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Abstract: The solution of segmentation problems with deep neural networks requires a well-defined
loss function for comparison and network training. In most network training approaches, only area-
based differences that are of differing pixel matter are considered; the distribution is not. Our brain
can compare complex objects with ease and considers both pixel level and topological differences
simultaneously and comparison between objects requires a properly defined metric that determines
similarity between them considering changes both in shape and values. In past years, topographic
aspects were incorporated in loss functions where either boundary pixels or the ratio of the areas were
employed in difference calculation. In this paper we will show how the application of a topographic
metric, called wave loss, can be applied in neural network training and increase the accuracy of
traditional segmentation algorithms. Our method has increased segmentation accuracy by 3% on
both the Cityscapes and Ms-Coco datasets, using various network architectures.
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1. Introduction

The application of neural networks and modern machine-learning techniques opened
up various applications for image segmentation, where instead of or additionally to bound-
ing box detection a pixel level segmentation of input images can be created. In recent years,
segmentation networks have become ubiquitous in computer vision applications, since
they usually provide better understanding of scenes than classification or detection with
bounding boxes.

These methods are applied in various tasks, from medical imaging [1] to self-driving
cars [2]. These methods may vary depending on the selected architectures (U-Net [1],
SegNet [3], Mask-RCNN [4], RetinaNet [5]) or even on the exact specification of the seg-
mentation problem (semantic segmentation [6], instance segmentation [7] or amodal seg-
mentation [8]), but all of these approaches require a metric which will compare the actual
network output to the expected, ideal outcome or ground truth.

These distances are indispensable for classification, data clusterization or in the ap-
plication of any modern supervised learning method for artificial intelligence. From an
engineering point of view, a metric is inherently a simplification of the problem representa-
tion, which condenses similarity or difference between two high-dimensional data points
into a scalar value and if significant and important data is lost during this projection the
algorithm cannot provide correct results.

Apart from information compression, one may have another important expectation
about a proper metric, which works against the generality of information compression. On
the one hand, a metric has to be sensitive enough to allow comparison in an abstract space;
meanwhile, on the other hand, it has to be robust to filter out noise.
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In current applications, in almost all cases a pixel-based distance is applied, where
two images are compared to each other according to a given metric (like L1, L2 or Smooth-
L1 [9] distances). Similarly the outcome image and the ground truth can be considered as
probability distributions and cross entropy can be applied to determine a distance between
them, but none of these metrics take into account the position of the differences.

It is not our aim to speak against intensity-based distances and loss functions, but
we would like to demonstrate that a metric involving topological information about the
shape of the object and relative position of the differences can have additional value in
network training.

The representation of topological information in loss calculation has appeared in
the past year in various papers, such as [10–12], but all these approaches at their core
calculate the pixel-wise differences and approximate topology using persistence barcode
calculation [11] or skeletonization [12].

One can easily see that in the case of a perfect solution the loss will indeed be zero
for every metric and higher losses will encode either a larger area of altered pixels, larger
intensity differences or both. However, in the case of errors with similar values, the position
and shape of the misclassified pixels will also matter. For example, a hundred differing
pixels can be organized into an arbitrary shape such as a circle, a line or randomly placed
separated points and the position of these differences should also determine the quality of
a solution in the case of segmentation.

Additionally, loss functions should also identify those regions which are responsible
for the error. In the case of segmentation, falsely detected pixels around the real object and
not segmented pixels inside a homogeneous region are usually caused by the false detection
of the boundary and not because of the exact pixels at that position. This weighting is
implicitly present in the network via the downscaling operations in different layers, but
it is advantageous to explicitly find the source of the error at the calculation of the loss
function. These aspects are present in boundary losses, such as in [13], where the boundary
regions of the ground truth masks are handled with increased importance, but the topology
of other regions is not represented at all.

In this paper, we would like to show that these differences matter and topological
information incorporated in the loss function can be used to increase the accuracy of
segmentation networks.

In Section 2, we demonstrate how the lack of topological information could tamper
binary object comparison, describe binary wave metric and how it can be used for shape
comparison. In Section 3, we introduce the extension of the wave metric to three dimensions
to make it applicable on gray-scale images and two-dimensional probability distributions.
In Section 4, we introduce the environments and datasets we used for our measurements.
In Section 5, we compare our approach to other commonly applied metrics via commonly
applied datasets and architectures. We implemented and compared our topographic loss
with the traditional L1 loss and Smooth-L1 loss on two different datasets, our new and
simple dataset, as described in Section 4.1, and the COCO dataset [14], with various
architectures. Lastly, in Sections 6 and 7, we discuss and conclude our findings.

2. Comparison of Shapes and the Binary Wave Metric

In every application currently non-topographic metrics are applied to calculate pixel-
wise differences between images, which completely neglects topographic information. In
this section, we focus on binary (black and white images) to illustrate the flaw of pixel-based
metrics and reveal how the wave metric can enhance these similarity functions.

In a particular problem, a metric has to be chosen depending on the nature of the prob-
lem. All metrics are problem-dependent and since a metric condenses high-dimensional
similarities into a scalar value, no metric can be general and perform well for every practi-
cal problem. This motivates us to use topographic metrics for topographic problems, like
segmentation.



Mathematics 2022, 10, 1932 3 of 15

The most commonly applied metrics for binary objects are Hamming [15] and Haus-
dorff [16] distances.

Hamming distance computes the number of differing pixels between two images:

DHm = ∑(A
⋃

B) \ (A
⋂

B) (1)

where A and B are the input images both containing only values of zeros and ones. This
metric is fast and easy to calculate and although it is commonly applied to compare the
shapes of various objects, in many tasks it performs poorly because of a complete lack of
topological information. This metric is also commonly referred as an area-based metric since
only the area of the differing regions determines the metric and it takes into account the
number of different pixels regardless of their neighbors or their relative positions. Almost
all popularly used metrics such as cross entropy, Dice [17], Lovász [18] or Tversky [19] losses
are area-based metrics, where the area of the different regions matters; their topologies are
not considered.

In the case of grayscale images, an extension of this metric can be applied as the
pixel-wise difference between the two images; these metrics are usually referred to as `1
and `2 distances and can be defined the following way:

`1(a, b) = ∑
i
|ai − bi| (2)

and
`2(a, b) :=

√
∑

i
(ai − bi)2 (3)

Figure 1 demonstrates the contradiction between the Hamming distance and subjective
human judgments. However, every human observer would judge the middle-right pair
to be more similar; the Hamming distances between the middle and left and the distance
between the middle and right images are exactly the same. Our perception is based
not only on the area of the differing parts, but also on shape-related information. This
information cannot be ignored if we want to create a trustworthy metric. One can see that
the Hamming distance (and any other area-based metric) can provide misleading decisions.
Thus, shape-related descriptors are also required.

(a) (b) (c)

Figure 1. Two images and a reference image with the same Hamming distances but different topology;
(a) compared image 1; (b) reference image; (c) compared image 2.

The other often used metric is the Hausdorff distance [16], which is determined solely
by the distance of the furthest different pixel between the objects:

DHs = max(d(A, B), d(B, A)) (4)

where h(F, G) = max f∈F ming∈G d( f , g), d is a distance measure (e.g., `1 or `2), F and G
are the images to be compared and f and g represent their pixels. This distance represents
topology better since Hamming distance is determined only by the area of the different
pixels; meanwhile, here it ensures that all differences are in a DHS radius. Since this metric
can reflect topology better, it is employed in certain applications such as geology [20]
and quantum physics [21]. Unfortunately, this metric’s sensitivity to noise prevents its
utilization in practical applications. If the largest distances between two different pixels
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are the same on two image pairs, the metric will return the same result and hides all other
information about shapes as well.

The illustration of the Hausdorff distance and its poor applicability can be seen in
Figure 2. This image illustrates the contradiction between the Hausdorff distance and
subjective judgments. Hausdorff distances between the image in the middle and the one to
the left and between the image in the middle and the one to the right are exactly the same.
A human observer would most probably select the middle-left pair as more similar images.
Natural vision and perception is not only based on the topology of the differing parts,
but also on area-based information. This information also has to be considered during
computation to produce a reliable and useful metric.

(a) (b) (c)

Figure 2. Three images with the same Hausdorff distances but different topology; (a) compared
image 1; (b) reference image; (c) compared image 2.

Binary Wave Metric

Both the Hamming and Hausdorff metrics reveal important properties about similarity,
but to create a multipurpose, efficient metric, their advantageous properties should be
combined, eliminating their flaws. The application of different metrics in a parallel manner
might be beneficial, but in the case of simultaneously computed metrics one will increase
processing time and algorithmic complexity and we may not be able to solve the problem
since the weighting of these metrics during combination is always problematic. One has
eventually to combine all the metrics into a single function that results in a scalar to ease
classification and comparison.

The idea of the binary wave metric was first introduced by Istvan Szatmari in 1999 [22].
His work covers the metric calculation for convex, binary objects only and in this work
we will extend it to non-convex, grayscale images, which makes it applicable as a loss
function in image segmentation algorithms. This metric can be defined as the volume of an
ascending wave starting from the intersection of the objects and filling out the area defined
by the union of the two binary objects.

On a suitable hardware architecture, the non-linear wave metric can measure both
the shape and the area difference between two objects in a single operation (e.g., on a
multi-layer cellular neural network) [23].

Based on this, the equation of the metric calculation for convex two-dimensional
binary objects can be given as the following:

WM(A, B) =
∫

x,y∈DHm(A,B)
DHs(x, y) (5)

which is the point-wise integration of local Hausdorff distances over every point in the
disjunctive union of the two objects. In the case of non-convex objects, the non-linear wave
metric is the integration of the local Hausdorff distances along the shortest path in the
union of the two sets.

It can be easily seen that the wave metric contains and compresses both previously
introduced metrics. The maximal height of the ascending wave (the propagation time of
the wave) is proportional to the value of the Hausdorff metric (DHs) for connected objects
and the area of the wave propagation is proportional to the Hamming distance (DHm).

The slope, the increase of the wave for each step, determines the connection between
the topological (Hausdorff) and the area-based (Hamming) information. For example, if
this increase is set to zero and propagation starts with a constant non-zero magnitude, the
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wave metric will yield the Hamming distance multiplied by the initial constant. In the case
of a larger slope, the metric will shift more towards the Hausdorff metric and the distances
between the further and further differing points will determine the result more and more.

It is easy to see that this similarity function fulfills almost all the required properties
of a metric. It can be defined as a function on a given set d : X × X 7→ R and it fulfills
the following properties (∀a, b, c ∈ X): non-negativiy or separation axiom: d(a, b) ≥ 0;
identity of indiscernibles, or coincidence axiom: d(a, b) = 0 ⇔ a = b; and symmetry:
d(a, b) = d(b, a).

Unfortunately, the triangle inequality or subadditivity axiom

d(a, c) ≤ d(a, b) + d(b, c)

does not hold this way since three objects, from which two are completely disjoint (a and
c) and the third of which has a common part with both (b), would result in a zero value
for d(a, c) and a non-zero value for both d(a, b) and d(b, c). To get around this problem,
we applied an extra penalty for points which cannot be reached in the union during wave
propagation. This penalty has to be larger than the maximum penalty in the reachable
region. With this addition, the wave metric fulfills all the axioms and forms a proper metric
for non-connected objects as well.

The illustration of the wave propagation and the metric can be seen in Figure 3. In
this image, the first row depicts two possible binary input images (first and second images
from the left) and their intersection and union (third and fourth images from the left). The
last two rows depict four 3D versions of the wave metric in an increasing manner until
reaching the union at iterations 100, 150, 300 and the last iteration, including not reached
regions. During propagation, further and further pixels will be incorporated in the loss
function with higher and higher values. At the last step, a high penalty will be assigned to
all pixel which were not reached during propagation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Illustration of the wave propagation; (a) input A; (b) input B; (c) intersection; (d) union;
(e) wave 100 iterations; (f) wave 150 iterations; (g) wave 300 iterations; (h) wave unreached regions.

This metric can be used to compare images and accurate usable calculations, but
unfortunately cannot be used during network training, as was shown in [24], since it can
only be calculated between two binary images.

3. Wave Loss: Extension of the Wave Metric to Three Dimensions

In the previous section, the binary wave metric was described; as was demonstrated, it
creates a connection between topological and area-based metrics. To extend it to grayscale
images and two-dimensional probability distributions, we have to consider intensity-based
differences as well. The metric should depend on three not-independent measures: the
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area of the differences, the topology of the differences and the intensities and values of the
differences.

In this case the output and ground-truth images can be imagined as two two-dimensional
surfaces in three dimensions. From this, we can calculate the intersection and the union
(which will also be two-dimensional surfaces); then, the metric can be imagined as a three-
dimensional wave propagating and filling out the space between these two surfaces. A
weight will be associated to every new voxel at each time step of the propagation and this
four-dimensional volume (the weighted sum of the three-dimensional changes) will be
called wave loss.

Our goal was to differentiate between value and topology-based differences and
because of this the propagation speed of the wave is different in z (intensity) and x, y
(topological directions) (the wave could propagate differently along the x and y dimensions
as well, but in image-processing applications these dimensions are usually handled in the
same manner).

Compared to the binary wave metric, where only topological distances were covered,
an upper bound for the number of required steps until convergence can easily be identified.
An upper bound for spatial propagation can also be found (identifying the object containing
the longest possible path with the given image size), but this bound is fairly high compared
to the number of steps required to cover differences in intensity. In practice, this means
that typically a small number of iterations (10–20) is enough to calculate the metric.

Algorithm 1 calculates wave loss for two grayscale images. The input values are Img1
and Img2 and the output of the algorithm is a scalar variable WaveLoss. The parameters of
the algorithm are the following:

• ValInc will determine how fast the wave propagates along the intensity differences;
every pixel’s intensity will be increased by this amount in every iteration. This
parameter will also determine the maximum number of required iterations and by
this it will also determine the largest distance from the intersection where topological
differences are considered. Having a larger distance than the maximal receptive field
of a neuron in the network is illogical because this way the error could be derived
back to a neuron which had no vote in the classification of that input pixel. In our
experiments, this value was between 0.05 and 0.1, meaning that the wave from a
selected point could propagate for 20 and 10 pixels.

• SpaInc will determine the spatial propagation speed of the wave. Spatial propagation
is implemented by a max pooling operation with window size SpaInc and a stride of
one. In our simulations, this value was always set to 3.

• ValW is a vector of penalties for the intensity differences. If this value is constant, the
weight differences will be linearly proportional to the penalties in the loss. If this is
increasing, it means larger differences (where more iterations are required to reach
the desired value) will have larger and larger penalties. In our simulations, we used
constant values in ValW.

• SpaW is a vector containing the penalties for topographical differences. SpaW[0] will
weight those points which can be reached in one spatial propagation and which are
in the direct neighborhood of the intersection. SpaW[k] will have a penalty for those
values which will be reached at the k-th iteration. In our simulations, we applied
linearly increasing values which were all lower than the values of ValW. In most
networks, we want to have good results on average, but minor mistakes about the
shape of the object can be tolerated. Applying lower values than the intensity weights
(ValW) means that the importance of the shape of the segmented object will become
less important. Monotonically increasing SpaW means that the further we are from
the object, the higher the cost a misclassification will result. Applying higher weights
than ValW, which are monotonically decreasing, would mean that the boundaries are
really important and classifying a pixel around a boundary is a larger problem than
misclassifying a pixel somewhere far from the object.



Mathematics 2022, 10, 1932 7 of 15

Algorithm 1: Calculation of wave loss.
Data: Img1, Img2
Parameters : ValInc, SpaInc, SpaW, ValW
Result: WaveLoss

1 Union←max(Img1,Img2);
2 CurrentWave←min(Img1,Img2);
3 WaveLoss = 0;
4 i← 0;
5 while i ≤ 1 do

/* Loss for intensity differences */
6 NewWave += ValInc;
7 NewWave = min(NewWave,Union);
8 ValueChange = sum(NewWave-CurrentWave);
9 WaveLoss += ValW[i]*ValueChange;

10 CurrentWave = NewWave;
/* Loss for spatial differences */

11 NewWave = maxpool(CurrentWave,[SpaInc,SpaInc], [1,1]);
12 NewWave = min(NewWave,Union);
13 SpatialChange = sum(NewWave - CurrentWave);
14 WaveLoss += SpaW[i] * SpatialChange;
15 CurrentWave = NewWave;
16 i += ValInc;
17 end

Since both the values in Img1 and Img2 are bounded, the algorithm will always
converge if a larger than zero ValInc parameter is applied. The difference between the
intersection and the union will decrease at least by ValInc amount in every iteration. Since
both the intersection and the union are probability distributions in the case of neural
network training (just like Img1 and Img2) we can consider their values to be between
zero and one and this way the algorithm will always converge in 1/ValInc iterations. One
can easily see that the wave metric is an extension of the normal `1 metric; if there is no
spatial propagation (SpaInc = 0) and ValW values are all the same, we will obtain L1 loss
as a result.Similarly, if the values in ValW are increasing exponentially with no spatial
propagation, this metric will calculate the traditional cross entropy between the two images,
representing two-dimensional distributions.

The derivative of Algorithm 1 is also required for network training. Luckily, our method
consists of simple operations such as addition, multiplication and maximum/minimum
selection. The derivative of all of these individual operations (each line in the algorithm)
can be calculated in a straightforward manner and the derivative of the algorithm can be
determined by the chain rule. Luckily, in modern machine-learning frameworks such as
Pytroch [25] or Tensorflow [26] where automatic differentiation is applied, these derivatives
are calculated automatically.

During the calculations, we first increase CurrentWave according to the intensities.
This is a global change and it happens everywhere in the image where the values have
not reached the union and after this step we apply spatial propagation. One could change
this order, but we considered intensity-based differences more important. One could also
execute both propagations separately and sum their penalties, but we did not observe
any measurable effect applying this modification. In this setup, compared to the binary
implementation all points are reached during propagation since the intensity differences
are limited; therefore, there is no need for an extra penalty for unreached regions.

Since it is difficult to plot wave loss using two-dimensional images, we opted to
display it using two one-dimensional grayscale ’images’. This can be seen in Figure 4. As
can be seen, the wave fills out the region between the intersection and the union of the
two surfaces. At each propagation, the newly reached pixels will be weighted and added
to the loss function. This way, this metric incorporates intensity-, area- and shape-related
information simultaneously.
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Figure 4. The propagation of the wave during the calculation of wave loss.

From an implementation point of view, value increase is just an addition and spatial
propagation is a grayscale dilation, which is essentially a max pooling operation which can
be found in every modern machine-learning environment. For a training step, the number
of additional pooling operations is fairly small compared to the pooling operations already
contained by a typical convolutional neural network. Therefore, the calculation of the wave
loss will not increase training time significantly and has no effect on inference time.

4. Materials and Methods

We used the Pytroch [25] open source machine-learning framework for the implemen-
tation of our algorithm and for training various neural network architectures on multiple
datasets. For evaluation, we investigated three publicly available and commonly cited
datasets: CLEVR [27], Cityscapes [28] and MS-COCO [14]. In our instance segmentation
experiments on MS-COCO, we used the Detectron 2 environment [29]. For the sake of
reproducibility and a detailed description of parameter setting, our code for network training
and evaluation on both datasets along with the data generation script for the CLEVR dataset
can be found at https://github.com/horan85/waveloss (accessed on 28 May 2022).

4.1. Simple Dataset for Segmentation

Since we were not able to find a simple segmentation dataset (like MNIST [30] or
CIFAR for classification), we created a simple dataset based on CLEVR [27].

The dataset contains 25,200 three-channel RGB images (of size 320 × 240) of sim-
ple objects along with their instance masks, amodal masks and pairwise occlusions and
three-dimensional coordinates for each object. These images were created in a simulated
environment and contain cylinders, spheres and cubes in various positions. Since the
dataset is simulated, the exact location and the pixel-based segmentation maps of all the
images are known. This results in a simple dataset for various tasks, like three-dimensional
reconstruction, instance segmentation and amodal segmentation.

The dataset contains objects of simple shapes, but also contains shadows, reflections
and different illuminations, which make it relevant for the evaluation of segmentation
algorithms.

An example image of the dataset along with a few generated masks can be seen in
Figure 5. An input image (top left), the instance segmentation mask (top right), an example
amodal mask which was generated for each object individually (bottom left) and the
pairwise occlusion mask (bottom right) are displayed in this figure. The pairwise occlusion
images with the amodal mask can be used to determine front–back relation between objects.
Apart from the mask, the exact object coordinates and sizes are also stored in JSON format.

https://github.com/horan85/waveloss
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(a) (b)

(c) (d)

Figure 5. Example images from the CLEVR dataset; (a) input Image; (b) segmentation mask; (c) in-
stance mask; (d) occlusion mask.

A simple simulated dataset: CLEVR
We selected the U-net architecture to compare wave loss and L1 loss in our simple

CLEVR-inspired dataset. We used a U-NET-like structure containing 8, 16, 32, 64 convo-
lution blocks (each 3× 3). Downscaling was carried out by strided convolutions, while
upscaling was implemented by transposed convolutions.

We trained the network 20 times independently on our dataset for semantic segmen-
tation, using 23,400 images for training and 1800 images for validation (all the validation
scenes were generated independently from the training scenes). In one setup, we trained
the network to minimize the L1 loss on the training set, in the other setup wave loss was
defined as the error function. In both cases, we measured both L1 and wave loss during
training and validation. The losses can be seen in Figure 6. Some qualitative examples from
the validation set during different train iterations can be seen in Figure 7. The images were
taken at 200, 400, 600, 1000 iterations from the training set. From left to right, the columns
are the following: input image, network output trained with L1 loss, input image, network
output trained with wave loss. One could also observe a formation of a spotted, grid-like
structure at the first iterations of training using the wave loss since regions around high
intensity pixels cause lower loss values.

(a)

Figure 6. Cont.
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(b)

Figure 6. Losses on the CLEVR dataset averaged out on 20 independent runs; (a) L1 loss; (b) wave
loss.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 7. Example images at different iterations from the CLEVR dataset; (a) input; (b) seg. 200;
(c) input; (d) seg. 200; (e) input; (f) seg. 400; (g) input; (h) seg. 400; (i) input; (j) seg. 600; (k) input;
(l) seg. 600; (m) input; (n) seg. 1000; (o) input; (p) seg. 1000.

As one can see from these measurements, wave loss results in faster convergence and
better accuracy in both the training and the validation sets.

These simple examples show the applicability of wave loss in segmentation tasks, but
to demonstrate the advantage of this topological loss function, we have to investigate it in
more complex and practical tasks.

5. Results

Semantic segmentation on Cityscapes
We investigated the Cityscapes dataset [28] with the following architectures: Seg-

Net [3], HRNET [31], DeepLab [32] and DeepLabv3 [33].
We trained these networks with three different loss functions (`1, cross entropy and

wave loss) and the accuracy results can be found in Table 1.
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During training, we initialized the weights randomly and executed five independent
trainings with every configuration and trained them for 400,000 iterations.

The parameters of our loss function were the following: SpaInc was set to three; this
means propagation happened using 3× 3 kernels. Topology weights (SpaW) exponentially
increased from 0.01 to 1 and intensity weights (ValW) were all set to a constant value of one.
ValInc was set to 0.05; this means that the largest value gap of one will be filled in twenty
iterations. Using this value, neighborhoods of maximum twenty pixels are affected by
wave propagation. Since the input resolution of the networks was 513× 513, we considered
these 20× 20 neighbourhoods sufficiently large.

As can be seen from the results, the application of wave loss increased the network
performance compared to traditionally used cross entropy loss with an approximated 3%
in the case of all network architectures and provided better segmentation accuracy than
any of the investigated loss functions in all cases.

Table 1. This table contains the average accuracy results of five independent runs on the Cityscapes
dataset using four different network architectures (rows) and six different loss functions for semantic
segmentation.

Model L1 Loss CrossEnt Dice Boundary ShapeAware Wave

SegNet 54.2% 57.0% 57.3% 57.7 58.6% 59.5%
DeepLab 59.7% 63.1% 64.1% 64.3% 65.4% 66.7%
DeepLabv3 77.6% 81.3% 81.4% 81.5% 81.7% 82.2%
HRNET 77.4% 81.6% 81.8% 81.8% 82.1% 83.4%

Instance segmentation on MS-COCO
We also investigated the problem of instance segmentation on COCO 2017 [14]. We

investigated MASK-RCNN with different backbone architectures using the Detectron 2
framework where we kept the architecture and all the other parameters unchanged in the
configuration files used for instance segmentation on this dataset. These configurations
contained data augmentation in the input samples containing random flip, random crop,
brightness change and random additive noise. The original training script used cross en-
tropy and we added our implementation of the wave loss to the framework and compared
its performance.

The parameters of our loss function were the same as in the case of the Cityscapes
dataset. We would like to emphasize that the images used for segmentation differ signif-
icantly in size from the images used in Cityscapes since in the case of Mask R-CNN the
segmentation head is executed on the 28× 28 outputs of the RoiAlign layer. Even though
the object sizes may differ, the same parametrization worked well for this architecture and
dataset as well, which demonstrate that our loss function is not heavily dependent on the
exact parameter values.

We measured mean average precision values using the evaluation script of COCO. We
have to note that IOU is more related to wave loss than to L1 metric or cross entropy since
wave loss uses the intersection and union to determine wave propagation, but we think this
does not bring an unfair bias to the evaluation. The results can be seen in Table 2. As can be
seen from the results, the application of the wave loss increased the precision of the network
with an overall 3% on our validation set and the network performs especially better in the
case of small objects, where an improvement of 5% was achieved compared to our reference
network trained by cross entropy loss. We also have to emphasize that segmentation
improved in the case of every architecture and for all object sizes. Qualitative results about
the generated masks and bounding boxes can be seen in Figure 8. The segmentation masks
in the first column were generated by a network trained with cross entropy loss; the masks
in the second column are results of a network trained with wave loss. As can be seen, wave
loss does not cover boundaries as sharply, but altogether gives a better coverage of the
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objects. (Although we have to note that this judgment might be subjective and could also
depend on the exact parmetrization of wave loss.)

(a) (b)

Figure 8. Example results on the COCO dataset segmented with Mask-RCNN; (a) cross entropy loss;
(b) wave loss.

Table 2. Average precision results on COCO 2017 validation set using the same network architectures
with three different loss functions in different columns (`1, cross entropy, Dice loss, active boundary
loss, shape aware loss and wave loss). Two different architectures (ResNet-50 and ResNet-101) can
be found in the rows, with feature pyramid networks (FPNs) or when the activation of the fourth
convolution layer (C4) was used for region proposals. The results display the mean average precision
for all objects, except the last three rows, where the accuracy results for the best performing network
are detailed for small-, medium- and large-sized objects as well.

Model L1 CrossEnt Dice Boundary Shape Wave

R50-C4 mAP all 28.75% 32.2% 32.83% 32.9% 34.721% 35.93%
R50-FPN mAP all 29.43% 35.2% 36.14% 36.12% 37.53% 38.11%
R101-C4 mAP all 30.17% 36.7% 37.2% 37.4% 38.86% 38.23%
R101-FPN mAP all 31.67% 38.6% 38.8% 39.3% 40.25% 41.7%
R101-FPN mAP s 14.25% 17.37% 18.18% 18.35% 19.33% 22.24%
R101-FPN mAP m 37.53% 39.23% 39.74% 40.52% 41.27% 43.26%
R101-FPN mAP l 50.14% 51.64% 51.83% 52.17% 52.22% 53.27%
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6. Discussions

Our results presented in the previous section clearly demonstrate that incorporating
topological information in the loss function can improve the segmentation accuracy of
various network architectures. The results in Tables 1 and 2 demonstrate that our approach
not only improved the accuracy by 3% on average but also performs better than any of the
other loss functions selected for comparison.

We have compared our method to a recent reformulation of Dice loss [17], which
calculates the ratio between the intersection and the union between the two binary objects.
Unfortunately, Dice loss is a metric applied over binary images and they are based solely on
area-based differences. Until the number of pixels in the intersection and union remain the
same, the regions can change arbitrarily. Namely, the different pixels can move anywhere in
the image space; only the number of different pixels matters. Another recent improvement
over the area-based metric is the active boundary loss [34] where, as an additional loss
value, the boundary pixels are calculated with a larger weight, this way representing
the shape of the object in the loss function. This is more similar to our approach, but it
considers only the boundary pixels and no other pixels in the differing area. The third
selected loss is the shape aware loss function [35] which considers all pixels in a differing
region, but with a precomputed weight which is the pixels’ Euclidean distance from the
intersection. Unfortunately, this distance is not the same as the shortest path of differing
pixels since in the case of non-convex regions this distance can be significantly larger.
One can easily see that incorporating more topographic information in the loss functions
improved segmentation accuracy and the best results could be achieved with wave loss.
We also have to note that our method is not another completely different loss function, but
a combination and generalization of area- and distance-based metrics. For example, setting
the SpaW parameter to an all zero vector except the first value will result in the spatial
information being incorporated only at one pixel from the intersection, which is exactly
the same region as the boundary of the object. This way, one can calculate boundary loss
using our method. Similarly, if all SpaW values are zero our metric will compute an area-
based metric, similar to the Hamming distance or Dice score. On the other hand, if ValW
parameters are all set to zero, only the distance of the differing pixels will be a determining
factor similarly to Hausdorff distance. These results show that our approach defines a more
general metric which can mimic most of the previously applied loss functions and with
proper parameterization it can also perform better in practical applications.

7. Conclusions

In this paper, we have shown how a topographic metric can help in the increase of the
accuracy of commonly applied image segmentation networks during training, and results in
higher accuracy and precision in evaluation. We have shown on a simple dataset, inspired
by CLEVR, that the same network can achieve better accuracy and faster convergence using
wave loss rather than pixel-based loss functions.

We have also shown, in more complex tasks, that the overall accuracy of instance
segmentation could be increased by 3% on MS-COCO using the Mask R-CNN architecture,
with a ResNet-101 backbone, modifying only the loss function from cross entropy to
wave loss.

We have also demonstrated on the Cityscapes dataset that the inclusion of topographic
information in the loss function can increase the test accuracy by 3% on average compared
to cross entropy, which was observed in the case of four different architectures (SegNet,
DeepLab, DeepLabV3 and HRNet). We also compared wave loss to other recently published
loss functions such as Dice loss, active boundary loss and shape aware loss and our
approach provided higher segmentation accuracy in all cases.

These results are initial and further detailed investigations are needed using various
networks, datasets and parameter settings, but we believe they are promising and demon-
strate that including topographic information in loss calculation can result in higher IOU
measures in all segmentation problems.
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