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Abstract: Estimation of error variance in a regression model is a fundamental problem in statistical
modeling and inference. In high-dimensional linear models, variance estimation is a difficult problem,
due to the issue of model selection. In this paper, we propose a novel approach for variance estimation
that combines the reparameterization technique and the adaptive lasso, which is called the natural
adaptive lasso. This method can, simultaneously, select and estimate the regression and variance
parameters. Moreover, we show that the natural adaptive lasso, for regression parameters, is
equivalent to the adaptive lasso. We establish the asymptotic properties of the natural adaptive lasso,
for regression parameters, and derive the mean squared error bound for the variance estimator. Our
theoretical results show that under appropriate regularity conditions, the natural adaptive lasso for
error variance is closer to the so-called oracle estimator than some other existing methods. Finally,
Monte Carlo simulations are presented, to demonstrate the superiority of the proposed method.

Keywords: high-dimensional linear model; variance estimation; natural adaptive lasso; mean squared
error bound; regularized regression
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1. Introduction

Consider linear regression model y = xT β + ε, where y ∈ R is the response variable,
x ∈ Rp is the predictor variable, β ∈ Rp is the unknown regression parameter and
ε ∈ R is the random error satisfying ε ∼ N(0, σ2 In). Given an i.i.d. random sample
(yi, xT

i )
T ∈ Rp+1, i = 1, . . . , n, the model can be written in the matrix form as y = Xβ + ε,

where y = (y1, . . . , yn)T ∈ Rn, X = [x1, . . . , xn]T ∈ Rn×p and ε = (ε1, . . . , εn)T ∈ Rn. In
this paper, we are mainly interested in the high-dimensional sparse model, where p� n.

Regularized methods for simultaneous model selection and parameter estimation
have been intensively studied in the literature, e.g., the lasso [1], smoothly clipped absolute
deviation (SCAD) [2], adaptive lasso [3], bridge [4], adaptive elastic net [5], and minimax
concave penalty (MCP) [6], as well as the Dantzig selector [7]. In addition, screening rules
for dimension reduction are proposed, e.g., the sure independent screening method and
iteratively sure independent screening method [8], lasso-based screening rules [9–11], etc.

However, most of these works focus on selection and estimation, with respect to
regression parameters, and few studies deal with estimation of error variance, although it
is a fundamental and crucial problem in statistical inference and regression analysis. In
conventional linear models, the common estimator, based on residuals, plays an important
role in statistical inferences and model checking. In high-dimensional models, however,
variance estimation becomes a difficult problem, mainly due to two reasons. One is that
the traditional residual-based methods may perform poorly or, even, fail, as, for example,
the ordinary least squares method does not work when the number of covariates is greater
than the sample size. The other reason is that it is difficult to select the true model,
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accurately, since in practice the selected model, often, contains spurious variables that are
correlated with the residuals, resulting in significant underestimation of error variance
(e.g., [12,13]).

Next, we provide some examples, where model error variance is involved and plays
an important role.

Example 1 (Model selection). Penalization is a common approach to model selection and param-
eter estimation, in high-dimensional linear models. The efficiency and accuracy of such methods
depend on certain tuning parameters that are chosen using some criteria, such as Mallows’s Cp,
Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC). For example, the
AIC and BIC for the lasso [14] are given by

AIC(X β̂λn , σ2) =
‖y− X β̂λn‖2

2
nσ2 +

2
n

df(X β̂λn)

and

BIC(X β̂λn , σ2) =
‖y− X β̂λn‖2

2
nσ2 +

log(n)
n

df(X β̂λn)

respectively, where β̂λn is the lasso estimator with tuning parameter λn and the degrees of freedom
df(X β̂λn) is equal to the number of non-zero elements in β̂λn . It is easy to see that these criteria
rely on error variance.

Example 2 (Confidence intervals). For a least-squares-based penalized estimator β̂λn , let Â be
its index set, corresponding to non-vanishing parameters. If β̂λn has the oracle property, then for
each i ∈ Â, the 1− α confidence interval for βi is given by

[β̂i − z1−α/2ciσ
2, β̂i + z1−α/2ciσ

2],

where z1−α/2 is the (1− α/2)-th quantile of the standard normal distribution and ci is the i-th
diagonal element of the matrix (XT

ÂXÂ)
−1. It is clear that the above intervals depend on the variance

parameter.

Example 3 (Penalized second-order least squares estimation). The second-order least squares
method, in [15], extends the ordinary least squares method by, simultaneously, minimizing the first
two order distances

ρi(β, σ2) = (yi − xT
i β, y2

i − (xT
i β)2 − σ2)T

and yields the joint estimators for the regression and variance parameters. Under general conditions,
the second-order least squares estimator has been shown to be, asymptotically, more efficient than
the ordinary least squares estimator, if the model error has a nonzero third moment, and they are
equivalent otherwise. The regularized version of this method can be used in high-dimensional
models.

1.1. Literature Review

Variance estimation in high-dimensional models has attracted increasing attention
in recent years. Here, we briefly review some important advances in this area. First, if
the true parameter vector β∗ was known, then the ideal variance estimator, called the
oracle estimator, is σ2

oracle = (1/n)∑n
i=1(yi − xT

i β∗)2. Correspondingly, the estimator
σ2

naive = ∑n
i=1(yi − xT

i β̂)2/n, based on some estimator β̂ for β, is called a naive estimator.
Since the naive estimator is downward biased, a modified unbiased estimator is given by
σ̂2 = ∑n

i=1(yi − xT
i β̂)2/(n− ŝ), where ŝ := #{i : β̂i 6= 0} is the number of nonzero elements

in β̂. Unfortunately, when p is much larger than n, even a small change in ŝ will cause huge
fluctuation in σ̂2, if ŝ ≈ n.
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To overcome this problem, Ref. [16] estimated the mean and variance parameters
jointly, by maximizing a reparameterized likelihood with `1 penalty:

(φ̂λn , ρ̂λn) = arg min
φ∈Rp ,ρ∈R+

{
log(ρ) +

‖ρy− Xφ‖2
2

2n
+ λn‖φ‖1

}
,

where φ = β/σ, ρ = 1/σ and R+ = {x ∈ R : x > 0}. Moreover, they proposed a
generalized EM algorithm for the numerical optimization.

A refitted cross-validation (RCV) method, to derive a variance estimator, was proposed
in [12], and its asymptotic properties were studied. The main idea of RCV is to attenuate
the influence of irrelevant variables with high spurious correlations, via a data-splitting
technique. Ref. [12], also, discussed the asymptotic properties of the lasso-based estimator
σ̂2

lasso = ∑n
i=1(y− xT

i β̂lassos)2/(n− ŝlasso) and SCAD-based estimator σ̂2
SCAD = ∑n

i=1(y−
xT

i β̂SCAD)
2/(n− ŝSCAD), where β̂lasso and β̂SCAD are the least squares estimator, with `1

penalty [1] and SCAD penalty [2], respectively; ŝlasso = #{i : (β̂lasso)i 6= 0} and ŝSCAD =
#{i : (β̂SCAD)i 6= 0}.

Further, a scaled lasso was proposed in [17], for simultaneous estimation of regression
and variance parameters. Their model can be written as

(β̂λn , σ̂2
λn
) = arg min

β∈Rp ,σ∈R+

{‖y− Xβ‖2
2

2nσ
+

(1− a)σ
2

+ λn‖β‖1

}
.

Under some regularity conditions, Ref. [17] proved the oracle inequalities for predic-
tion and their estimators.

A moment estimator for the error variance, based on the covariance matrix Σ of the pre-
dictor variables, was studied in [18], where three cases were considered: Σ = I, estimable
Σ and non-estimable Σ. A maximum likelihood method for the normally distributed noise
was developed in [19].

Moreover, Ref. [13] considered another re-parameterized likelihood, with lasso penalty

(θ̂λn , φ̂λn) ∈ arg min
θ∈Rp ,φ∈R++

{
− 1

2
log φ + φ

‖y‖2
2

2n
− 1

n
yTXθ+

‖Xθ‖2
2

2nφ
+ λnΩ(θ, φ)

}
, (1)

where φλn = 1/σ2
λn

, θλn = φλn βλn . In particular, they proposed two estimators: the natural
lasso with Ω(θ, φ) = ‖θ‖1 and the organic lasso with Ω(θ, φ) = φ−1‖θ‖2

1.
Finally, Ref. [20] proposed a ridge-based method to estimate the error variance, under

certain conditions, which is defined as follows:

σ̂2 = {1− n−1tr(A1n)}−1σ̌2,

where σ̌2 = n−1yT(In − A1n)y, A1n = n−1X(n−1XTX + ηIp)XT and η is the tuning
parameter. This method performs well in low-dimensional cases, with weak signals, and it
is suitable for sparse as well as non-sparse models.

1.2. Notation and Outline

Throughout the paper, let A0 := {i : β∗i 6= 0} be the index set and s := #{i : β∗i 6= 0}
be the number of the nonzero elements of β∗, respectively. Given a design matrix X
and a subset A of {1, . . . , p}, Xi denotes the i-th column vector of X, and XA denotes
the sub-matrix, consisting of the columns with indices in A. For vectors x, y ∈ Rp,
x ◦ y := (x1y1, . . . , xpyp)T denotes the Hadamard product. Moreover, let 1/|x| or |x|−1 =
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(1/|x1|, . . . , 1/|xp|)T , sgn(x) = (sgn(x1), . . . , sgn(xp))T , sign(x) = (sign(x1), . . . , sign(xp))T ,
∂‖x‖1 = ∂|x1| × . . .× ∂|xp|, where

sgn(t) =

{
0, t 6= 0,
1, t = 0,

sign(t) =


1, t > 0,
0, t = 0,
−1, t < 0,

and ∂|t| =


{1}, t > 0,
[−1, 1], t = 0,
{−1}, t < 0.

The rest of this paper is organized as follows: Section 2 defines and describes the
proposed natural adaptive lasso, and Section 3 gives its asymptotic properties. Section 4
deals with the numerical optimization of the proposed estimators. Monte Carlo simulation
studies of finite sample properties are provided in Section 5. The conclusions and discussion
are given in Section 6, while the mathematical proofs are given in Section 7.

2. Natural Adaptive Lasso (NAL)

Some researchers, e.g., Refs. [13,16], used reparameterized likelihood to jointly esti-
mate the mean and variance parameters in high-dimensional linear models. In particular,
the method of [13] has good performance, and the associated numerical computation can
be converted to some simple optimization procedures. However, the natural lasso in [13]
always overestimates error variance, due to the over-selection of the covariates. This mo-
tivates us to consider the more generally adaptive lasso penalty, to further improve the
properties of the estimators. Consider the following adaptively weighted `1-penalized
likelihood

(θ̂λn , φ̂λn) ∈ arg min
θ,φ∈R+

{
L(θλn , φλn) + λn‖w ◦ θ‖1

}
, (2)

where L(θλn , φλn) is the reparameterized likelihood as (1), λn is the tuning parameter and
w := (w1, . . . , wp)T is the adaptive weight vector. Given a solution (θ̂λn , φ̂λn) of problem (2),
the natural adaptive lasso estimators (NALE) for β and σ2 are given by

β̂λn =
θ̂λn

φ̂λn

, σ̂2
λn

=
1

φ̂λn

. (3)

It is easy to see that, when w = 1, the NALE reduces to the natural lasso estimator
(NLE) of [13].

Note that the quality of the NALE depends on the weight vector w. It follows from
Proposition 1 in Section 3, that the weight w in problem (2) plays the same role as in the
adaptive lasso estimation of the regression coefficients only, which solves the following
convex optimization problem:

β̂ada = arg min
β∈Rp

{
1
n
‖y− Xβ‖2

2 + 2λn‖w ◦ β‖1

}
, (4)

where the weight w depends on the initial estimator β̃ini. As indicated by [3], any root-n
consistent estimator can be used as the initial estimator for β. For example, the least
squares estimator β̂ols := (XTX)−1XTy can be used, and the weight vector is calculated
as w = 1/|β̂ols|γ, γ > 0. Ref. [4] discusses the selection of the initial estimators in linear
models, with log p = O(na) for some a ∈ (0, 1). They show that their marginal regression
estimator can be used in the adaptive lasso, to yield the desirable selection and estimation
properties. In addition, the weight w in adaptive elastic-net [5], for moderate dimen-
sional models (log p = O(log n)), can be constructed as w = 1/|β̂net + (1/n)sgn(β̂net)|γ,
γ > 0, where β̂net is the elastic-net estimator. In this paper, we use the following two-step
procedure to calculate the weight vector.
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Step 1: Solve the lasso problem to obtain the NLE β̂lasso, which is used as the initial estimator
β̃ini.

Step 2: Set w with wj = p′λn
(|β̃ini

j |), where j = 1, . . . , p and pλn is a folded-concave penalty
function (such as SCAD, MCP or bridge).

Remark 1. From [7,21,22], under some regularity conditions, the lasso is consistent with a
near-oracle rate

√
s log p/n and has the sure-screening property, i.e.,

‖β̂lasso − β∗‖2 ≤ O(
√

s log(p)/n), supp(β̂lasso) ⊇ supp(β∗).

Further, based on the order of the bias of the lasso, under suitable conditions for the minimum
signal strength (dee the first part of Condition 4 in Section 7) and the choice of tuning parameter,
wA0 will be close, or even equal, to zero vector, when n is sufficiently larger, if a folded-concave
penalty, such as SCAD, is used. These properties play an important role in some of the conclusions
that follow.

3. Asymptotic Properties

In this section, we, first, establish the relationship between the NALE and the adaptive
lasso, then analyze the asymptotic properties of the NALE for σ2.

Proposition 1. The NALE estimator (β̂λn , σ̂2
λn
), defined in (3), where (θ̂λn , φ̂λn) is a solution

of (2), satisfies the following properties:

(i) β̂λn is a solution of the adaptive lasso (4);
(ii) σ̂2

λn
is the optimal value, of the objective function of the adaptive lasso (4). Furthermore, we

have σ̂2
λn

= n−1(‖y‖2
2 − ‖X β̂λn‖2

2).

The results of Proposition 1 are instrumental in the derivation of the other theoretical
results in this paper. Moreover, they, also, provide a method for calculating the NALE for
β and σ2. It is well known that the adaptive lasso (4) is a convex optimization, and many
existing optimization tools can be used to compute this problem.

Note that, since

σ̂2
λn

=
1
n
‖y− X β̂λn‖

2
2 + 2λn‖w ◦ β̂λn‖1

= σ̂2
naive(β̂λn) + 2λn‖w ◦ β̂λn‖1 (5)

and ‖w ◦ β̂λn‖1 = ‖wA0 ◦ β̂A0‖1 will be close or even equal to zero, for suitably chosen w,
the NALE for σ2 will be close to the naive estimator, if λn → 0. As mentioned before, the
naive estimator for σ2, based on the adaptive lasso estimator β̂λn , may work well when
non-zero variables are selected, accurately. However, when more irrelevant variables are
selected, the value of the penalty term will not be close to 0 in the finite sample, so that the
naive estimator for σ2 will, always, underestimate the true error variance. In this case, the
penalty term will mitigate the difference between the naive estimator and the true variance.
Although the form of the natural lasso estimator of [13] is similar to (5), their method often
tends to over-select predictors, due to the use of a lasso penalty. In addition, the value
of the penalty term in [13] remains large because it is not controlled by the weight vector.
These facts explain why the natural lasso estimator for σ2 tends to be larger than the true
error variance in the simulation studies, in [13].

Next, we establish a key inequality for the NALE for σ2.

Lemma 1. If λn ≥ 1
n‖XTε‖∞, then∣∣∣∣σ̂2

λn
− 1

n
‖ε‖2

2

∣∣∣∣ ≤ 2λn max
{
‖w ◦ β∗‖1, ‖β̂λn − β∗‖1

}
.
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The above inequality is deterministic, in that it does not rely on any statistical assump-
tions for X and ε. Unlike Lemma 1 in [13], the proof of this result uses the fact that any
vector β provides an upper bound on σ̂2

λn
and the convexity of the loss function. In addition,

if w = (1, . . . , 1)T and O(‖β̂λn − β∗‖1) ≤ O(‖β∗‖1), Lemma 1 reduces to Lemma 1 in [13].
If w is close or equal to zero, and O(‖β̂λn − β∗‖1) ≤ O(‖β∗‖1), then the bound on the
right-hand side of the inequality in Lemma 1 is lower than that for the natural lasso and
organic lasso in [13].

3.1. Adaptive Lasso

It follows, from Lemma 1, that the error bound of the NALE for σ2 is controlled by the
convergence rate of the adaptive-lasso estimator β̂λn . Therefore, it is necessary to establish
the asymptotic properties for β̂λn . The results in this subsection are similar to that in [23].
All regularity conditions and proofs are given in Section 7.

Theorem 1. Suppose Conditions 1–3 hold. Assume that

min
i∈Ac

0

w∗i > C−1
1 , λn = 4C1σ

√
(2 log p + 2L)/n

and s(log(p)+ L)/n→ 0, where C1 is some positive constant and L > 0. Then, with probability at
least 1− e−L, there exists unique minimizer β̂λn = (β̂T

A0
, β̂T
Ac

0
) of problem (4), such that β̂Ac

0
= 0

and ‖β̂λn − β∗‖2 ≤ an, where

an = C4(
√

s(2 log p + 2L)/n + 2λn(‖w∗A0
‖2 + C2C3

√
s(log p)/n))

with some constant C4 > 0, C2 and C3 are defined in the regularity conditions.

It follows from inequality (18) that the extra term λn
√

s(log p)/n in an is due to the
bias of the initial estimator β̃ini. When λn tends to zero, the order of the extra term is
o(
√

s(log p)/n). Thus, under some general conditions, the convergence rate of β̂λn is
O(
√

s(log(p) + L)/n). Usually, the order of L is O(log p).
We, now, present the asymptotic normality of the adaptive-lasso estimator β̂λn .

Theorem 2. Assume that conditions of Theorem 1 hold. Let s2
n = (1/n)σ2αT

n XT
A0

XA0 αn for any
αn ∈ Rs satisfying ‖α‖2 ≤ 1. Then, under Conditions 1–4, with probability at least 1− e−L, the
minimizer β̂λn in Theorem 1 satisfies

n
1
2 s−1

n αT
n

[
(β̂A0 − β∗A0

) + nαT
n (XT

A0
XA0)

−1λnw∗A0
◦ g∗A0

]
= n1/2s−1

n αT
n (XT

A0
XA0)

−1XT
A0

ε + op(1)
D−→ N(0, 1),

where g∗A0
∈ ∂‖β∗A0

‖1.

The result of Theorem 2 is consistent with the asymptotic normality, for the bridge
estimator of β in [4]. The only difference is in the form of the penalty function.

Next, we consider the convergence performance of the specific adaptive-lasso estima-
tor β̂λn , with a weight vector decided by the SCAD penalty [23], which is defined by

p′λn
(|t|) = 1{|t| ≤ λSCAD

n }+ (aλSCAD
n − |t|)+

(a− 1)λSCAD
n

1{|t| > λSCAD
n },
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where a > 2 is a given constant and (·)+ := max{0, ·}. Usually, the order of λSCAD
n is

O(
√

s(log p + L)/n). By definition, it holds w∗A0
= 0, and Condition 4 is satisfied when

mini∈A0 |β∗i | ≥ 2aλSCAD
n . Thus, we have the following result.

Corollary 1. Assume that the conditions of Theorem 1 hold. Then, under Conditions 1–4, with
probability at least 1 − e−L, there exists unique minimizer β̂λn = (β̂T

A0
, β̂T
Ac

0
) of problem (4),

such that

‖β̂λn − β∗‖2 ≤ O(
√

s(log p + L)/n),

sgn(β̂A0) = sgn(β∗A0
) and β̂Ac

0
= 0.

Furthermore, β̂λn satisfies

n
1
2 s−1

n αT
n (β̂A0 − β∗A0

) = n1/2αT
n (XT

A0
XA0)

−1XT
A0

ε
D−→ N(0, 1),

where s2
n = (1/n)σ2αT

n XT
A0

XA0 αn for any αn ∈ Rs satisfying ‖αn‖2 ≤ 1.

The rate of convergence of the estimators in Theorem 1 and Corollary 1 is controlled
by the distribution of random error and predictor matrix. Moreover, these results can
be generalized for other situations, where random error follows sub-Gaussian or sub-
exponential distributions.

3.2. Error Bounds of NALE

In this subsection, we establish the error bound for the NALE of σ2. It follows from (14)
that, under the conditions of Theorem 1, λn ≥ (1/n)‖XTε‖∞ holds, with probability
1− e−L. Since s(log(p) + L)/n → 0, we have an → 0. Thus, in order to establish the
asymptotic properties of NALE for σ2, we still need to determine the order of λn‖w ◦ β∗‖1.
By Condition 2 and Theorem 1, we have

‖w ◦ β∗‖1 = ∑
i∈A0

wi|β∗i | ≤ ∑
i∈A0

(C3|β̂i − β∗i |+ w∗i )|β∗i |

≤ C3an‖β∗‖1 + ‖w∗ ◦ β∗‖1. (6)

Thus, we have the following result on the error bound of the NALE for σ2.

Theorem 3. Under the conditions of Theorem 1, the NALE for σ2 has the following error bound,
with probability at least 1− e−L: ∣∣∣∣σ̂2

λn
− 1

n
‖ε‖2

2

∣∣∣∣ ≤ bn,

where bn = 2λn max
{

C3an‖β∗‖1 + ‖w∗ ◦ β∗‖1,
√

san

}
.

The proof of the above result follows, straightforwardly, from Lemma 1 and Theorem 1,
so it is omitted. Since an → 0, ‖w∗ ◦ β∗‖1 is close or equal to zero, and the order of λn for
the adaptive lasso is O(

√
(log(p) + L)/n), we have bn = o(

√
s(log(p) + L)/n). It follows

that when L = O(log(p)), the error bound of NALE for σ2 is smaller than that of the NLE,
OLE and SLE, when n is sufficiently large. In the following, we analyze the mean squared
error bound for the NALE of σ2.
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Theorem 4. Under the conditions of Theorem 1, for any M > 1 and λn = 4C1σ
√
(2M log p)/n,

the NALE for σ2 satisfies

E
{(

σ̂2
λn

σ2 − 1
)2}

≤
[(

M +
p1−M

log p

) 1
2 b2

n
σ2 +

(
2
n

) 1
2
]2

.

Note that the above mean squared error bound of NALE for σ2 is lower than that for
the NLE, OLS and SLE estimators. Finally, we consider the case using the SCAD penalty.
Then, by Theorem 3 and the fact that ‖w ◦ β∗‖1 = 0, under the condition on minimum
signal strength, we have the following result.

Corollary 2. Under the conditions of Corollary 1, the NALE for σ2 using the SCAD has the
following error bound, with probability at least 1− e−L:∣∣∣∣σ̂2

λn
− 1

n
‖ε‖2

2

∣∣∣∣ ≤ 2
√

sλnan.

Further, by Theorem 4 and Corollary 2, we have the mean squared error bound of the
NALE for σ2 using the SCAD.

Corollary 3. Under the conditions of Corollary 1, for any M > 1, the NALE for σ2 using SCAD
with λn = 4C1σ

√
(2M log p)/n satisfies the following relative mean squared error bound:

E
{(

σ̂2
λn

σ2 − 1
)2}

≤
[(

M +
p1−M

log p

) 1
2 4sλ2

na2
n

σ2 +

(
2
n

) 1
2
]2

.

4. Numerical Optimization

In this section, we study the optimization method for the NALE. Proposition 1 provides
an easy way to calculate the NALE for σ2, through existing optimization tools, to compute
the adaptive lasso (4). Given the tuning parameter λn, we consider the proximal gradient
algorithm (PGA) to calculate this problem, which has the following steps:

Initialization: take initial value β0 ∈ Rp, τ ∈ (0, τ∗).
Iterative step: βk+1 = proxτλn‖β‖1

(βk − 2τ
n XT(Xβk − y)).

In the above framework, 1/τ∗ is taken to be the Lipschitz constant of ∇Qn(β),
Qn = (1/n)‖y− Xβ‖2

2, such that for any β1, β2 ∈ Rp,

‖∇Qn(β1)−∇Qn(β2)‖2 ≤
1

τ∗
‖β1 − β2‖2.

Usually, τ = (2/n)λmax(XTX). In addition, by the definition of proximal mapping,

proxτλn‖β‖1
(βk − 2τ

n
XT(Xβk − y)) = arg min

β∈Rp

1
2

∥∥∥∥β−
[

βk − 2τ

n
XT(Xβk − y)

]∥∥∥∥2

2
+ τλn‖β‖1.

By simple calculation,

βk+1 =

[∣∣∣∣βk − 2τ

n
XT(Xβk − y)

∣∣∣∣− τλn1
]
+

◦ sign
([

βk − 2τ

n
XT(Xβk − y)

])
.

Finally, the PGA is terminated, when either the sequence {βk}meets the criterion

‖βk+1 − βk‖2

max{1, ‖βk‖2}
≤ ε,

or the maximum number of iterations is reached.
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5. Numerical Simulations

In this section, we carry out Monte Carlo simulations to study the finite-sample
performance of the NALE, with the weight calculated by using the SCAD penalty. Further,
we compare the NALE with the square-root/scaled lasso (SLE) [17], the natural lasso
(NLE) [13], the organic lasso (OLE) [13] and the ridge-based estimator (RBE) [20]. We,
also, include the oracle estimator (OE) (1/n)‖ε‖2

2, as a benchmark in the comparisons. All
numerical computation was done using Matlab. The programs are available upon request,
from the first author of this paper or Supplementary Materials.

5.1. Simulation Settings

Following [23], throughout the simulations we use the sample size n = 100 and
parameter dimension p = 400. Further, each row of the design matrix X is generated
from the multivariate normal distribution N(0, Σ), with Σij = ρ|i−j| and ρ ∈ (0, 1). The
sparsity of β∗ is set to be the largest integer less than or equal to nα, and the locations of the
nonzero elements in β∗ are determined randomly. We consider various parameter values,
ρ ∈ {0.1, 0.3, 0.5}, α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and σ2 ∈ {0.5, 1}, and use the following true
regression parameter vectors

α = 0.1, β∗ = (1.2,−0.8, 0, . . . , 0)T ;

α = 0.2, β∗ = (1.2,−0.8, 1, 0, . . . , 0)T ;

α = 0.3, β∗ = (1.2,−0.8, 1,−0.6, 0, . . . , 0)T ;

α = 0.4, β∗ = (1.2,−0.8, 1,−0.6, 0.8,−0.9, 1.2, 0, . . . , 0)T ;

α = 0.5, β∗ = (1.2,−0.8, 1,−0.6, 0.8,−0.9, 1.2, 0.4, 0.9,−1.1, 0, . . . , 0)T .

We have, also, considered other variance settings, such as σ2 ∈ {3, 5}, however, the
simulation results are similar to that of the above settings and, therefore, are not included.
To assess the performances of the estimators, we calculate the average mean squared error
(MSE) Ê{(σ−1σ̂− 1)2} and the average relative error (RE) Ê(σ−1σ̂), based on 100 Monte
Carlo runs.

5.2. Selection of Tuning Parameters

Usually, five-fold cross-validation can be used, to select tuning parameters for each
estimation, which is fairly expensive. In order to reduce the computational cost, we consider
the following methods, with a fixed choice of tuning parameters for all estimators, except
for the NLE and NALE.

For the SLE, we consider three penalty levels λn,i =
√

2i−1(log p)/n, i = 1, 2, 3, which
is similar to Example 1 in [17]. Then, the best estimator is selected as the final SLE estimator.
Indeed, Ref. [17] found that λn,2 works very well for SLE. By the simulation results of [13],
the OLE with λn,1 = log(p)/n and λn,2 = E(n−2‖XTε‖2

∞) performed very well, where
ε ∈ N(0, In). From [20,24], the tuning parameter used in RBE is calculated by setting
η = α max1≤i≤p |XT

i y|/(np) with α = 0.1.

5.3. Simulation Results

In each simulation, 100 runs are carried out to calculate the average of the performance
measures. The results are presented in Tables 1–4. These results show that, overall, both
the MSE and RE of the NALE are very close to that of the OE, and are remarkably better
than the other estimators, in most of the cases. However, in a few cases, such as ρ = 0.3
and α = 0.5 with both σ2 = 0.5 and σ2 = 1, the NALE has a slightly larger MSE than the
NLE, although it has smaller RE than the latter. As expected, the NLE often overestimates
the true value, due to the bias and over-selection of the lasso. Moreover, in the cases where
the NLE has a relatively large MSE, the NALE tends to have a large MSE as well, indicating
that the poor performance of the NLE will impact the performance of the NALE, since it is
used as the initial estimator. Finally, Ref. [20] reported that the RBE performs well in the
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cases with relatively small p and weak signals, however, it performs poorly and is, even,
ineffective in the settings of our simulations.

We, further, summarize the performances of various methods using boxplots, in
Figures 1 and 2. As one can easily see, the NALE is accurate and stable in all cases, while
the OLE is less accurate, although it is, still, fairly stable. Further, the NALE performs
well in extremely sparse scenarios. Another interesting point is that the NALE inherits the
variable selection and parameter estimation of the adaptive lasso. Although we focus on
the variance estimation in this work, the method performs well in estimating the regression
coefficients as well.

Table 1. Average RE of various estimators, true σ2 = 0.5.

α OE NALE SLEλn,1 SLEλn,2 SLEλn,3 NLE OLEλn,1 OLEλn,2 RBE

(ρ = 0.1)
0.1 0.004 0.004 0.692 0.081 0.013 0.052 0.098 0.152 1.034
0.2 0.005 0.005 0.723 0.080 0.011 0.115 0.283 0.097 1.799
0.3 0.006 0.006 0.758 0.076 0.010 0.170 0.474 0.067 2.043
0.4 0.005 0.005 0.817 0.059 0.018 0.503 1.998 0.001 3.758
0.5 0.005 0.006 0.730 0.022 0.164 0.830 3.405 0.044 5.769

(ρ = 0.3)
0.1 0.005 0.005 0.621 0.069 0.008 0.051 0.086 0.150 0.655
0.2 0.005 0.004 0.642 0.053 0.005 0.111 0.242 0.098 0.765
0.3 0.004 0.004 0.585 0.043 0.014 0.161 0.383 0.067 1.249
0.4 0.006 0.006 0.598 0.024 0.081 0.483 1.616 0.002 3.431
0.5 0.006 0.006 0.721 0.015 0.536 0.790 2.848 0.003 4.896

(ρ = 0.5)
0.1 0.004 0.005 0.458 0.056 0.008 0.049 0.079 0.147 0.485
0.2 0.005 0.013 0.422 0.035 0.015 0.099 0.184 0.099 1.214
0.3 0.005 0.005 0.425 0.023 0.043 0.142 0.283 0.070 0.878
0.4 0.005 0.004 0.392 0.013 0.219 0.438 1.228 0.003 3.062
0.5 0.017 0.018 0.810 0.066 1.703 2.854 6.952 0.040 15.446

Table 2. Average RE of various estimators, true σ2 = 0.5.

α OE NALE SLEλn,1 SLEλn,2 SLEλn,3 NLE OLEλn,1 OLEλn,2 RBE

(ρ = 0.1)
0.1 0.993 0.988 0.175 0.727 0.914 1.225 1.309 0.612 2.013
0.2 0.983 0.979 0.156 0.737 0.953 1.336 1.528 0.690 2.337
0.3 0.992 0.992 0.133 0.743 0.982 1.410 1.685 0.745 2.426
0.4 1.003 0.994 0.100 0.775 1.094 1.708 2.412 0.998 2.937
0.5 1.003 0.961 0.152 0.900 1.388 1.910 2.844 1.206 3.400

(ρ = 0.3)
0.1 1.007 0.998 0.219 0.754 0.963 1.222 1.287 0.614 1.803
0.2 0.996 0.988 0.205 0.783 1.015 1.330 1.487 0.689 1.870
0.3 0.998 0.992 0.242 0.815 1.071 1.399 1.615 0.745 2.113
0.4 1.000 0.993 0.239 0.887 1.259 1.694 2.269 0.987 2.850
0.5 1.001 1.017 0.159 0.976 1.717 1.999 2.686 1.182 3.211

(ρ = 0.5)
0.1 0.990 0.985 0.331 0.779 0.965 1.217 1.274 0.619 1.688
0.2 0.994 1.043 0.359 0.845 1.077 1.311 1.423 0.688 2.097
0.3 1.000 1.001 0.357 0.881 1.183 1.374 0.528 0.737 1.932
0.4 0.999 1.014 0.384 1.029 1.453 1.660 2.105 0.966 2.747
0.5 1.011 1.025 0.297 1.058 1.503 1.638 1.901 0.900 2.251
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Table 3. Average MSE of various estimators, true σ2 = 1.

α OE NALE SLEλn,1 SLEλn,2 SLEλn,3 NLE OLEλn,1 OLEλn,2 RBE

(ρ = 0.1)
0.1 0.004 0.004 0.740 0.090 0.013 0.019 0.025 0.200 0.347
0.2 0.005 0.005 0.731 0.074 0.006 0.005 0.083 0.155 0.455
0.3 0.005 0.005 0.759 0.081 0.008 0.074 0.161 0.127 0.600
0.4 0.004 0.008 0.748 0.043 0.038 0.043 0.592 0.041 1.479
0.5 0.005 0.009 0.834 0.028 0.223 0.091 1.021 0.009 1.934

(ρ = 0.3)
0.1 0.005 0.005 0.655 0.087 0.015 0.018 0.023 0.201 0.266
0.2 0.005 0.006 0.642 0.063 0.008 0.045 0.074 0.153 0.457
0.3 0.005 0.005 0.597 0.048 0.012 0.065 0.116 0.131 0.478
0.4 0.005 0.015 0.621 0.015 0.128 0.192 0.404 0.049 1.101
0.5 0.004 0.016 0.667 0.026 0.356 0.349 0.856 0.010 1.811

(ρ = 0.5)
0.1 0.004 0.005 0.476 0.054 0.007 0.016 0.017 0.193 0.141
0.2 0.005 0.007 0.414 0.028 0.012 0.036 0.044 0.156 0.275
0.3 0.006 0.009 0.357 0.017 0.030 0.049 0.064 0.134 0.345
0.4 0.005 0.004 0.398 0.015 0.108 0.169 0.325 0.055 0.868
0.5 0.004 0.004 0.490 0.023 0.237 0.306 0.722 0.016 1.328

Table 4. Average RE of various estimators, true σ2 = 1.

α OE NALE SLEλn,1 SLEλn,2 SLEλn,3 NLE OLEλn,1 OLEλn,2 RBE

(ρ = 0.1)
0.1 1.002 0.977 0.144 0.711 0.914 1.131 1.148 0.555 1.581
0.2 0.999 0.964 0.149 0.742 0.969 1.211 1.279 0.608 1.667
0.3 1.003 0.964 0.133 0.726 0.963 1.268 1.394 0.636 1.767
0.4 1.003 0.940 0.141 0.818 1.176 1.205 1.766 0.801 2.212
0.5 0.981 0.937 0.091 0.891 1.459 1.300 2.007 0.913 2.387

(ρ = 0.3)
0.1 0.994 0.971 0.197 0.720 0.913 1.125 1.137 0.553 1.506
0.2 1.005 0.987 0.207 0.767 0.997 1.207 1.263 0.610 1.669
0.3 1.007 1.000 0.234 0.804 1.054 1.251 1.331 0.640 1.684
0.4 1.001 1.068 0.219 0.982 1.342 1.436 1.632 0.783 2.048
0.5 0.993 1.068 0.193 1.111 1.584 1.589 1.922 0.912 2.341

(ρ = 0.5)
0.1 1.001 0.980 0.316 0.783 0.977 1.118 1.113 0.562 1.364
0.2 1.000 1.016 0.362 0.862 1.065 1.183 1.200 0.607 1.514
0.3 0.987 1.028 0.412 0.911 1.146 1.215 1.242 0.636 1.580
0.4 0.990 0.996 0.381 1.026 1.310 1.408 1.566 0.771 1.926
0.5 1.000 1.011 0.310 1.100 1.473 1.551 1.846 0.882 2.148
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ρ = 0.1, α = 0.1 ρ = 0.3, α = 0.1 ρ = 0.5, α = 0.1

ρ = 0.1, α = 0.2 ρ = 0.3, α = 0.2 ρ = 0.5, α = 0.2

ρ = 0.1, α = 0.3 ρ = 0.3, α = 0.3 ρ = 0.5, α = 0.3

ρ = 0.1, α = 0.4 ρ = 0.3, α = 0.4 ρ = 0.5, α = 0.4

ρ = 0.1, α = 0.5 ρ = 0.3, α = 0.5 ρ = 0.5, α = 0.5

Figure 1. Boxplots of 100 RE values for five estimators, true σ2 = 0.5.
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ρ = 0.1, α = 0.1 ρ = 0.3, α = 0.1 ρ = 0.5, α = 0.1

ρ = 0.1, α = 0.2 ρ = 0.3, α = 0.2 ρ = 0.5, α = 0.2

ρ = 0.1, α = 0.3 ρ = 0.3, α = 0.3 ρ = 0.5, α = 0.3

ρ = 0.1, α = 0.4 ρ = 0.3, α = 0.4 ρ = 0.5, α = 0.4

ρ = 0.1, α = 0.5 ρ = 0.3, α = 0.5 ρ = 0.5, α = 0.5

Figure 2. Boxplots of 100 RE values for five estimators, true σ2 = 1.
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6. Conclusions and Discussion

We proposed a novel approach for variance estimation that combines the reparam-
eterized log-likelihood function and adaptive-lasso penalization. We have established
the asymptotic properties of the NALE. The theory in this paper shows that the NALE
converges at a faster rate than some other existing estimators, including the NLE, OLE
and SLE. In addition, the NAL is closely related to the adaptive lasso, which makes its
numerical calculation straightforward. We have used the PGA to obtain the NALE in
numerical simulations. Our simulation results show that the NALE performs well and
favorably against other existing methods, in most finite sample situations, especially in
extremely sparse scenarios. However, the quality of the NALE depends on that of the
initial estimator used in its numerical optimization, and the poor performance of the initial
estimator may result in the poor performance of the NALE.

7. Regularity Conditions and Proofs

This section provides theoretical proofs. We first state the following regularity conditions.

Condition 1. With probability approaching one, the initial estimator satisfies ‖β̃ini − β∗‖2 ≤
C2
√

s(log p)/n.

Condition 2. p′λ(t) is non-increasing in t ∈ (0, ∞) and is Lipschitz with constant C3, that is,

|p′λn
(|t1|)− p′λn

(|t2|)| ≤ C3|t1 − t2|

for any t1, t2 ∈ R. Moreover, p′λn
(C2
√

s log p/n) > (1/2)p′λn
(0+) for sufficiently large n, where

C2 is defined in Condition 1.

Condition 3. There exist positive constants 0 < cmin < cmax < ∞, such that

cmin ≤ λmin

(
1
n

XT
A0

XA0

)
≤ λmax

(
1
n

XT
A0

XA0

)
≤ cmax,

and ∥∥∥∥ 1
n

XT
Ac

0
XA0

∥∥∥∥
2,∞

<
λn

4‖w−1
Ac

0
‖∞an

,

where ‖B‖2,∞ = max‖v‖2≤1 ‖Bv‖∞, w−1
Ac

0
= (w−1

s+1, . . . , w−1
p )T , an is defined in Theorem 1.

Condition 4. The true coefficients satisfy mini∈A0 |β∗i | �
√
(s(2 log p + 2L))/n. Moreover, it

holds p′′λn
(t) = o(s−1λ−1

n (2 log p + 2L)−1/2) for any t > mini∈A0 |β∗i |/2 and L > 0.

As we pointed out in Remark 1, the lasso estimator βlasso satisfies Condition 1. Condi-
tion 2 affects the bound between β̂λn and β∗ and is used in the proof of Theorem 1. Further,
it determines the bound between σ̂2

λn
and σ2

oracle. The first part of Condition 3 is a very
common regularity condition (see [4,12,23]) in high-dimensional regression. The remaining
part is similar to Condition 3 in [23], which is used in the proofs of Theorems 1 and 2.
Condition 4 is needed in the analysis of Corollary 1.

Proof of Proposition 1. (i) Since (θ̂λn , φ̂λn) is a solution of (2), θ̂λn is a solution of the
problem

min
θλn∈Rp

L(θ, φ̂λn) + λn‖w ◦ θ‖1.

Hence, by optimality of the above problem, we have

−XTy + XTX
θ̂λn

φ̂λn

+ nλnw ◦ ĝ = 0,
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where ĝ ∈ ∂(‖θ̂λn‖1). It follows that

−XTy + XTX β̂λn + nλnw ◦ ĝ = 0.

Since sign(θ̂λn) = sign(β̂λn), we have ∂(‖θ̂λn‖1) = ∂(‖β̂λn‖1), which, further, implies
that β̂λn is a solution of the adaptive lasso (4).

(ii) Since (θ̂λn , φ̂λn) is a solution of (2), by optimality of problem (2), we have

−XTy + XTX
θ̂λn

φ̂λn

+ nλw ◦ ĝ = 0, − 1
φ̂λn

+
1
n
‖y‖2

2 −
‖X θ̂λn‖2

2

nφ̂2
λn

= 0,

where ĝ ∈ ∂(‖θ̂λn‖1). Therefore, we have

−XTy + XTX β̂λn + nλnw ◦ ĝ = 0, − 1
φ̂λn

+
1
n
‖y‖2

2 −
‖X θ̂λn‖2

2

nφ̂2
λn

= 0. (7)

Since ∂(‖θ̂λn‖1) = ∂(‖β̂λn‖1), we have ĝ ∈ ∂(‖β̂λn‖1). Further,

β̂T
λn
(w ◦ ĝ) =

p

∑
i=1

wi β̂i ĝi =
p

∑
i=1
|wi β̂i| = ‖w ◦ β̂‖1. (8)

Combining (7) and (8), we obtain

0 = −β̂T
λn

XTy + ‖X β̂λn‖
2
2 + λn‖w ◦ β̂λn‖1, σ̂2

λn
=

1
n

(
‖y‖2

2 − ‖X β̂λn‖
2
2

)
.

Further, by the first term in (7),

‖y− X β̂λn‖
2
2 = ‖y‖2

2 − ‖X β̂λn‖
2
2 + 2

(
‖X β̂λn‖

2
2 − yTX β̂λn

)
= ‖y‖2

2 − ‖X β̂λn‖
2
2 − 2λn‖w ◦ β̂‖1.

Combining the above equality and the second term in (7), we have

σ̂2
λn

=
1
n

(
‖y‖2

2 − ‖X β̂λn‖
2
2

)
= ‖y− X β̂λn‖

2
2 + 2λn‖w ◦ β̂λn‖1,

which implies that σ̂2
λn

is the optimal value of the adaptive lasso (4).

Proof of Lemma 1. From Proposition 1, we have

σ̂2
λn
≤ 1

n
‖y− Xβ∗‖2

2 + 2λn‖w ◦ β∗‖1 =
1
n
‖ε‖2

2 + 2λn‖w ◦ β∗‖1. (9)

Since the loss function in the adaptive lasso is convex, we have

σ̂2
λn

=
1
n
‖y− X β̂λn‖

2
2 + 2λn‖w ◦ β̂λn‖1

≥ 1
n
‖y− Xβ∗‖2

2 + [
2
n

XT(XT β∗ − y)]T(β̂λn − β∗)

=
1
n
‖ε‖2

2 −
2
n

εTX(β̂λn − β∗) (10)

≥ 1
n
‖ε‖2

2 − 2‖ 1
n

εTX‖∞‖β̂λn − β∗‖1

≥ 1
n
‖ε‖2

2 − 2λn‖β̂λn − β∗‖1.
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Combining inequalities (9) and (10), we obtain

|σ̂2
λn
− 1

n
‖ε‖2

2| ≤ max{2λn‖w ◦ β∗‖1, 2‖ 1
n

εTX‖∞‖β̂λn − β∗‖1},

which completes the proof.

Proof of Theorem 1. Since problem (4) is a convex optimization, by Theorem 1 of [25],
it suffices to show that, with probability tending to 1, there exists a minimizer β̂λn of
problem (4) that satisfies

XT
A0

(y− X β̂λn)− nλnwA0 ◦ ĝA0 = 0, (11)

‖XT
Ac

0
(y− X β̂λn)‖∞ < nλnwAc

0
, (12)

λmin

(
1
n

XT
A0

XA0

)
≥ cmin. (13)

where ĝ ∈ ∂‖β̂‖1.
Let ξ1 = XT

A0
ε and ξ2 = XT

Ac
0
ε. Since ‖Xj‖2

2 = n and ε ∼ N(0, σ2 In), it follows from
Corollary 4.3 in [26] that, for any L > 0,

P
{
‖XTε‖∞

nσ
>

√
2 log p + 2L

n

}
≤ e−L. (14)

Now we show that there exists a minimizer β̂ of problem (4) satisfies conditions (11)–(13).
Equation (11): Consider the minimizer of problem (4) in the subspace {β = (βT

A0
, βT
Ac

0
)T :

βAc
0

= 0}. Let β = (βT
A0

, 0T)T, where βA0 = β∗A0
+ ãnvA0 ∈ Rs with

ãn =
√

s(2 log p + 2L)/n + 2λn(‖w∗A0
‖2 + C2C3

√
s(log p)/n), ‖vA0‖2 = C, and C > 0

is some large enough constant. Note that

Ln(β∗A0
+ ãnvA0 , 0)− Ln(β∗A0

, 0) = I1(vA0) + I2(vA0), (15)

where I1(vA0) = 1
n‖X(β∗ + ãnv) − y‖2

2 −
1
n‖Xβ∗ − y‖2

2, I2(vA0) = 2λn‖wA0 ◦ (β∗A0
+

ãnvA0)‖1 − 2λn‖wA0 ◦ β∗A0
‖1. For I1(vA0), by (14), we have

I1(vA0) =
1
n
‖X(β∗ + ãnv)− y‖2

2 −
1
n
‖Xβ∗ − y‖2

2

=
1
n

ã2
nvTXTXv +

2
n

εTXãnv

=
1
n

ã2
nvT
A0

XT
A0

XA0 vA0 +
2
n

ãnεTXA0 vA0 (16)

≥ cminã2
n‖vA0‖

2
2 − 2ãn

∥∥∥∥ ξ1

n

∥∥∥∥
2
‖vA0‖2

≥ cminã2
n‖vA0‖

2
2 − 2σãn

√
s(2 log p + 2L)/n‖vA0‖2,

where the last inequality holds, due to ‖ · ‖2 ≤
√

s‖ · ‖∞. For I2(vA0), we have

I2(vA0) = 2λn‖wA0 ◦ (β∗A0
+ ãnvA0)‖1 − 2λn‖wA0 ◦ β∗A0

‖1

≤ 2λn‖wA0 ◦ (ãnvA0)‖1 ≤ 2ãnλn‖wA0‖2‖vA0‖2. (17)

By the two-steps procedure of weight vector and Condition 2, it holds that

‖wA0‖2 ≤ ‖wA0 −w∗A0
‖2 + ‖w∗A0

‖2 ≤ C3‖β̃ini
A0
− β∗A0

‖2 + ‖w∗A0
‖2

≤ C2C3

√
s(log p)/n + ‖w∗A0

‖2. (18)
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Hence, combining (15)–(18) yields

Ln(β∗A0
+ ãnvA0 , 0)− Ln(β∗A0

, 0) ≥ cmin ã2
n‖vA0‖

2
2 − 2σãn

√
s(2 log p + 2L)/n‖vA0‖2

−2ãnλn(C2C3

√
s(log p)/n + ‖w∗A0

‖2)‖vA0‖2.

Taking a large enough C, we have obtained, with probability tending to one,

Ln(β∗A0
+ ãnvA0 , 0)− Ln(β∗A0

, 0) > 0.

It follows, immediately, that, with probability approaching one, there exists a minimizer
β̂A0 of problem (4), subject to subspace {β = (βT

A0
, βT
Ac

0
)T : βAc

0
= 0}, such that ‖β̂A0 −

β∗A0
‖2 ≤ C4 ãn ≡ an, with some constant C4 > 0. Therefore, equality (11) holds, by the

optimality theory.
Inequality (12): It remains to be proven that with asymptotic probability 1, (12) holds.

Then, by optimality theory, β̂λn = (β̂T
A0

, 0T)T is the unique global minimizer of problem (4).
By triangle inequality, we have

‖XT
Ac

0
(y− X β̂)‖∞ ≤ ‖XT

Ac
0
(y− Xβ∗)‖∞ + ‖XT

Ac
0
X(β∗ − β̂)‖∞. (19)

Further, by Condition 1, we have |β̃ini
i | ≤ C2

√
s(log p)/n with probability approach-

ing one, where i ∈ Ac
0. Moreover, by the definition of the fold-concave penalty function,

p′λn
(|β̃ini

i |) ≥ p′λn
(C2

√
s(log p)/n). (20)

Therefore, by Condition 2 and inequality (20), we conclude that

‖w−1
Ac

0
‖∞ = min

i∈Ac
0

p′λn
(|β̃ini

i |)−1 <
2

p′λn
(0+)

= 2‖(w∗Ac
0
)−1‖∞. (21)

Thus, for the first term of the right hand of inequality (19), by (14) and the condition
that mini∈Ac

0
{w∗i } > C−1

1 , with probability approaching one,

1
n
‖XT
Ac

0
(y− Xβ∗)‖∞ =

1
n
‖XT
Ac

0
ε‖∞

< σ

√
2 log p + 2L

n
=

λn

4C1
<

λn

4‖(w∗Ac
0
)−1‖∞

<
λn

2‖w−1
Ac

0
‖∞

.(22)

As for the second term of right hand of inequality (19), by Condition 3,
inequality (21) and inequality (14), with probability approaching one, we have

1
n
‖XT
Ac

0
X(β∗ − β̂)‖∞ ≤ 1

n
‖XT
Ac

0
XA0‖2,∞‖β∗A0

− β̂A0‖2

≤ λn

4‖(w∗Ac
0
)−1‖∞

<
λn

2‖w−1
Ac

0
‖∞

. (23)

Combining (19), (22) and (23), we obtain inequality (12).
Inequality (13): it follows from Condition 3 that with an asymptotic probability of

one, inequality (13) holds. This completes the proof of Theorem 1.
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Proof of Theorem 2. By equality (11), (1/n)XT
A0

(y − X β̂λn) − λnwA0 ◦ ĝA0 = 0. Since
y− Xβ∗ = ε, we have

1
n

XT
A0

XA0(β̂A0 − β∗A0
) = −λnwA0 ◦ ĝA0 +

1
n

XT
A0

ε.

Therefore,

n1/2αT
n (β̂A0 − β∗A0

) + n3/2λnαT
n (XT

A0
XA0)

−1wA0 ◦ ĝA0 = n1/2αT
n (XT

A0
XA0)

−1XT
A0

ε. (24)

By the first part of Condition 4 and the bound of β̂λn in Theoroem 1, we have
sign(β̂A0) = sign(β∗A0

). Then, ĝA0 = g∗A0
. In addition, by the second part in condition 4,

wA0 = w∗A0
+ ζ(β̂A0 − β∗A0

),

where ζ = diag(p′′λn
(β̃1), . . . , p′′λn

(β̃s))T ∈ Rs×s and β̃ ∈ Rs lie on the line segment
[β̂A0 , β∗A0

]. It follows that ‖ζ(β̂A0 − β∗A0
) ◦ g∗A0

‖2 = ‖ζ(β̂A0 − β∗A0
)‖2 = o(λ−1

n
√

1/n).
Further, since

|n3/2λnαT
n (XT

A0
XA0)

−1[ζ(β̂A0 − β∗A0
) ◦ g∗A0

]| ≤ n1/2λncmax‖αn‖2‖ζ(β̂A0 − β∗A0
)‖2 = o(1),

we have, for the second term of the left hand of (24),

n3/2λnαT
n (XT

A0
XA0)

−1wA0 ◦ ĝA0 = n3/2λnαT
n (XT

A0
XA0)

−1wA0 ◦ g∗A0
+ o(1).

Finally, the result follows, by verifying the conditions of the Lindeberg–Feller central
limit theorem, in the same way as in the proof of Theorem 2 in [4].

Proof of Theorem 4. For any M > 1, take L = (M − 1) log p and denote Zn = (σ̂2
λn
−

1
n‖ε‖2

2)
2. Then, by Theorems 1 and 3, we have

P(Zn > Mb2
n) ≤ e−(M−1) log p.

It follows that

E
(

Zn

b2
n

)
=

∫ ∞

0
P
(

Zn

b2
n
> t
)

dt =
∫ M

0
P
(

Zn

b2
n
> t
)

dt +
∫ ∞

M
P
(

Zn

b2
n
> t
)

dt

≤ M +
∫ ∞

M
e−(M−1) log p dt = M +

p1−M

log p
. (25)

Further, since σ−2‖ε‖2
2 ∼ χ2(n), we have

E
(

1
n
‖ε‖2

2

)
= σ2, Var

(
1
n
‖ε‖2

2

)
=

2σ4

n
.

By the proof of Theorem 12 in [13], we have

E
{
(σ̂2

λn
− σ2)2

}
≤
{[

E
{(

σ̂2
λn
− 1

n
‖ε‖2

2

)2}] 1
2

+

{
Var(

1
n
‖ε‖2

2)

} 1
2
}2

. (26)

Combining (25) and (26), we obtain

E
{
(σ̂2

λn
− σ2)2

}
≤
[(

M +
p1−M

log p

) 1
2

b2
n + σ2

(
2
n

) 1
2
]2

.

The proof is complete.
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