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Abstract: In this work, we introduce a new type of generalised quartic functional equation and
obtain the general solution. We then investigate the stability results by using the Hyers method in
modular space for quartic functional equations without using the Fatou property, without using
the ∆b-condition and without using both the ∆b-condition and the Fatou property. Moreover, we
investigate the stability results for this functional equation with the help of a fixed-point technique
involving the idea of the Fatou property in modular spaces. Furthermore, a suitable counter example
is also demonstrated to prove the non-stability of a singular case.

Keywords: fixed-point method; quartic functional equation; Fatou property; Hyers-Ulam stability;
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1. Introduction

Functional equations play a crucial role in the study of stability problems in several
frameworks. Ulam was the first who questioned the stability of group homomorphisms
and this opened the way to work on stability problems (see [1]). Using Banach spaces,
Hyers [2] solved this stability problem by considering Cauchy’s functional equation. Hyers’
work was expanded upon by Aoki [3] by assuming an unbounded Cauchy difference.
Rassias [4] presented work on additive mapping and these kinds of results are further
presented by Găvruţa [5].

Nakmahachalasint [6], in 2007, provided the general answer and Hyers–Ulam–Rassias
(H-U-R) stability of finite variable functional equations (see also Khodaei and Rassias [7]).
Certain stability problems around additive functional equations were presented by Najati
and Moghimi [8], Kenary [9], Gordji [10] and the references therein.

The concept of generalised Hyers–Ulam stability derives from historical contexts
and this problem is found for different kinds of functional equations (FE). The functional
equation

φ(v1 + v2) + φ(v1 − v2) = 2φ(v1) + 2φ(v2), (1)

is connected to a biadditive symmetric function (see [11,12]). Each equation is naturally
referred to as a quadratic FE.Any solution of Equation (1) is a quadratic function. A function
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φ : E′ → E′ (E′: real vector space) is said to be quadratic if there is a unique symmetric
biadditive function T satisfying φ(u) = T(u, u) for all u (see [11,12]).

The following functional equation was first presented by Jun and H. M. Kim [13]:

φ(2u + v) + φ(2u− v) = 2φ(u + v) + 2φ(u− v) + 12φ(u), (2)

which differs from Equation (1) in various ways. It is clear that the function φ(v) = cv3 is a
solution to Equation (2). As a consequence, it is natural to say that Equation (2) is a cubic
FE and so every solution of Equation (2) is a cubic function. In [14], Lee et al. presented the
quartic FE as:

φ(2u + v) + φ(2u− v) = 4[φ(u + v) + φ(u− v)] + 24φ(u)− 6φ(v), (3)

and found its solution and demonstrated the H-U-R stability. It is simple to demonstrate
that φ(v) = cv4 satisfies Equation (3) so this equality is called quartic FE, and its solution
is called quartic mapping (QM). Except for direct approaches, the fixed-point method
is the most often used method for establishing the stability of FEs (see [15–17]). In [18],
the authors proposed a generalised quartic FE and investigated Hyers–Ulam stability in
modular spaces using a fixed-point method as well as the Fatou property. Many research
papers on different generalisations and the generalised H-U stability’s implications for
various functional equations have been recently published (see [19–25]).

To obtain our results, we define the quartic FE by

4φ(v1 + v2 + v3 + v4) +
4

∑
i=1;i 6=j

φ

(
−vi + ∑

1≤j≤4
vj

)
= 4 ∑

1≤i<j<k≤4
φ
(
vi + vj + vk

)
(4)

−2

[
∑

1≤i<j≤4
φ
(
vi + vj

)
− φ

(
vi − vj

)]
−

4

∑
i=1

φ(3vi) + 77
4

∑
i=1

φ(vi).

We investigate certain stability results of the above quartic FE which will be based on
Hyers and fixed-point methods involving the idea of the Fatou property and ∆b-condition
in the framework of modular spaces. Here, we consider the difference cases to obtain our
results (i) with only the Fatou property, (ii) with only the ∆b-condition, and (iii) without the
Fatou property and the ∆b-condition.

2. Preliminary

Nakano [26] conducted research on modular and modular spaces as generalisations of
normed spaces. Many notable mathematicians [27–31] have worked on it intensively since
the 1950s. In [30,32,33], interpolation theory and Orlicz spaces are two examples of uses for
modular and modular spaces.

We begin by considering some fundamentally important concepts. Consider E to be a
linear space over K (C or R). We call a functional ρ : E → [0, ∞) modular provided that
for all u, v ∈ E,

(a) ρ(u) = 0 if and only if u = 0.
(b) ρ(βu) = ρ(u) for all scalars β with |β| = 1.
(c) ρ(βu + γv) ≤ ρ(u) + ρ(v) for all scalars β, γ ≥ 0 with β + γ = 1.

If the inequality in (c) is replaced by
(c’) ρ(βu + γv) ≤ βρ(u) + γρ(v), then ρ is thus said to be convex modular.

If ρ(βu) ≤ βρ(u), then ρ is semi-convex modular. Clearly, every semi-convex modular
is convex.

Note that ρ is the following vector space which defined by a modular ρ:

Eρ := {u ∈ E | ρ(θu)→ 0 as θ → 0},
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and Eρ is also known as a modular space.
Let Eρ be a modular space and {un} ∈ Eρ. One has

(1) If ρ(un − u) → 0 as n → ∞, {un} is ρ-convergent to u ∈ Eρ and represented by

un
ρ−→ u.

(2) If for every ς > 0 such that ρ(un − um) < ς as m, n→ ∞, then {un} is ρ-Cauchy.
(3) If every ρ-Cauchy sequence is ρ-convergent in S, the subset S ⊆ Eρ is ρ-complete.

The modular ρ is said to have the Fatou property if and only if ρ(u) ≤ limn→∞ inf ρ(un)
when the sequence {un} in modular space Eρ is ρ-convergent to u.

Definition 1. Let b ≥ 3 be an integer. Then, ρ is said to satisfy the ∆b-condition if there is kb > 0
such that

ρ(bx) ≤ kbρ(x), ∀x ∈ Xρ.

In this case, kb is a ∆b-constant related to ∆b-condition.

Remark 1. Consider ρ is a semi-convex which satisfies the ∆b-condition with kb > 0. If kb < b,
then

ρ(u) ≤ kbρ
(u

b

)
≤ kb

b
ρ(u),

which implies ρ = 0. As a consequence, if ρ is semi-convex modular, we have the ∆b-constant
kb ≥ b.

Definition 2 ([34]). Suppose the sequence {vn} in a modular space Vρ. Then, we say that

(D1) vn
ρ−→ v if ρ(vn − v)→ 0 (n→ ∞).

(D2) {vn} is a ρ-Cauchy provided that ρ(vl − vn)→ 0 ( l, n→ ∞).
(D3) A ⊆ Vρ is ρ-complete iff every ρ-Cauchy sequence is ρ-convergent in the set A.

Suppose A( 6= ∅) ⊆ Vρ. Then, a mapping J : A → A is a quasicontraction if k < 1
such that

ρ(Jl − Jm) ≤ k max{ρ(l −m), ρ(l − Jm), ρ(m− Jl), ρ(l − Jl), ρ(m− Jm)},

for any l, m ∈ A. The J orbit around a point u is

O(J) := {u, Ju, J2u, · · · }.

Then, the quantity

Υρ(J) := sup{ρ(p− q)|p, q ∈ O(J)},

is known as the orbital diameter of J at u. If Υρ(J) < ∞ holds, J is said to has a bounded
orbit at u (see [34]).

Proposition 1 ([35]). In modular spaces,

(1) If un
ρ−→ u and ε is a constant vector, then un + ε

ρ−→ u + ε, and

(2) If un
ρ−→ u and vn

ρ−→ v, then βun + γvn
ρ−→ βu + γv, where β + γ ≤ 1 and β, γ ≥ 0.

It should be noted that if α is chosen from the equivalent scalar field with |α| > 1
in modular spaces, the convergence of a sequence {un} to u does not mean that {αun}
converges to αu. Many mathematicians established additional criteria on modular spaces in
order for the multiples of the convergent sequence {un} in the modular spaces to naturally
converge.
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The modular ρ has the Fatou property if ρ(v) ≤ limm→∞ inf ρ(vm) whenever {vm}
ρ−→

v. Let b ∈ N− {1}. A modular function satisfies ∆b-condition if there is k > 0 such that

ρ(bv) ≤ kρ(v), ∀v ∈ Vρ.

3. Main Results
3.1. Solution of the New Kind of Quartic FE

Theorem 1. Let E and F be two vector spaces. If an even mapping φ : E→ F satisfies Equation (4)
for all v1, v2, v3, v4 ∈ E, then φ is quartic.

Proof. Suppose φ : E→ F is even. Then, φ satisfies

φ(−v) = φ(v),

for all v ∈ E. Letting v1 = v2 = v3 = v4 = 0 in Equation (4), we obtain φ(0) = 0. Setting
v1 = v and v2 = v3 = v4 = 0 in Equation (4), we have

φ(3v) = 34φ(v), ∀v ∈ E. (5)

It follows, by replacing v with 3v in Equation (5), that

φ(32v) = 34(2)φ(v), ∀v ∈ E. (6)

Now, we obtain, by replacing v with 3v in Equation (6), that

φ(33v) = 34(3)φ(v), ∀v ∈ E.

In general, for any n ∈ Z+ (the set of positive integers), we have

φ(3nv) = 34(n)φ(v), ∀v ∈ E.

Thus, the function φ is even and has a solution of quartic FE. Therefore, φ is quartic. Fi-
nally, by replacing (v1, v2, v3, v4) by (u, u, v, 0) in Equation (4), we obtain the Equation (3).

3.2. Stability of Quartic FE: Hyers Method

Consider a modular ρ as semi-convex. The Hyers–Ulam stability of Equation (4) in
modular spaces is an important theorem in the absence of the Fatou condition.

For notational handiness, we define a mapping φ : E → Fρ (E: linear space; Fρ:
ρ-complete semi-convex modular space) by

Φ(v1, v2, v3, v4) = 4φ

(
4

∑
j=1

vj

)
+

4

∑
i=1;i 6=j

φ

(
−vi + ∑

1≤j≤4
vj

)

−4 ∑
1≤i<j<k≤4

φ
(
vi + vj + vk

)
+

4

∑
i=1

φ(3vi)

+2

[
∑

1≤i<j≤4
φ
(
vi + vj

)
− φ

(
vi − vj

)]
− 77

4

∑
i=1

φ(vi),

for all v1, v2, v3, v4 ∈ E.

Theorem 2. Let b ≥ 3 be an integer. Suppose Fρ satisfies the ∆b-condition. If a mapping
ψ : E4 → [0, ∞) exists for which a mapping φ : E→ Fρ satisfies all v1, v2, v3, v4 ∈ E,

ρ(Φ(v1, v2, v3, v4) ≤ ψ(v1, v2, v3, v4), (7)
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lim
l→∞

k4l
b ψ
(v1

bl ,
v2

bl ,
v3

bl ,
v4

bl

)
= 0 and

∞

∑
j=1

(
k5

b
b

)j

ψ

(
v
bj , 0, 0, 0

)
< ∞,

then there is an unique QM Q : E→ Fρ, defined by

Q(v) = lim
l→∞

b4lφ
( v

bl

)
,

and

ρ(φ(v)−Q(v)) ≤ 1
bk3

b

∞

∑
j=1

(
k5

b
b

)j

ψ

(
v
bj , 0, 0, 0

)
, (8)

for all v ∈ E.

Proof. Note that φ(0) = 0 since ψ(0, 0, 0, 0) = 0 by the convergence of

∞

∑
j=1

(
k5

b
b

)j

ψ(0, 0, 0, 0) < ∞.

We set v1 = v and v2 = v3 = v4 = 0 in inequality (7) to obtain

ρ
(

φ(bv)− b4φ(v)
)
≤ ψ(v, 0, 0, 0), ∀v ∈ E.

Supposing the ∆b-condition of ρ and ∑l
j=1

1
bj ≤ 1, one can prove the equality

ρ
(

φ(v)− b4lφ
( v

bl

))
= ρ

(
l

∑
j=1

1
bj

(
b5j−4φ

(
v

bj−1

)
− b5jφ

(
v
bj

)))
(9)

≤ 1
k4

b

l

∑
j=1

(
k5

b
b

)j

ψ

(
v
bj , 0, 0, 0

)
,

Now, replacing v by b−pv in Equation (9), we have

ρ

(
b4pφ

( v
bp

)
− b4(l+p)φ

(
v

bl+p

))
≤ k4p

b ρ

(
φ
( v

bp

)
− b4lφ

(
v

bl+p

))

≤ k4p−4
b

l

∑
j=1

(
k5

b
b

)j

ψ

(
v

bj+p , 0, 0, 0
)

≤ bp

kp+4
b

l+p

∑
j=p+1

(
k5

b
b

)j

ψ

(
v
bj , 0, 0, 0

)
,

for all v ∈ E, which→ 0 (p→ ∞), because b
kb
≤ 1 and the inequality (7) converges.

As a result, the sequence {b4lφ
(

v
bl

)
} is ρ-Cauchy for all v ∈ E and as a result, it is

ρ-convergent in Fρ since Fρ is a ρ-complete. So, we can define Q : E→ Fρ as

Q(v) := ρ− lim
l→∞

b4lφ
( v

bl

)
, i.e., lim

l→∞
ρ
(

b4lφ
( v

bl

)
−Q(v)

)
= 0,

for all v ∈ E. So, even without utilising the Fatou property, the ∆b-condition shows that the
inequality
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ρ(φ(v)−Q(v)) ≤ 1
b

ρ
(

bφ(v)− b · b4lφ
( v

bl

))
+

1
b

ρ
(

b · b4lφ
( v

bl

)
− b ·Q(v)

)
≤ kb

b
ρ
(

φ(v)− b4lφ
( v

bl

))
+

kb
b

ρ
(

b4lφ
( v

bl

)
−Q(v)

)
≤ 1

bk3
b

l

∑
j=1

(
k5

b
3

)j

ψ

(
v
bj , 0, 0, 0

)
+

kb
b

ρ
(

b4lφ
( v

bl

)
−Q(v)

)
,

holds for an integer l > 1 and for all v ∈ E. Taking l → ∞, we have the inequality (8).
Replacing (v1, v2, v3, v4) by

(
b−lv1, b−lv2, b−lv3, b−lv4

)
in inequality (7), we see that

ρ
(

b4lΦ
(

b−lv1, b−lv2, b−lv3, b−lv4

))
≤ k4l

b ψ

(
v1

bl ,
v2

bl ,
b3

3l ,
v4

bl

)
→ 0 (l → ∞),

for all v1, v2, v3, v4 ∈ E. From the semi-convexity of ρ, it follows that

ρ

(
1

361
Q(v1, v2, v3, v4)

)
≤ 4

361
ρ

(
Q

(
4

∑
j=1

vj

)
− b4lφ

(
4

∑
j=1

b−lvj

))

+
1

361
ρ

(
4

∑
i=1;i 6=j

Q

(
−vi + ∑

1≤j≤4
vj

)
− b4l

4

∑
i=1;i 6=j

φ

(
−b−lvi + ∑

1≤j≤4
b−lvj

))

+
4

361
ρ

(
∑

1≤i<j<k≤4
Q
(
vi + vj + vk

)
− b4l ∑

1≤i<j<k≤4
φ
(

b−l(vi + vj + vk)
))

+
1

361
ρ

(
4

∑
i=1

Q(3vi)− b4l
4

∑
i=1

φ
(

b−l(3vi)
))

+
2

361
ρ

([
∑

1≤i<j≤4
Q
(
vi + vj

)
−Q

(
vi − vj

)]

−b4l

[
∑

1≤i<j≤4
φ
(

b−l(vi + vj)
)
− φ

(
b−l(vi − vj)

)])

+
77
361

ρ

(
4

∑
i=1

Q(vi)− b4l
4

∑
i=1

φ
(

b−lvi

))
+

1
361

ρ
(

b4lΦ
(

b−lv1, b−lv2, b−lv3, b−lv4

))
,

for all v1, v2, v3, v4 ∈ E and all non-negative integers l > 1. Taking the limit as l → ∞, we
can see that Q is quartic.

We suppose a QM Q
′

: E→ Fρ to demonstrate the uniqueness of Q. The function Q
′

satisfies the inequality

ρ
(

φ(v)−Q
′
(v)
)
≤ 1

bk3
b

∞

∑
j=1

(
k5

b
b

)j

ψ

(
v
bj , 0, 0, 0

)
,

for all v ∈ E. Then, we see from the inequality Q(b−lv) = b−4lQ(v) and Q
′
(b−lv) =

b−4lQ
′
(v) that

ρ
(

Q(v)−Q
′
(v)
)
≤ 1

b
ρ
(

b · b4lQ
( v

bl

)
− b · b4lφ

( v
bl

))
+

1
b

ρ
(

b · b4lφ
( v

bl

)
− b · b4lQ

′( v
bl

))
≤

k4l+1
b
b

ρ
(

Q
( v

bl

)
− φ

( v
bl

))
+

k4l+1
b
b

ρ
(

φ
( v

bl

)
−Q

′( v
bl

))
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≤
2k4l−2

b
b2

∞

∑
j=1

(
k5

b
b

)j

ψ

(
v

bl+j , 0, 0, 0
)

=
2 · bl−2

kl+2
b

∞

∑
j=l+1

(
k5

b
b

)j

ψ

(
v
bj , 0, 0, 0

)
,

for all v ∈ E. Taking l → ∞, we finally find that Q is unique, which completes the proof.

Corollary 1. Let b ≥ 3 be an integer. Suppose that a normed space E with ‖ · ‖ and Fρ satisfies
∆b-condition. If a mapping φ : E→ Fρ such that

ρ(Φ(v1, v2, v3, v4)) ≤ λ

(
4

∑
j=1
‖vj‖α

)
, ∀v1, v2, v3, v4 ∈ E,

then there is an unique QM Q : E→ Fρ satisfies

ρ(φ(v)−Q(v)) ≤
λk2

b
b
(
bα+1 − k5

b
)‖v‖α, ∀v ∈ E,

where α > logb
k5

b
b and λ > 0.

Corollary 2. Let b ≥ 3 be an integer. Suppose that a normed space E with ‖ · ‖ and Fρ satisfies

∆b-condition. For any λ > 0 and 4α > logb
k5

b
b are given real numbers, if a mapping φ : E→ Fρ

such that

ρ(Φ(v1, v2, v3, v4)) ≤ λ

(
4

∑
j=1
‖vj‖4α +

4

∏
i=1
‖vi‖p

)
, ∀v1, v2, v3, v4 ∈ E,

then there is an unique QM Q : E→ Fρ satisfying

ρ(φ(v)−Q(v)) ≤
λk2

b
b
(
b4α+1 − k5

b
)‖v‖4α,

for all v ∈ E.

An alternative stability theorem for Equation (4) in modular spaces will be proved
without the ∆b-condition, given below.

Theorem 3. Let b ≥ 3 be an integer. Let Fρ satisfy the Fatou property. If a mapping φ : E→ Fρ

satisfies the inequality (7) and a mapping ψ : E4 → [0, ∞) such that

lim
l→∞

ψ
(

blv1, blv2, blv3, blv4

)
b4l = 0, and

∞

∑
j=0

ψ
(
bjv, 0, 0, 0

)
b4j < ∞, ∀v, v1, v2, v3, v4 ∈ E,

then there is an unique QM Q : E→ Fρ having

ρ(φ(v)−Q(v)) ≤ 1
b4

∞

∑
j=0

ψ
(
bjv, 0, 0, 0

)
b4j , ∀v ∈ E. (10)

Proof. By replacing v1 = v and v2 = v3 = v4 = 0 in Equation (7), we obtain

ρ
(

φ(bv)− b4φ(v)
)
≤ ψ(v, 0, 0, 0), ∀v ∈ E.
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Without using ∆b-condition, the above inequality becomes

ρ

(
φ(blv)

b4l − φ(v)

)
= ρ

(
l−1

∑
j=0

1
b4(j+1)

(
b4φ(bjv)− φ(bj+1v)

))

≤
l−1

∑
j=0

1
b4(j+1)

ρ
(

b4φ(bjv)− φ(bj+1v)
)

≤ 1
b4

l−1

∑
j=0

1
b4j ψ

(
bjv, 0, 0, 0

)
,

for all v ∈ E and for all integers l > 1. This yields

ρ

(
φ(blv)

b4l − φ(bpv)
b4p

)
=

1
b4p ρ

(
φ(bl−p · bpv)

b4(l−p)
− φ(bpv)

)

≤ 1
b4p

l−p−1

∑
j=0

1
b4(j+1)

ψ
(

bj · bpv, 0, 0, 0
)

≤ 1
b4

l−1

∑
j=p

1
b4j ψ

(
bjv, 0, 0, 0

)
,

for all v ∈ E and all l, p ∈ N with l > p. Thus, we see that the sequence { φ(bl v)
b4l } is a

ρ-Cauchy on Fρ. Since Fρ is ρ-complete, there exists ρ-limit solution Q : E→ Fρ defined by

ρ− lim
l→∞

φ(blv)
b4l := Q(v),

i.e., lim
l→∞

ρ

(
φ(blv)

b4l −Q(v)

)
= 0,

for all v ∈ E. Then, based on the Fatou property, it follows that the inequality

ρ(Q(v)− φ(v)) ≤ lim
l→∞

inf ρ

(
φ(blv)

b4l − φ(v)

)

≤ 1
b4

∞

∑
j=0

1
b4j ψ

(
bjv, 0, 0, 0

)
, ∀v ∈ E.

Now, we assert that Q satisfies the quartic FE. It should be noted that:

ρ

(
1

b4l Φ
(

blv1, blv2, blv3, blv4

))
≤ 1

b4l ψ
(

blv1, blv2, blv3, blv4

)
,

for all v1, v2, v3, v4 ∈ E, and all l ∈ N. As a result of the semi-convexity of ρ, we can see that

ρ

(
1

361
Q(v1, v2, v3, v4)

)
≤ 4

361
ρ

(
Q

(
∑
j=1

vj

)
− b−4lφ

(
∑
j=1

blvj

))

+
1

361
ρ

(
4

∑
i=1;i 6=j

Q

(
−vi + ∑

1≤j≤4
vj

)
− b−4l

4

∑
i=1;i 6=j

φ

(
−blvi + ∑

1≤j≤4
blvj

))

+
4

361
ρ

(
∑

1≤i<j<k≤4
Q
(
vi + vj + vk

)
− b−4l ∑

1≤i<j<k≤4
φ
(

bl(vi + vj + vk)
))
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+
1

361
ρ

(
4

∑
i=1

Q(3vi)− b−4l
4

∑
i=1

φ
(

bl(3vi)
))

+
2

361
ρ

([
∑

1≤i<j≤4
Q
(
vi + vj

)
−Q

(
vi − vj

)]

−b−4l

[
∑

1≤i<j≤4
φ
(

bl(vi + vj)
)
− φ

(
bl(vi − vj)

)])

+
77
361

ρ

(
4

∑
i=1

Q(vi)− b−4l
4

∑
i=1

φ
(

blvi

))
+

1
361

ρ
(

b−4lΦ
(

blv1, blv2, blv3, blv4

))
,

holds for all v1, v2, v3, v4 ∈ E, and then taking l → ∞, we obtain ρ
(

1
361 Q(v1, v2, v3, v4)

)
= 0.

As a result, Q must be quartic.
To demonstrate that the function Q is unique, we consider that Q

′
: E → Fρ is an

another quartic function which satisfies the inequality (10). As Q and Q
′

are quartic, as
evidenced by the previous equality, Q(blv) = b4lQ(v) and Q

′
(blv) = b4lQ

′
(v), so that

ρ

(
1
2

Q(v)− 1
2

Q
′
(v)
)
≤ 1

2
ρ

(
Q(blv)

b4l − φ(blv)
b4l

)
+

1
2

ρ

(
φ(blv)

b4l − Q
′
(blv)
b4l

)

≤ 1
2
· 1

b4l ρ
(

Q(blv)− φ(blv)
)
+

1
2
· 1

b4l ρ
(

φ(blv)−Q
′
(blv)

)
≤ 1

b4l

∞

∑
j=0

1
b4(j+1)

ψ
(

bj · blv, 0, 0, 0
)

=
∞

∑
j=l

1
b4(j+1)

ψ
(

bjv, 0, 0, 0
)

,

for all v ∈ E. Taking l → ∞, we conclude that Q = Q
′
. Hence, Q is the only quartic

mapping near φ that satisfies the inequality (10).

Corollary 3. Let b ≥ 3 be an integer. Suppose that a normed space E with ‖ · ‖ and Fρ satisfy
the Fatou property. For any λ > 0 and α ∈ (−∞, 4) are real numbers, if a mapping φ : E → Fρ

such that

ρ(Φ(v1, v2, v3, v4)) ≤ λ

(
4

∑
j=1
‖vj‖α

)
, ∀v1, v2, v3, v4 ∈ E,

then there is an unique QM Q : E→ Fρ having

ρ(φ(v)−Q(v)) ≤ λ‖v‖α

b4 − bα
,

for all v ∈ E, where v 6= 0 if α < 0.

Corollary 4. Let b ≥ 3 be an integer. Suppose that a normed space E with ‖ · ‖ and Fρ satisfy the
Fatou property. For any λ > 0 and 4α ∈ (−∞, 4) are given real numbers, if a mapping φ : E→ Fρ

such that

ρ(Φ(v1, v2, v3, v4)) ≤ λ

(
4

∑
j=1
‖vj‖4α +

4

∏
j=1
‖vj‖α

)
, ∀v1, v2, v3, v4 ∈ E,

then there is an unique QM Q : E→ Fρ having
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ρ(φ(v)−Q(v)) ≤ λ‖v‖4α

b4 − b4α
,

for all v ∈ E, where v 6= 0 if α < 0.

The upcoming proposition is a revised version of modular stability results of Theorem 3
in [36], which does not need the ∆b-condition of ρ, which is given below.

Proposition 2. Let Fρ satisfy the Fatou property. If a mapping φ : E→ Fρ satisfy the inequality (7)
and a mapping ψ : E4 → [0, ∞) such that

lim
l→∞

ψ(blv1, blv2, blv3, blv4)

b4l = 0, and ψ(bv, 0, 0, 0) ≤ b4Lψ(v, 0, 0, 0), ∀v, v1, v2, v3, v4 ∈ E,

then there is an unique QM Q : E→ Fρ satisfying

ρ(φ(v)−Q(v)) ≤ 1
b4(1− L)

ψ(v, 0, 0, 0), ∀v ∈ E.

Now, in modular spaces, we present an alternative stability Theorem 2 that does not
utilise both the Fatou property and the ∆b-condition.

Theorem 4. If a mapping φ : E → Fρ satisfy the inequality (7) and a mapping ψ : E4 → [0, ∞)
such that

lim
l→∞

ψ
(

blv1, blv2, blv3, blv4

)
b4l = 0, and

∞

∑
j=0

ψ
(
bjv, 0, 0, 0

)
b4j < ∞, ∀v, v1, v2, v3, v4 ∈ E,

then there is an unique QM Q : E→ Fρ having

ρ(φ(v)−Q(v)) ≤ 1
b4

∞

∑
j=0

ψ
(
bjv, 0, 0, 0

)
b4j , (11)

for all v ∈ E.

Proof. Letting v1 = v and v2 = v3 = v4 = 0 in inequality (7), one has

ρ
(

φ(bv)− b4φ(v)
)
≤ ψ(v, 0, 0, 0),

and then the semi-convexity of ρ and ∑l−1
j=0

1
b4(j+1) ≤ 1 provide us with the result

ρ

(
φ(v)− φ(blv)

b4l

)
≤ ρ

(
l−1

∑
j=0

(
b4φ(bjv)− φ(bj+1v)

b4(j+1)

))

≤
l−1

∑
j=0

ρ
(
b4φ(bjv)− φ(bj+1v)

)
b4(j+1)

≤ 1
b4

l−1

∑
j=0

ψ
(
bjv, 0, 0, 0

)
b4j ,

for all v ∈ E and all l > 0. By the similar argument of the proof of Theorem 3, we have a

ρ-Cauchy sequence { φ(bl v)
b4l } and the limit of function Q : E→ Fρ defined as

ρ− lim
l→∞

φ(blv)
b4l = Q(v),
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i.e., lim
l→∞

ρ

(
φ(blv)

b4l −Q(v)

)
= 0,

for all v ∈ E without employing the Fatou property and the ∆b-condition. Furthermore, as
in the proof of Theorem 2, one may show that Q satisfies Equation (4).

Now, without invoking the Fatou property and the ∆b-condition, we verify the in-
equality (11) of φ by Q. By utilizing the semi-convexity of ρ and ∑l−1

j=0
1

b4(j+1) +
1
b4 ≤ 1,

we obtain

ρ(φ(v)−Q(v)) ≤ ρ

(
l−1

∑
j=0

(
b4φ(bjv)− φ(bj+1v)

b4(j+1)

)
+

φ(blv)
b4l − Q(bv)

b4

)

≤
l−1

∑
j=0

1
b4(j+1)

ρ
(

b4φ(bjv)− φ(bj+1v)
)
+

1
b4 ρ

(
φ(bl−1 · bv)

b4(l−1)
−Q(bv)

)

≤ 1
b4

l−1

∑
j=0

1
b4j ψ(bjv, 0, 0, 0) +

1
b4 ρ

(
φ(bl−1 · bv)

b4(l−1)
−Q(bv)

)
,

for all integer l > 1 and for all v ∈ E. We arrive to the conclusion by using l → ∞.

Corollary 5. Let b ≥ 3 be an integer. Suppose that a normed space E with ‖ · ‖. Any λ > 0 and
α ∈ (−∞, 4) are real numbers if a mapping φ : E→ Fρ, such that

ρ(Φ(v1, v2, v3, v4)) ≤ λ

(
4

∑
j=1
‖vj‖α

)
, ∀v1, v2, v3, v4 ∈ E,

then there is an unique QM Q : E→ Fρ having

ρ(φ(v)−Q(v)) ≤ λ‖v‖α

b4 − bα
, ∀v ∈ E,

where v 6= 0 if α < 0.

Corollary 6. Let b ≥ 3 be an integer. Suppose that a normed space E with ‖ · ‖. Any λ > 0 and
4α ∈ (−∞, 4) are real numbers, if a mapping φ : E→ Fρ such that

ρ(Φ(v1, v2, v3, v4)) ≤ λ

(
4

∑
j=1
‖vj‖4α +

4

∏
j=1
‖vj‖α

)
, ∀v1, v2, v3, v4 ∈ E,

then there is an unique QM Q : E→ Fρ having

ρ(φ(v)−Q(v)) ≤ λ‖v‖4α

b4 − b4α
, ∀v ∈ E,

where v 6= 0 if α < 0.

Proposition 3. Let a mapping ψ : E4 → [0, ∞) satisfy

lim
l→∞

ψ(blv1, blv2, blv3, blv4)

b4l = 0, and ψ(bv, 0, 0, 0) ≤ b4Lψ(v, 0, 0, 0),

for all v, v1, v2, v3, v4 ∈ E and for some L ∈ (0, 4). If a mapping φ : E→ Fρ satisfies Equation (7),
then there is an unique QM Q : E→ Fρ having

ρ(φ(v)−Q(v)) ≤ 1
b4(1− L)

ψ(v, 0, 0, 0), ∀v ∈ E.
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3.3. Stability of Quartic FE: Fixed-Point Method

Theorem 5. Let b ≥ 3 be an integer and a mapping ψ : E4 → [0,+∞) such that

lim
m→∞

1
b4m ψ(bmv1, bmv2, bmv3, bmv4) = 0,

and
ψ(bv1, bv2, bv3, bv4) ≤ b4Lψ(v1, v2, v3, v4), (12)

for all vi ∈ E; i = 1, 2, 3, 4, with 0 < L < 1. If an even mapping φ : E → Fρ with φ(0) = 0
satisfies

ρ(Φ(v1, v2, v3, v4)) ≤ ψ(v1, v2, v3, v4), (13)

for all vi ∈ E; i = 1, 2, 3, 4, then there is an unique QM Q4 : E→ Fρ having

ρ(Q4(v)− φ(v)) ≤ 1
b4(1− L)

ψ(v, 0, 0, 0), (14)

for all v ∈ E.

Proof. We define the set
Υ = {p : E→ Fρ},

and ρ is a function on Υ as

ρ(p) =: inf{λ > 0 : ρ(p(v)) ≤ λψ(v, 0, 0, 0), ∀ v ∈ E}.

Now, we need to demonstrate that the function ρ is a semi-convex modular on Υ.
Clearly, ρ holds conditions (a) and (b). So, it is enough to verify that ρ is semi-convex
modular. Given ε > 0, ∃ λ1 > 0 such that

ρ(p) ≤ λ1 < ρ(p) + ε.

Additionally,
ρ(p(v)) ≤ λ1ψ(v, 0, 0, 0),

for all v ∈ E. For any β ≥ 0, we have

ρ(βp(v)) ≤ βρ(p(v))

≤ βλ1ψ(v, 0, 0, 0),

so we obtain
ρ(βp) < βρ(p) + βε.

Since ε > 0 was arbitrary, from above, we find that ρ is semi-convex modular on Υ.
Next, we want to verify that Υρ is ρ-complete.

Suppose a sequence {pn} is ρ-Cauchy in Υρ. Given ε > 0, there is n0 ∈ N satisfies

ρ(pn − pm) < ε,

for all n, m ≥ n0. Thus, we have

ρ(pn(v)− pm(v)) ≤ εψ(v, 0, 0, 0), (15)

for all v ∈ E, and n, m ≥ n0. Therefore, a ρ-Cauchy sequence {pn(v)} in Fρ. As Fρ is
ρ-complete, {pn(v)} is convergent in Fρ ∀ v ∈ E.

Now, let us define a mapping p : E→ Fρ by

p(v) := lim
n→∞

pn(v), ∀v ∈ E.
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We arrive by taking into account Equation (15) that

ρ(pn(v)− p(v)) ≤ lim inf
m→∞

ρ(pn(v)− pm(v)) ≤ εψ(v, 0, 0, 0),

so
ρ(pn − p) ≤ ε, ∀n ≥ n0,

since ρ holds the Fatou property. Thus, {pn} ρ-converges and so Υρ is ρ-complete.
We now want to prove that ρ holds Fatou property. Suppose {pn} is ρ-convergent to

p ∈ Υρ.
For all ε > 0, consider a constant λn (n ∈ N) which is real such that

ρ(pn) ≤ λn < ρ(pn) + ε.

So
ρ(pn(v)) ≤ λnψ(v, 0, 0, 0),

for all v ∈ E. We know that ρ holds the Fatou property, so we obtain

ρ(p(v)) ≤ lim
n→∞

inf ρ(pn(v))

≤ lim
n→∞

inf λnψ(v, 0, 0, 0)

<
[

lim
n→∞

inf ρ(pn) + ε
]
ψ(v, 0, 0, 0).

Thus, we obtain

ρ(p) ≤ lim
n→∞

inf ρ(pn),

since ε > 0 was arbitrary. Hence, ρ also holds the Fatou property.
Let us define a mapping χ : Υρ → Υρ by

χp(v) =
1
b4 p(bv) (∀v ∈ E, p ∈ Υρ). (16)

Suppose p, q ∈ Υρ and λ ∈ [0, 1] with ρ(p − q) < λ (λ is an arbitrary constant).
Employing the definition of ρ, we write

ρ(p(v)− q(v)) ≤ λψ(v, 0, 0, 0), ∀v ∈ E.

Using Equations (12) and (16), we have

ρ

(
p(bv)

b4 − q(bv)
b4

)
≤ 1

b4 ρ(p(bv)− q(bv))

≤ 1
b4 λψ(bv, 0, 0, 0)

≤ λLψ(v, 0, 0, 0),

for all v ∈ E. Hence,
ρ(χp− χq) ≤ Lρ(p− q), ∀p, q ∈ Υρ

which means that χ is a ρ-contraction. Now, we will show that χ has a φ bounded orbit. In
Equation (13), we replace (v1, v2, v3, v4) with (v, 0, 0, 0) so that

ρ
(

φ(bv)− b4φ(v)
)
≤ ψ(v, 0, 0, 0),

(17)

⇒ ρ

(
φ(bv)

b4 − φ(v)
)
≤ 1

b4 ψ(v, 0, 0, 0), ∀v ∈ E.
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Replacing v with bv in inequality (17), we obtain

ρ

(
φ(b2v)

b4 − φ(bv)
)
≤ 1

b4 ψ(bv, 0, 0, 0),

(18)

⇒ ρ

(
φ(b2v)
b4(2)

− φ(bv)
b4

)
≤ 1

b4(2)
ψ(bv, 0, 0, 0), ∀v ∈ E.

By using Equations (17) and (18), we obtain

ρ

(
φ(b2v)
b4(2)

− φ(v)
)
≤ ρ

(
φ(b2v)
b4(2)

− φ(bv)
b4 +

φ(bv)
b4 − φ(v)

)
≤ ρ

(
φ(b2v)
b4(2)

− φ(bv)
b4

)
+ ρ

(
φ(bv)

b4 − φ(v)
)

≤ 1
b4(2)

ψ(bv, 0, 0, 0) +
1
b4 ψ(v, 0, 0, 0), ∀v ∈ E.

Clearly, by induction,

ρ

(
φ(bnv)

b4n − φ(v)
)
≤

n

∑
i=1

1
b4i ψ

(
3i−1v, 0, 0, 0

)
≤ 1

Lb4 ψ(v, 0, 0, 0)
n

∑
i=1

Li (19)

≤ 1
b4(1− L)

ψ(v, 0, 0, 0), ∀v ∈ E.

It follows from Equation (19) that

ρ

(
φ(bnv)

b4n − φ(bmv)
b4m

)
≤ 1

2
ρ

(
2

φ(bnv)
b4n − 2φ(v)

)
+

1
2

ρ

(
2

φ(bmv)
b4m − 2φ(v)

)
≤ k

2
ρ

(
φ(bnv)

b4n − φ(v)
)
+

k
2

ρ

(
φ(bmv)

b4m − φ(v)
)

≤ k
2

1
b4(1− L)

ψ(v, 0, 0, 0) +
k
2

1
b4(1− L)

ψ(v, 0, 0, 0)

≤ k
b4(1− L)

ψ(v, 0, 0, 0),

for n, m ∈ N and all v ∈ E. We conclude that by defining ρ,

ρ(χnφ− χmφ) ≤ k
b4(1− L)

.

This means that an orbit of χ at φ is bounded. The sequence of {χnφ} ρ-converges into
Q4 ∈ Υρ, according to Theorem 1.5 in [34]. Now, we have the ρ-contractivity of χ, where

ρ(χnφ− χQ4) ≤ Lρ
(

χn−1φ−Q4

)
.

Taking the limit n→ ∞ and apply ρ Fatou property, we get

ρ(χQ4 −Q4) ≤ lim inf
n→∞

ρ(χQ4 − χnφ)

≤ L lim inf
n→∞

ρ
(

Q4 − χn−1φ
)
= 0.



Mathematics 2022, 10, 1938 15 of 22

Thus, Q4 is a fixed point of χ. Replacing (v1, v2, v3, v4) by
(

blv1, blv2, blv3, blv4

)
in (13),

we obtain

ρ
(

Φ
(

blv1, blv2, blv3, blv4

))
≤ ψ

(
blv1, blv2, blv3, blv4

)
, ∀v1, v2, v3, v4 ∈ E.

Thus, we have

ρ

(
1

b4l Φ
(

blv1, blv2, blv3, blv4

))
≤ 1

b4l ψ
(

blv1, blv2, blv3, blv4

)
.

Letting l → ∞, we obtain

Q4(v1, v2, v3, v4) = 0, ∀v1, v2, v3, v4 ∈ E.

Theorem 1, Q4 is quartic. So, the inequality (19) gives (14).
Let Q

′
4 : E→ Fρ be an another QM that meets inequality (14) to prove the uniqueness

of Q4. Thus, Q
′
4 is a fixed point of χ, so

ρ
(

Q4 −Q
′
4

)
= ρ

(
χQ4 − χQ

′
4

)
≤ Lρ

(
Q4 −Q

′
4

)
.

This yields ρ
(

Q4 −Q
′
4

)
= 0. Consequently, Q4 = Q

′
4. which proves the uniqueness

of function Q4.

Corollary 7. Let b ≥ 3 be an integer and a mapping ψ : E4 → [0,+∞) such that

lim
l→∞

1
b4l ψ

(
blv1, blv2, blv3, blv4

)
= 0,

and
ψ(bv1, bv2, bv3, bv4) ≤ Lb4ψ(v1, v2, v3, v4), ∀v1, v2, v3, v4 ∈ E,

with 0 < L < 1. If φ : E→ F is an even mapping with φ(0) = 0 such that

‖Φ(v1, v2, v3, v4)‖ ≤ ψ(v1, v2, v3, v4),

for all vi ∈ E; i = 1, 2, 3, 4, so there is an unique QM Q4 : E→ F having

‖Q4(v)− φ(v)‖ ≤ 1
b4(1− L)

ψ(v, 0, 0, 0), ∀v ∈ E.

Remark 2. If we replace ψ(v1, v2, v3, v4) with α
(

∑4
i=1 ‖vi‖p

)
and taking L = bp−4 in the last

corollary, then we arrive at the stability result for the sum of norms as

‖Q4(v)− φ(v)‖ ≤ α‖v‖p

(b4 − bp)
, ∀v ∈ E.

where p (p < 4) and α are constants.

Theorem 6. Let b ≥ 3 be an integer. Suppose a mapping ψ : E4 → [0,+∞) satisfies

lim
m→∞

b4mψ
( v1

bm ,
v2

bm ,
v3

bm ,
v4

bm

)
= 0

and
ψ
(v1

b
,

v2

b
,

v3

b
,

v4

b

)
≤ L

b4 ψ(v1, v2, v3, v4), ∀v1, v2, v3, v4 ∈ E,
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with 0 < L < 1. If a mapping φ : E → Fρ is even with φ(0) = 0 such that the inequality (13)
holds, then there is an unique QM Q4 : E→ Fρ having

ρ(Q4(v)− φ(v)) ≤ L
b4(1− L)

ψ(v, 0, 0, 0), ∀v ∈ E. (20)

Proof. Consider the set
Υ = {p : E→ Fρ}.

Let ρ be a function on Υ, defined by

ρ(p) =: inf{λ > 0 : ρ(p(v)) ≤ λψ(v, 0, 0, 0), ∀ v ∈ E}.

We have the same evidence as Theorem 5:

(a) The function ρ is a convex modular on Υ.
(b) Υρ is ρ-complete.
(c) ρ holds the Fatou property.

Let us define a mapping χ : Υρ→Υρ
for all v ∈ E and for p ∈ Υρ by

χp(v) = b4 p
(v

b

)
.

Let p, q ∈ Υρ and λ ∈ [0, 1] with ρ(p− q) < λ (λ is an arbitrary constant). Conse-
quently,

ρ(p(v)− q(v)) ≤ λψ(v, 0, 0, 0),

for all v ∈ E. We obtain by assumption and the above inequality that

ρ
(

b4 p
(v

b

)
− b4q

(v
b

))
≤ k4ρ

(
p
(v

b

)
− q
(v

b

))
≤ k4λψ

(v
b

, 0, 0, 0
)

≤ λLψ(v, 0, 0, 0),

for all v ∈ E. Hence,
ρ(χp− χq) ≤ Lρ(p− q), p, q ∈ Υρ,

which proves that χ is a ρ-contraction.
We will now show that χ has a bounded orbit at φ. Setting (v1, v2, v3, v4) by (v, 0, 0, 0)

in Equation (13), we obtain

ρ
(

b4φ(v)− φ(bv)
)
≤ ψ(v, 0, 0, 0), ∀v ∈ E. (21)

It follows by replacing v with v
b in Equation (21) that

ρ
(

b4φ
(v

b

)
− φ(v)

)
≤ ψ

(v
b

, 0, 0, 0
)

, ∀v ∈ E. (22)

Again, replacing v by v
b in Equation (22), we obtain

ρ
(

b4φ
( v

b2

)
− φ

(v
b

))
≤ ψ

( v
b2 , 0, 0, 0

)
, ∀v ∈ E. (23)

Considering Equations (21)–(23), for all v ∈ E, we obtain

ρ
(

b4(2)φ
( v

b2

)
− φ(v)

)
≤ ρ

(
b4(2)φ

( v
b2

)
− b4φ

(v
b

))
+ ρ
(

b4φ
(v

b

)
− φ(v)

)
≤ k4ρ

(
b4φ
( v

b2

)
− φ

(v
b

))
+ ρ
(

b4φ
(v

b

)
− φ(v)

)
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≤ b4ψ
( v

b2 , 0, 0, 0
)
+ ψ

(v
b

, 0, 0, 0
)

,

We can easily determine by induction that

ρ
(

b4nφ
( v

bn

)
− φ(v)

)
≤ 1

b4

n

∑
i=1

b4iψ
( v

bi , 0, 0, 0
)

≤ 1
b4 ψ(v, 0, 0, 0)

n

∑
i=1

Li (24)

≤ L
b4(1− L)

ψ(v, 0, 0, 0),

for all v ∈ E. Equation (24) gives

ρ
(

b4nφ
( v

bn

)
− b4mφ

( v
bm

))
≤ 1

2
ρ
(

2(b4n)φ
( v

bn

)
− 2φ(v)

)
+

1
2

ρ
(

2(b4m)φ
( v

bm

)
− 2φ(v)

)
≤ kL

b4(1− L)
ψ(v, 0, 0, 0),

for all v ∈ E, and all n, m ∈ N. We can conclude that by defining ρ,

ρ(χnφ− χmφ) ≤ kL
b4(1− L)

.

This means that the χ orbit is limited to φ. The sequence {χnφ} ρ-converges to Q4 ∈ Υρ

from Theorem 1.5 in [31].
We have from the ρ-contractivity of χ that

ρ(χnφ− χQ4) ≤ Lρ
(

χn−1φ−Q4

)
.

Letting n→ ∞ together with Fatou property, we have

ρ(χQ4 −Q4) ≤ lim inf
n→∞

ρ(χQ4 − χnφ)

≤ L lim inf
n→∞

ρ
(

Q4 − χn−1φ
)
= 0.

Therefore, the function Q4 is a fixed point of χ. Replacing (v1, v2, v3, v4) with(
v1
bl , v2

bl , v3
bl , v4

bl

)
in inequality (13), we obtain

ρ
(

Φ
(

b−lv1, b−lv2, b−lv3, b−lv4

))
≤ ψ

(
b−lv1, b−lv2, b−lv3, b−lv4

)
,

for all v1, v2, v3, v4 ∈ E. Therefore,

ρ
(

b4lΦ
(v1

bl ,
v2

bl ,
v3

bl ,
v4

bl

))
≤ k4lψ

(v1

bl ,
v2

bl ,
v3

bl ,
v4

bl

)
.

Passing to the limit l → ∞, we obtain

Q4(v1, v2, v3, v4) = 0, ∀v1, v2, v3, v4 ∈ E.

Therefore, Q4 is quartic from Theorem 7. Using the inequality (24), we obtain the
inequality (20).

It is only left to show the uniqueness of Q4. For this, consider another QM Q
′
4 : E→ Fρ

which satisfies the inequality (14). Then, Q
′
4 is a fixed point of χ. So, we write

ρ
(

Q4 −Q
′
4

)
= ρ

(
χQ4 − χQ

′
4

)
≤ Lρ

(
Q4 −Q

′
4

)
,
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which implies that ρ
(

Q4 −Q
′
4

)
= 0 or Q4 = Q

′
4.

Corollary 8. Let b ≥ 3 be an integer and also let ψ : E4 → [0,+∞) be a mapping such that

lim
l→∞

b4lψ
(v1

bl ,
v2

bl ,
v3

bl ,
v4

bl

)
= 0,

and
ψ
(v1

b
,

v2

b
,

v3

b
,

v4

b

)
≤ L

b4 ψ(v1, v2, v3, v4),

for all vi ∈ E; i = 1, 2, 3, 4, with 0 < L < 1. If a mapping φ : E → F is even with φ(0) = 0
satisfies the inequality (7), then there is an unique QM Q4 : E→ F satisfying

‖Q4(v)− φ(v)‖ ≤ L
b4(1− L)

ψ(v, 0, 0, 0), ∀v ∈ E.

Remark 3. If we replace ψ(v1, v2, v3, v4) with α
(

∑4
i=1 ‖vi‖p

)
and taking L = b4−p in Corol-

lary 8, we fairy have the stability results for the sum of norms as follows:

‖Q4(v)− φ(v)‖ ≤ α‖v‖p

(bp − b4)
, ∀v ∈ E,

where p (p > 4) and α are constants.

3.4. Illustrative Examples

Here, in this section, we investigate a suitable example to verify that the stability
of quartic FE (4) fails for a singular case. Following by the example of Gajda (see [37]),
we examine the following counter-example which proves the instability in a particular
conditions b = 3 and α = 4 in Corollaries 3 and 5 of Equation (4).

Remark 4. If a mapping φ : R→ E satisfies the functional Equation (4), then

(C1) φ(mc/4v) = mcφ(v), for all v ∈ R, m ∈ Q and c ∈ Z,
(C2) φ(v) = v4φ(1), for all v ∈ R if φ is continuous,

hold.

Example 1. Consider φ : R→ R defined as

φ(v) =
∞

∑
p=0

ψ(3pv)
34p , (25)

where

ψ(v) =

{
λv4, −1 < v < 1
λ, else.

Suppose that the function φ defined in Equation (25) which satisfies

|Φ(v1, v2, v3, v4)| ≤
312(360)λ

80

(
4

∑
j=1
|vj|4

)
, (26)

for all v1, v2, v3, v4 ∈ R. We here obtain that there does not exist a QM Q : R→ R satisfying

|φ(v)−Q(v)| ≤ δ|v|4, (27)

for all v ∈ R,, where λ and δ are constants.
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Clearly, φ is bounded by 34

80 λ on R. If ∑4
j=1 |vj|4 ≥ 1

34 or 0, then

|Φ(v1, v2, v3, v4)| < (360)
34

80
λ.

Thus, the inequality (26) is valid. Next, suppose that

0 <
4

∑
j=1
|vj|4 <

1
34 .

Then, there is an integer l > 0 that satisfies

1
34(l+2)

≤
4

∑
j=1
|vj|4 <

1
34(l+1)

. (28)

So, 34l |v1| < 1
34 , 34l |v2| < 1

34 , 34l |v3| < 1
34 , 34l |v4| < 1

34 , and

3tv1, 3tv2, 3tv3, 3tv4

3tv1 + 3tv2 + 3tv3 + 3tv4

4

∑
i=1

(
−3tvi +

4

∑
j=1

3tvj

)
∑

1≤i<j<k≤4

(
3t(vi + vj + vk)

)
∑

1≤i<j≤4

(
3t(vi + vj)

)
∑

1≤i<j≤4

(
3t(vi − vj)

)



∈]− 1, 1[, t = 0, 1, · · · , l − 1.

Additionally, for t = 0, 1, · · · , l − 1,

Ψ(v1, v2, v3, v4) = 4ψ

(
4

∑
j=1

vj

)
+

4

∑
i=1;i 6=j

ψ

(
−vi + ∑

1≤j≤4
vj

)

−4 ∑
1≤i<j<k≤4

ψ
(
vi + vj + vk

)
+

4

∑
i=1

ψ(3vi)

+2

[
∑

1≤i<j≤4
ψ
(
vi + vj

)
− ψ

(
vi − vj

)]
− 77

4

∑
i=1

ψ(vi)

= 0.

Next, from inequality (28), we obtain that

|Φ(v1, v2, v3, v4)| ≤
∞

∑
t=0

1
34t |Ψ(3tv1, 3tv2, 3tv3, 3tv4)|

≤
∞

∑
t=l

1
34t (360)λ.

It follows from the inequality (28) that

|Φ(v1, v2, v3, v4)| ≤
312(360)λ

80

(
4

∑
j=1
|vj|4

)
.
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So, φ satisfies (26). On the contrary, consider there is a quartic solution Q : R→ R which
satisfies the inequality (27). Since φ is continuous and bounded, for all v ∈ R, Q is bounded in an
open interval and continuous.

Considering Remark 4, we observe that Q should be Q(v) = cv4, v ∈ R. So, we obtain

|χ(v)| ≤ (δ + |c|)|v|4,

for v ∈ R. Choosing l > 0 such that lλ > δ + |c|. If v ∈
(

0, 1
3l−1

)
, then 3tv ∈ (0, 1) for all

t = 0, 1, · · · , l − 1, one obtains

φ(v) =
∞

∑
t=0

ψ(3tv)
34t ≥

l−1

∑
t=0

λ(3tv)4

34t = lλv4 > (δ + |c|) |v4|,

which is contradictary. Thus, Equation (4) is not stable which proves the instability in a particular
conditions b = 3 and α = 4 in Corollaries 3 and 5 of Equation (4)

The following counter-example is similar to above example.

Example 2. Consider φ : R→ R defined as

φ(v) =
∞

∑
p=0

ψ(3pv)
34p , (29)

where

ψ(v) =

{
λv4, −1 < v < 1
λ, else.

Suppose that the function φ defined in Equation (29) which satisfying

|Φ(v1, v2, v3, v4)| ≤
312(360)λ

80

(
4

∑
j=1
|vj|4

)
,

for all v1, v2, v3, v4 ∈ R. We show that a QM Q : R→ R does not exist that satisfies

|φ(v)−Q(v)| ≤ δ|v|4,

for all v ∈ R, where λ and δ are constants. Following the lines of last example, one proves the
instability in a particular conditions b = 3 and α = 1 in Corollaries 4 and 6 of Equation (4).

4. Conclusions and Discussion

Many mathematicians obtain the stability results of various kinds of additive, quadratic,
and cubic functional equations in various spaces. In our investigations, we first defined a
new kind of quartic FN in the first section of this paper and obtained the general solution of
our newly defined quartic FN. Additionally, we explored the stability results of this quartic
FN in the setting of modular space using Hyers’ technique by taking into our account
three cases, that are: without utilising the Fatou property, without using the ∆b-condition,
and without using the ∆b-condition and Fatou property. Moreover, by taking into our
account the Fatou property and fixed-point approach, we established some stability re-
sults of our quartic FN in the framework of modular spaces. In addition, an appropriate
counter-example is provided to demonstrate the non-stability of the singular case.

It is worth mentioning that one can further determine the stability results of this quartic
FN in various frameworks, namely, quasi-β-normed spaces, fuzzy normed space, non-
Archimedean spaces, random normed spaces, probabilistic normed spaces, intuitionistic
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fuzzy normed space and so on. The findings and techniques used in this study might be
valuable to other researchers who want to conduct further work in this area.
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