtained on hetrec2011-lastfm-2k.
When it is 300, it works best on the other dataset. After analysis, we believe that this is
related to the sparsity of the data itself.

6. Summary and Outlook

Graph representation learning can effectively learn the rich structural and semantic
information in graph data, and can be combined with deep learning (such as a graph
convolution network or graph neural network), which has strong flexibility in practical
applications. Moreover, the interactive data of the recommendation domain can be natu-
rally represented as graphs, such as a user–project bipartite graph and a project–project
co-occurrence graph. In this paper, we combined the above two points, supplemented
by causal inferencing, to explore the use of a graph convolution network to learn the
representations of users and project nodes, and proposed the EGCI model. EGCI can fuse
the high-order information of neighbors on users and items, generate enhanced user and
item representations, and help make impressive improvements in the accuracy of recom-
mendation. The experimental results show that the EGCI model reduces the RMSE error
by an average of 6.53% in the rating prediction task compared to the strongest competing
method. In the Top-N recommendation task, P@5 was improved by an average of 7.47%,
P@10 by an average of 7.24%, R@5 by an average of 7.65%, and R@10 by an average of
4.60%.

In the future, we will introduce causal reasoning to help realize the interpretability of
recommendations. We hope to generate more accurate portrait representations by elimi-
nating the impacts of collision factors in a knowledge map or heterogeneous information
network, so as to provide interpretable recommendation results.
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