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Abstract: Previous research has shown that incorporating stagnation-point flow in diverse manufac-
turing industries is beneficial due to its importance in thermal potency. Consequently, this research
investigates the thermophysical properties of the unsteady separated stagnation-point flow past a
moving plate by utilising a dual-type nanoparticle, namely a hybrid nanofluid. The impact of suction
imposition on the entire hydrodynamic flow and heat transfer as well as the growth of boundary
layers was also taken into account. A new mathematical hybrid nanofluid model is developed, and
similarity solutions are obtained in the form of ordinary differential equations (ODEs). The bvp4c
approach in MATLAB determines the reduced ODEs estimated solutions. The results show that
increasing the stagnation strength parameters expands the skin friction coefficient and heat transfer
rate. The addition of the suction parameter also resulted in an augmentation of thermal conductivity.
Interestingly, reducing the unsteadiness parameter proportionately promotes heat-transfer perfor-
mance. This significant involvement is noticeable in advancing industrial development, specifically
in the manufacturing industries and operations systems.

Keywords: stagnation-point; hybrid nanofluid; suction; moving plate; unsteadiness parameter

MSC: 34B15; 76D10; 76M55

1. Introduction

The investigation of unsteady boundary layer flow is essential since most of the flow
problems in applied fluid mechanics are practically unsteady. This type of flow dynamics
is currently being explored to quantify the friction drag and gain a better understanding
due to its universal applications in diverse fields of engineering and applied science. Over
the last few decades, the scientific world has paid close attention to understanding the
unsteady behaviour of boundary layer flows, including the separated stagnation-point
flow under various conditions. According to Blasius [1] and Prandtl [2], a characteristic for
separation is also a factor for disappearing skin friction in the case of steady boundary-layer
flow over a flat plate. Meanwhile, Sears and Telionis [3,4] demonstrated that the point
of disappearing skin friction might not correlate with the point of separation. They also
reported that the correlation between separation characteristics for the unsteady flow over
fixed walls could provide comprehensive insight. The unsteady separated stagnation-point
flow problem has been extensively studied, including several papers by Lok and Pop [5],
Dholey [6,7], and Renuka et al. [8].
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The study of boundary layer flow is prominent within the stagnation region in the
manufacturing industry, for example, polymer productivity and extrusion process, which
requires continuous advancement to comply with the quality standard [9,10]. The classic
stagnation-point flow was first addressed by Hiemenz [11] and Homann [12]. Wang [13]
and Takhar et al. [14] studied the steady and unsteady flow towards the stagnation region
in cylindrical form. Dholey [15] investigated the magnetic effect of unsteady separated
stagnation-point flow in electrically conducting and viscous fluid. Jamaludin et al. [16]
investigated the suction imposition and radiation impact in the stagnation region of
cross fluid.

As a result of the increased demand for effective methods to enhance heating devices’
performance, nanofluids have become far more essential in the last decades. Choi [17]
initially projected the nanoparticle dispersion concept in a base fluid. Suresh et al. [18]
have presented a characterisation of Al2O3-Cu nanocomposite powder and water-based
nanofluids. Today, heat-transfer devices are used in almost every market sector, including
medical drug carriers, solar collectors, computer processors, aerospace technology, and
heat exchangers (see Chamsa-ard et al. [19]). Sharma et al. [20] found the dual solutions
towards the unsteady separated stagnation-flow employing the finite element analysis in a
nanofluid. The analysis of the heat transfers in the unsteady separated stagnation region of
copper-water nanofluid utilising the Tiwari-Das model was presented by Rosça et al. [21].
Oztop and Abu-Nada [22] found that the heat-transfer enhancement caused by nanofluids
was discovered to be more prominent at low aspect ratios than at high aspect ratios. It
is worth mentioning that many references on nanofluids can also be found in the books
by Das et al. [23], Minkovicz et al. [24], Shenoy et al. [25], Nield and Bejan [26], and
Merkin et al. [27]. Meanwhile, Buongiorno et al. [28], Manca et al. [29], Mahian et al. [30,31],
Kasaeian [32], and Gupta et al. [33] reviewed the insight into nanofluids applications and
challenges. From another point of view, several experimental studies relating to micro-nano
fluidic systems using a different approach of analysis and theoretical modeling have been
discussed by [34–37]. Such articles contain interesting results and discoveries in the context
of real-world application problems.

Following that, hybrid nanofluid has been used to improve the thermal mechanism by
dispersing multiple nanoparticles in a base fluid. Hybrid nanofluids are new nanofluids
made up of microscopic nanoparticles. Hybrid nanofluids are found in various areas, includ-
ing heat transfer, where they have been used in mechanical heat sinks, plate heat exchang-
ers, and helical heat exchangers (see Xian et al. [38]). Meanwhile, Devi and Devi [39–41]
demonstrated that when a magnetic parameter is present, the heat-transfer rate of hybrid
nanofluid is more significant than that of nanofluid. Takabi and Salehi [42] studied the
heat-transfer performance of a sinusoidal corrugated enclosure by employing a hybrid
nanofluid. Ghalambaz et al. [43] considered the mixed convection and stability analysis of
stagnation-point boundary layer flow and heat transfer of hybrid nanofluids over a vertical
plate. The published paper by Waini et al. [44], Khashi’ie et al. [45], and Zainal et al. [46–48]
presented a comprehensive study on boundary-layer analyses in hybrid nanofluid. We
also mention the very good review papers on hybrid nanofluids by Babu et al. [49] and
Huminic and Huminic [50].

A thorough examination of the above-mentioned research is only conceivable to a
limited extent. To the best of our knowledge, no previous studies have looked into the
boundary layer flow and heat transfer of unsteady separated stagnation-point flow in
dual-type nanoparticles. Henceforth, motivated by the work of Dholey [7,51], the goal
of this study is to broaden the research by employing the hybrid nanofluid flow and the
suction effect in boundary layer flow as well as heat transfer. In such a case, this research
would like to examine the effect of suction imposition on the entire hydrodynamic flow and
heat transfer as well as the growth of boundary layers in the unsteady separated stagnation
region in a hybrid nanofluid. A new mathematical hybrid nanofluid model was developed,
and we used the bvp4c scheme in the MATLAB package to elucidate the stated problem.
Comparative results were obtained for a specific case, disclosing a good correlation with the
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existing outcomes. As there are multiple solutions aroused, an analysis of solution stability
is performed to demonstrate the physical interpretations of the generated results. This
significant engagement is important and could assist in advancing industrial development,
particularly in the operations and manufacturing industries, for example, the transpiration
cooling of a re-entry vehicle.

2. Mathematical Formulation

The present paper deals with the two-dimensional unsteady separated stagnation-
point flow past a moving plate, as shown in Figure 1. The outer inviscid velocity is
given by ue(x, t) = αs(t)x and ve(y, t) = −αs(t)(y− γ1), where α(> 0) is the constant
stagnation flow strength, s(t) = 1/ξ(t0 − t) is the strain rate temporal variation, and γ1 is
the boundary layer displacement thickness that arises inside the layer caused by the fluid
viscosity effect. The Cartesian coordinates given by (x, y) with x- axis taken are along the
plate, and y- axis is measured normal to it, while the flow is in the region y ≥ 0, where
t denotes time. The constant wall temperature is Tw, and T∞ is the ambient temperature.
Next, the plate moves with a velocity uw(x, t) proportional to ε-times of the outer potential
flow velocity ue(x, t). Physically, ε is the moving parameter, which may either be positive
or negative accordingly as the plate moves in the same or the opposite direction of the
outer inviscid flow, while ε = 0 means that the plate is not moving. Now, the respective
problems can be modelled by (see Dholey [7]; Sharma et al. [20]):

∂u
∂x

+
∂v
∂y

= 0, (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= − 1
ρhn f /ρ f

∂p
∂x

+
µhn f /µ f

ρhn f /ρ f

(
∂2u
∂x2 +

∂2u
∂y2

)
, (2)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= − 1
ρhn f /ρ f

∂p
∂y

+
µhn f /µ f

ρhn f /ρ f

(
∂2v
∂x2 +

∂2v
∂y2

)
, (3)

u
∂T
∂x

+ v
∂T
∂y

=
1
Pr

khn f /k f(
ρCp

)
hn f /

(
ρCp

)
f

(
∂2T
∂x2 +

∂2T
∂y2

)
, (4)

subject to
u = εuw(x, t), v = vw(t), T = Tw at y = 0,

u→ ue(x, t), v→ ve(y, t), T → T∞ as y→ ∞,
(5)

where u and v are the velocity components along the x− and y−axes, respectively; vw(t)
is the velocity of wall mass transfer, where vw(t) > 0 and vw(t) < 0 signify as injection
and suction procedure, respectively; and Pr =

(
ρCp

)
f /k f is the Prandtl number. Further,

note that µhn f is the dynamic viscosity, khn f is the heat/thermal conductivity, and ρhn f
and

(
ρCp

)
hn f are the density and heat capacity, respectively. Table 1 demonstrates the

characteristic properties where Cp is the heat capacity, k is the thermal conductivity, and ρ
indicates the density. Following that, Table 2 presents the nanoparticle’s properties where
φ1 is Cu (copper) nanoparticle, and φ2 denotes the Al2O3 (alumina) nanoparticle. It is worth
mentioning that there are some assumptions considered in the present hybrid nanofluid
model, described as follows:

• The hybrid nanofluid’s base fluid is retained in a thermal equilibrium state.
• The nanoparticles are uniformly spherical and incompatible with other nanoparticle forms.
• We assume hybrid Al2O3-Cu/H2O nanofluid to be stable; thus, the sedimentation and

aggregation effect on this dual-type nanoparticle is ignored.
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Figure 1. The geometrical coordinates and flow pattern.

Table 1. The characteristic properties (see Devi and Devi [39,40]).

Characteristics Al2O3–Cu/H2O

Density ρhn f =
(

1− φhn f

)
ρ f + φ1ρs1 + φ2ρs2

Dynamic viscosity µhn f =
µ f

(1−φhn f )
2.5

Thermal capacity
(
ρCp

)
hn f =

(
1− φhn f

)(
ρCp

)
f + φ1

(
ρCp

)
s1 + φ2

(
ρCp

)
s2

Thermal conductivity
khn f
k f

=


(

φ1ks1+φ2ks2
φhn f

)
+2k f +2(φ1ks1+φ2ks2)−2φhn f k f(

φ1ks1+φ2ks2
φhn f

)
+2k f−(φ1ks1+φ2ks2)+φhn f k f



Table 2. The nanoparticles and base fluid properties (see Oztop and Abu-Nada [22]).

Characteristics Cp(J/kgK) k(W/mK) ρ(kg/m3)

Cu 385 400 8933
Al2O3 765 40 3970
H2O 4179 21 0.613

As in Dholey [7], the following similarity variable is instructed as

u = αx
ξ(t0−t) f ′(η), v = α√

ξ(t0−t)
f (η),

θ(η) = T−T∞
Tw−T∞

, η = y√
ξ(t0−t)

,
(6)

and
vw(t) = −

α√
ξ(t0 − t)

S, (7)

where S is the constant mass flux parameter expressed by S < 0 for injection, while S > 0
intended for suction, t0 is an initial reference value of time t, and ξ is a free parame-
ter that measures the strength of the unsteadiness of this flow dynamics. The insertion
of Equation (6) into the momentum Equations (2) and (3) yield the pressure gradient
equations as

− 1
ρhn f /ρ f

∂p
∂x

= − αx

ξ2(t0 − t)2

[
µhn f /µ f

ρhn f /ρ f
f ′′′ + α f f ′′ − α f ′2 − ξ

(
f ′ +

η

2
f ′′
)]

, (8)
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− 1
ρhn f /ρ f

∂p
∂y

= − α

ξ2(t0 − t)

[
µhn f /µ f

ρhn f /ρ f
f ′′ + α f f ′′ − ξ

(
f +

η

2
f ′
)]

. (9)

Details formulations of the similarity variables in (6) and assumptions on pressure
gradients in Equations (8) and (9) that allow the exclusion of those gradients along with inde-
pendent variables x, t are available in Dholey [7,51]. Furthermore, we included this formula-
tion in Appendices A and B. After eliminating the pressure p between Equations (2) and (3),
integrating the results once, and then using the outer boundary conditions on f (η),
Equations (2) and (3) are transformed into the following ordinary (similarity) differential equations:

µhn f /µ f

ρhn f /ρ f
f ′′′ + α f f ′′ + α

(
1− f ′2

)
− ξ
(

f ′ +
η

2
f ′′ − 1

)
= 0, (10)

1
Pr

khn f /k f(
ρCp

)
hn f /

(
ρCp

)
f

θ′′ +
(

α f − ξ
η

2

)
θ′ = 0, (11)

f (0) = S, f ′(0) = ε, θ(0) = 1,

f ′(η)→ 1, θ(η)→ 0, f (η)→ (η − γ) as η → ∞.
(12)

For a given value of ε(> 0) within the bounds of the solution domain along with a
definite value of ξ, independent of its sign, a reverse flow of f (η) occurs typically inside the
layer since f ′(η) < 0 (see Equation (12)). This causes the existence of a nonzero stagnation
point that originates inside the layer where the velocity components (u, v) are zero, and its
location will be found at xs = 0 and ys =

√
ξ(t0 − t)ηs, where ηs satisfies f (ηs) = 0. The

thickness of dimensionless displacement γ in Equation (12) can be written in terms of the
constant mass flux S as below (see Dholey [51]):

γ =
d

dx

∫ ∞

0

(
1− u

ue

)
dy = lim

x→∞
(η − f (η)) + S. (13)

According to Dholey [51], the boundary layer’s displacement effect γ can be fully
erased by applying an appropriate amount of suction depending on the values of α and
ξ, which can be observed in Equation (13). The physical quantities to be examined in this
study are C f and Nux, which are denoted as the skin friction coefficient and local Nusselt
number, respectively, and can be defined as

C f x =
µhn f

ρ f ue2

(
∂u
∂y

)
y=0

, Nux = −
xkhn f

k f (Tw − T∞)

(
∂T
∂y

)
y=0

. (14)

Hence, using (6) and (14), one obtains

Re1/2
x C f =

µhn f

µ f

1

[ξ(t0 − t)]3/2 f ′′(0), Re−1/2
x Nux = −

khn f

k f

1√
ξ(t0 − t)

θ′(0), (15)

where Rex = ue(x, t)/ν f is the local Reynolds number.

3. Analysis of Solution Stability

In this study, we employed a stability analysis technique to evaluate the dual solutions
and determine whether they are stable or not. In consideration of that, an analysis of
solution stability is necessary to determine which solution is mechanically reliable (see
Merkin [52,53]). A new variable Γ is now described in a subsequent manner:

u = αx
ξ(t0−t)

∂ f
∂η (η, Γ), v = α√

ξ(t0−t)
f (η, Γ),

θ(η, Γ) = T−T∞
Tw−T∞

, η = y√
ξ(t0−t)

, Γ = α
ξ(t0−t) t.

(16)
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By considering Equation (16) in the unsteady flow for Equations (10) and (11), thus,

µhn f /µ f

ρhn f /ρ f

∂3 f
∂η3 + α f

∂2 f
∂η2 + α

[
1−

(
∂ f
∂η

)2
]
− ξ

(
∂ f
∂η

+
η

2
∂2 f
∂η2 − 1

)
− (1 + ξΓ)

∂2 f
∂η∂Γ

= 0, (17)

1
Pr

(
khn f /k f(

ρCp
)

hn f /
(
ρCp

)
f

)
∂2θ

∂η2 +
(

α f − ξ
η

2

) ∂θ

∂η
− (1 + ξΓ)

∂θ

∂Γ
= 0, (18)

f (0, Γ) = S, ∂ f
∂η (0, Γ) = ε, θ(0, Γ) = 1,

∂ f
∂η (η, Γ)→ 1, θ(η, Γ)→ 0 as η → ∞.

(19)

The steady flow solutions are then examined (see Weidman et al. [54]), where f (η) = f0(η)
and θ(η) = θ0(η), thus,

f (η, Γ) = f0(η) + e−ωΓH(η),

θ(η, Γ) = θ0(η) + e−ωΓ I(η).
(20)

Afterward, to attain the eigenvalue problems of Equations (17) and (18), Equation (16)
is employed. From Equation (20), H(η) and I(η) are relatively small to f0(η) and θ0(η),
whereas ω signifies the eigenvalue. Substituting Equation (20) into Equations (17)–(19), hence

µhn f /µ f

ρhn f /ρ f

∂3H
∂η3 + α

(
f0

∂2H
∂η2 + 2

∂ f0
∂η

∂H
∂η

+
∂2 f0

∂η2 H
)
− ξ

(
η

2
∂2H
∂η2 +

∂H
∂η

)
+ ω

∂H
∂η

= 0, (21)

1
Pr

(
khn f /k f(

ρCp
)

hn f /
(
ρCp

)
f

)
∂2 I
∂η2 + α

(
f0

∂I
∂η

+ H
∂θ0

∂η

)
− ξ

η

2
∂I
∂η

+ ωI = 0, (22)

H(0) = 0,
∂H
∂η

(0) = 0, I(0) = 0,
∂H
∂η

(η)→ 0, I(η)→ 0. (23)

Obeying that, f0(η) and θ0(η) are identified as the solutions of steady-state flow,
performed as Γ→ 0. The linearised eigenvalue problem solution is soon determined as

µhn f /µ f

ρhn f /ρ f
H′′′ + α

(
f0H′′ + 2 f0

′H′ + f0
′′H
)
− ξ
(η

2
H′′ + H′

)
+ ωH′ = 0, (24)

1
Pr

(
khn f /k f(

ρCp
)

hn f /
(
ρCp

)
f

)
I′′ +

(
α f − ξ

η

2 0

)
I′ + ωI + αθ0

′H = 0, (25)

H(0) = 0, H′(0) = 0, I(0) = 0,

H′(η)→ 0, I(η)→ 0.
(26)

In accordance with the results documented by Harris et al. [55], the possible eigenval-
ues can be established by relaxing a boundary condition. To this extent, H′′ (0) = 1 replaces
H′(η)→ 0 as η → ∞ in Equation (26). The analysis of findings is described in detail in
the following section.

4. Analysis of Findings

The bvp4c scheme in the MATLAB package is utilised to solve the coupled
Equations (10) and (11) with boundary conditions (12) numerically (see Shampine et al. [56]).
The accuracy of the results was confirmed by comparing them to the previously reported
data in Tables 3 and 4. However, the numerical method developed in this paper might
fail to provide meaningful results in certain cases. For example, in general, the governing
equations in the present work are solved using the similarity transformation. Therefore, all
resulting parameters in this study must be constant, including the nanoparticles volume
fraction φ, suction parameter S, unsteadiness parameter ξ, and the stagnation flow strength
α. If the governing parameter is dependable, it fails to admit the similarity equation, pro-
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ducing unreliable results. Another way to determine the accurateness of the numerical
method used in this study is by observing the generated profiles. If the profiles are not
asymptotically converged, it is thus not satisfying the boundary condition (12). Therefore,
we can conclude that the results were indeed insignificant.

Table 3. Results of f ′′(0) and −θ′(0) with different ε as φ1 = φ2 = ξ = S = 0, α = 1.0 and Pr = 6.2.

ε
Wang [57] Ishak et al. [58] Lok and Pop [5] Present Result

f”(0) f”(0) f”(0) f”(0) −θ′(0)

0.00 1.232588 1.232588 1.232590 1.2325877 1.127964

0.10 1.146560 1.146561 1.146560 1.1465610 1.229066
0.12 1.051130 1.051130 1.051130 1.0511300 1.326093
0.50 0.713300 0.713295 0.713290 0.7132950 1.595447
1.00 0.000000 0.000000 0.000000 0.0000000 1.986717
2.00 −1.887310 −1.887307 −1.887310 −1.8873067 2.627720
5.00 −10.264750 −10.264749 −10.264750 −10.2647493 4.015395

Table 4. Results of f ′′(0) and −θ′(0) with different ε as φ1 = φ2 = ξ = S = 0, α = 1.0 and Pr = 6.2.

ε
Wang [57] Ishak et al. [58] Lok and Pop [5] Present Result

f”(0) f”(0) f”(0) f”(0) −θ′(0)

−0.25 1.402240 1.402241 1.402240 1.4022408 0.856057
−0.50 1.495670 1.495670 1.495670 1.4956698 0.558412
−0.75 1.489300 1.489298 1.489300 1.4892982 0.258362
−1.00 1.328820 1.328817 1.328820 1.3288169 0.043556
−1.15 1.082230 1.082231 1.082230 1.0822311 0.002617
−1.2465 0.554300 0.554283 0.554300 0.5542963 0.000000

Since there are two possible solutions, the analysis of solution stability is significant to
the study. The smallest eigenvalues ω1 acquired from the stability analysis demonstrate
the characteristics of the numerical results. When the smallest eigenvalue is positive, the
flow is said to be stable because the solutions fulfil the stabilising criteria of permitting
an initial decay. In contrast, the negative values of the smallest eigenvalues signify the
opposite outcomes, which are unstable flow. Table 5 demonstrates that the first solution is
stable, whereas the alternative is not.

Table 5. The smallest eigenvalues ω1 with assorted ε.

ε First Sol. Second Sol.

−2.00 0.6864 −1.008
−2.20 0.5201 −0.9764
−2.40 0.3385 −0.9312
−2.60 0.1321 −0.8624
−2.70 0.0121 −0.8117

Figures 2 and 3 demonstrate the skin friction coefficient f ′′(0) and local Nusselt num-
ber −θ′(0) behaviour in several types of fluids, including viscous fluid (φ1 = φ2 = 0.00),
alumina/water nanofluid (φ1 = 0.00, φ2 = 0.01), and copper-alumina/water hybrid nanofluid
(φ1 = φ2 = 0.01). Figure 2 exhibits the improvement of f ′′(0) as the nanoparticle volume
fraction φ boosts up from viscous fluid to hybrid nanofluid in the first solution. When
1% and 2% of the total volume fraction of alumina is injected, the skin friction coefficient
of hybrid nanofluid and nanofluid is higher than the viscous fluid. As we can see, the
injection of nanoparticle volume concentration has increased the working fluid’s viscosity.
In the meantime, Figure 3 proved a downward trend of −θ′(0) in both solutions, repre-
senting the system’s cooling rate as the values of nanoparticle volume fraction increase
from viscous fluid to hybrid nanofluid. As a result, our findings support the idea that an
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increase in nanoparticle concentrations of the working fluid reduces cooling capacity as
the viscous fluid transforms into a hybrid nanofluid. These findings are contrary to the
results obtained by Sarkar et al. [59]. According to their study, the synergistic effect in the
nanoparticle can improve the heat-transfer performance of a hybrid nanofluid. However,
Khashi’ie et al. [60,61] explained that this situation occurs because of the suction strength
S applied to the moving plate surface, affecting the heat-transfer process. This results
in a decreased heat-transfer rate with the addition of nanoparticle volume fractions. In
general, increasing the value of the suction parameter essentially helps improve a fluid’s
heat-transfer performance. Nevertheless, in this case, the simultaneous effect between
suction parameters and nanoparticles volume fraction results in a decrease of heat-transfer
rate, as in Figure 3. Henceforth, we may conclude that adding the nanoparticles volume
concentration in the working fluid promotes a deficiency of the thermal conductivity for
this particular case.
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According to Table 6, the values of skin friction on the moving plate increase as the
nanoparticles are added. Based on the generated results, the practice of 1% nanoparticle
volume fraction (alumina-water) leads to an increment of the skin friction by 3.821401.
As for the 2% nanoparticle volume fraction (copper-alumina/water), the skin friction
rises to 3.891489. This provides an increment of approximately 1.83% from monotype
to the dual type of nanoparticles. Conversely, the local Nusselt number values on the
surface decrease as the nanoparticles are added. From Table 6, 1% of nanoparticle volume
fraction (alumina-water) produces values of 10.736411, whereas the use of 2% nanoparticle
volume fraction (copper-alumina/water) yields values of 10.645342 in the local Nusselt.
This appears to result in a decrement of approximately −0.85% when converting from
monotype to dual-type nanoparticles.

Table 6. Values of f ′′(0) and −θ′(0) as α = 1.0, ξ = −0.2, S = 2.0, and Pr = 6.2.

φ2=0.01 f”(0) |%|of Increment −θ′(0) |%| of Increment

φ1 = 0.00

6.058590 - 11.436692 -
5.966023 −1.53 11.300047 −1.19
5.705122 −5.83 11.144966 −2.55
5.470100 −9.71 11.055777 −3.33
5.100873 −15.81 10.951562 −4.24
4.813934 −20.54 10.888038 −4.80
4.806204 −20.67 10.886483 −4.81
4.318232 −28.73 10.801447 −5.55
4.122964 −31.95 10.773596 −5.80
3.888486 −35.82 10.744105 −6.06
3.821401 −36.93 10.736411 −6.12

φ1 = 0.01

6.228156 - 11.382601 -
6.134584 −1.50 11.241672 −1.24
5.869169 −5.76 11.081300 −2.65
5.630085 −9.60 10.988822 −3.46
5.255440 −15.62 10.880528 −4.41
4.966046 −20.26 10.814472 −4.99
4.958285 −20.39 10.812856 −5.04
4.477236 −28.11 10.725292 −5.77
4.297581 −31.00 10.698019 −6.01
4.126780 −33.74 10.674428 −6.22
4.102159 −34.14 10.671205 −6.25
3.934828 −36.82 10.650435 −6.43
3.891489 −37.52 10.645342 −6.48

The suction parameter effect S in accordance with the present study is revealed in
Figures 4 and 5. Figure 4 highlights the escalation of S that amplifying f ′′(0) in the first
solution of the hybrid nanofluid. Additionally, in this observation, the rising values of S
has expanded the dual solution domain ε, causing an increment in the critical value |εc|
on the moving plate of the hybrid nanofluid. This finding also contributes to the delay
of the boundary layer separation process as S improves (see Figure 6). Additionally, the
skin friction coefficient recorded result is at the highest level with the largest value of S
in the hybrid nanofluid. Meanwhile, Figure 5 shows the value of −θ′(0) increases with
increasing value of S on the moving plate surface in both solutions. It is found that the
two solutions obtained are in line with the value addition. This occurrence is caused by
the increment of suction values, allowing the flow of hybrid nanofluid to approach the flat
plate surface, thus reducing the thickness of the boundary layer (see Figure 7). As a result,
the hybrid nanofluid flow travels at a high velocity, enhancing the surface shear stress and
thus intensifying the heat-transfer rate. In connection with the results discussed earlier
in Figures 4 and 5, Figure 6 scrutinises the suction parameter impact towards boundary
layer velocity f ′(η), while Figure 7 presents the distribution of temperature profile θ(η)
by utilising hybrid nanofluid. As the number of suctions increases, the behaviour of the
velocity profile is observed in an upward trend. This may be caused by the improvement



Mathematics 2022, 10, 1933 10 of 18

of fluid viscosity in hybrid nanofluid with the increment of the suction effect. In contrast,
small changes in the temperature profile distributions can be seen in Figure 7, where the
temperature profile is reduced, especially when a dual system of nanoparticles is presented.
This is due to an increase in the thermal conductivity of the mixing fluid, which improves
heat-transfer performance and thus reduces temperature distributions. This scenario also
occurred as a result of an increased amount of hot fluid being drawn away from the
boundary layer, where the temperature decreased as the suction parameter value increased.
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Additionally, this research is also concerned with adding the unsteadiness parameter
ξ into the hybrid nanofluid. Figure 8 portrays how decreasing ξ decreases f ′′(0) in the first
solution, while the reaction in the alternative solution was in the opposite direction. As ξ
declines, the thickness of the boundary layer broadens, limiting the gradient of velocity,
with f ′′(0) therefore diminishing. Conversely, as ξ reduces, the achieved results of −θ′(0)
expand in those solutions, as shown in Figure 9. The influence of the stagnation flow
strength α in relation to ε towards moving plate is presented in Figures 10 and 11. Figure 10
highlights that the escalation of α impulsively amplifies the trend of f ′′(0) in the first
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solution. This observation also indicates that a higher amount of α expands the flow, which
causes the flow velocity to increase, resulting in a decrease in the thickness of the velocity
boundary layer. In addition, Figure 10 also shows that when the sheet surface moves at a
rate of ε = 1.0, f ′′(0) = 0. This explains the appearance of no frictional drag force on the
progressed sheet surface, which is heated convectively. Sequentially, Figure 11 depicts the
thermal efficiency, with −θ′(0) intensifying in both solutions as the value of α increases in
the hybrid nanofluid. The findings provide evidence that improving the strength of the
stagnation flow encourages heat-transfer efficiency.
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5. Conclusions

A numerical evaluation of the unsteady separated stagnation-point flow past a moving
plate in a hybrid nanofluid was validated in this current work. The effects of various con-
trol parameters were investigated. Based on our findings, we can confirm dual solutions’
existence throughout the functioning fluids for a diverse variety of input variables. In
comparison to a viscous fluid, nanofluid, and hybrid nanofluid, increasing the nanoparticle
volume fraction concentration can significantly raise the skin friction coefficient while
diminishing the heat-transfer rate. On the contrary, the inclusion of the suction parameter
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evidently improves the thermal performance efficiency. Due to the reduction values of the
unsteadiness parameter, the skin friction coefficient declined but encouraged thermal pro-
ductivity. A similar result is observed in the heat-transfer rate as the stagnation parameter
strength improves in the hybrid nanofluid flow. The first solution’s reliability is secured by
the stability analysis, whereas the second solution is confirmed as unstable.
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Nomenclature
The following symbols and abbreviations are used in this manuscript:

Roman letters
C f skin friction coefficient ( - )

Cp specific heat at constant pressure
(

Jkg−1K−1
)

f (η) dimensionless stream function ( - )

k thermal conductivity of the fluid
(

Wm−1K−1
)

Nux local Nusselt number ( - )(
pCp

)
heat capacitance of the fluid

(
JK−1m−3

)
Pr Prandtl number ( - )
Rex local Reynolds number in x−axis ( - )
S constant mass flux ( - )
t time (s)
t0 initial reference value of time (s)
T fluid temperature (K)
Tw wall temperature (K)
T∞ ambient temperature (K)
u, v velocities component in the x− and y− directions, respectively

(
ms−1)

ue outer inviscid velocity
(
ms−1)

uw velocities of the moving wedge
(
ms−1)

x, y Cartesian coordinates (m)
Greek symbols
α stagnation flow strength ( - )
γ1 displacement thickness ( - )
ψ stream function ( - )
η similarity variable ( - )
θ dimensionless temperature ( - )
ε moving parameter ( - )
ξ unsteadiness parameter ( - )

µ dynamic viscosity of the fluid
(

kgm−1s−1
)
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ν kinematic viscosity of the fluid
(
m2s−1)

ρ density of the fluid
(

kgm−3
)

Γ dimensionless time variable ( - )
φ1 nanoparticle volume fractions for Cu (copper) ( - )
φ2 nanoparticle volume fractions for Al2O3 (alumina) ( - )
ω eigenvalue ( - )
ω1 smallest eigenvalue ( - )
Subscripts
f base fluid ( - )
n f nanofluid ( - )
hn f hybrid nanofluid ( - )
s1 solid component for Al2O3 (alumina) ( - )
s2 solid component for Cu (copper) ( - )
Superscript
′ differentiation ( - )

Appendix A

The governing equations of this study are specified in Equations (1)–(4) subject to
the boundary conditions (5). Using the similarity variables in (6) and (7), Equation (1) is
identically satisfied, where

α

ξ(t0 − t)
f ′ +

(
− α

ξ(t0 − t)
f ′
)
= 0. (A1)

Now, we substitute (6) and (7) in Equations (2)–(4), and one obtains

− 1
ρhn f /ρ f

∂p
∂x = − αx

β2(t0−t)2

[
µhn f /µ f
ρhn f /ρ f

f ′′′ + α f f ′′ − α f ′2 − ξ
(

f ′ + η
2 f ′′

)]
,

− 1
ρhn f /ρ f

∂p
∂y = − αx

[β(t0−t)]3/2

[
− µhn f /µ f

ρhn f /ρ f
f ′′ − α f f ′ + ξ

2 (η f ′ + f )
]
.

(A2)

Integrating the above-reduced equations, hence,∫ ∂p
∂x

(
− 1

ρhn f /ρ f

)
= − αx2

2[β(t0−t)]2

[
µhn f /µ f
ρhn f /ρ f

f ′′′ + α f f ′′ − α f ′2 − ξ
(

f ′ + η
2 f ′′

)]
+ C,∫ ∂p

∂y

(
− 1

ρhn f /ρ f

)
= − α

[β(t0−t)]2

[
µhn f /µ f
ρhn f /ρ f

f ′′′ − α f f ′′ − α f ′2 + ξ
2 (2 f ′ + η f ′′)

]
+ C.

(A3)

By comparing both equations, now, the momentum equation can be written as

µm f /µ f

ρm f /ρ f
f ′′′ + α f f ′′ + α f ′2 − ξ

(
f ′ +

η

2
f ′′,
)
= C, (A4)

where C is the constant integration. Using f ′(η)→ 1 , we obtain C = −α− ξ, which yield
Equation (10).

Utilising the same similarity variables for the energy equation, now, we have

1
Pr

khn f /k f(
ρCp

)
hn f /

(
ρCp

)
f

[
θ′′(Tw − T∞)

ξ(t0 − t)

]
− ξ

η

2
(Tw − T∞)

ξ(t0 − t)
θ′ +

α√
ξ(t0 − t)

f

[
θ′(Tw − T∞)√

ξ(t0 − t)

]
= 0, (A5)

Simplifying the above equation leads to Equation (11).
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With regard to the boundary conditions, by applying (6) and (7) in (5), we obtain

At y = 0,
αx

ξ(t0−t) f ′(η) = αx
ξ(t0−t) ε→ f ′(0) = ε,

− α√
ξ(t0−t)

f (η) = − α√
ξ(t0−t)

S→ f (0) = S,

θ(η)(Tw − T∞) + T∞ = Tw,→ θ(0) = 1.

As η → ∞,
αx

ξ(t0−t) f ′(η)→ αx
ξ(t0−t) ; f ′(η)→ 1,

− α√
ξ(t0−t)

f (η)→ − α
ξ(t0−t) (y− δ1); f (η)→ (η − γ),

θ(η)(Tw − T∞) + T∞ → T∞,→ θ(η) = 0,

(A6)

as in boundary equations (12).

Appendix B

Based on the defined velocity components, the pressure gradient ∂p/∂x is a function
of time t and y and is independent so that ∂p

∂x = F(t, y), where F(t, y) = ∂u
∂t + u ∂u

∂x + v ∂u
∂y .

Integrating ∂p
∂x = F(t, y), we obtain

p =
∫

F(t, y)dx + G(t) (A7)

where G(t) is a constant of integration.
It leads that ∂p

∂y = ∂G
∂y = 0; that is, G is a constant.

Finally, we obtain
p
ρ
= constant− u2

2
+
∫

∂u
∂t

dx. (A8)
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