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Abstract: The purpose of this article is to obtain the sharp estimates of the first four initial logarithmic
coefficients for the class BT s of bounded turning functions associated with a petal-shaped domain.
Further, we investigate the sharp estimate of Fekete-Szegö inequality, Zalcman inequality on the
logarithmic coefficients and the Hankel determinant H2,1

(
Ff /2

)
and H2,2

(
Ff /2

)
for the class BT s

with the determinant entry of logarithmic coefficients.
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1. Introduction and Definitions

For a good sense of the terminology used throughout our primary results, some
basic pertinent information from Geometric Function Theory must always be given and
explained. Let us start with the letter A, which stands for the normalised analytic functions
family and S for the normalised univalent functions family. These fundamental concepts
are defined in the open unit disc D = {z ∈ C : |z| < 1} and are provided by the set builder
in the form of

A =

{
f ∈ H(D) : f (z) = z +

∞

∑
l=2

alzl

}
, (1)

whereH(D) represents the family of analytic functions, and

S = { f ∈ A : f is univalent in D }.

Recently, Aleman and Constantin [1] gave a beautiful interaction between univalent
function theory and fluid dynamics. In fact, they demonstrated a simple method that
shows how to use a univalent harmonic map to obtain explicit solutions of incompressible
two-dimensional Euler equations. The logarithmic coefficients βn of f ∈ S are given by the
below formula

Ff (z) := log
(

f (z)
z

)
= 2

∞

∑
n=1

βnzn for z ∈ D.

These coefficients contribute significantly, in many estimations, to the theory of univa-
lent functions. In 1985, de Branges [2] obtained that for n ≥ 1,

n

∑
l=1

l(n− l + 1)|βn|2 ≤
n

∑
l=1

n− l + 1
l

,
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and the equality holds if and only if f takes the form z/
(
1− eiθz

)2 for some θ ∈ R. Clearly,
this inequality gives the famous Bieberbach–Robertson–Milin conjectures about Taylor-
coefficients of f belonging to S in its most general form. For more about the proof of
de Brange’s result, we refer to [3–5]. In 2005, Kayumov [6] was able to solve Brennan’s
conjecture for conformal mappings by considering the logarithmic coefficients. We list a few
papers that have conducted significant work on the study of logarithmic coefficients [7–14].

For the given functions g1, g2 ∈ A, the subordination between g1 and g2 (mathemati-
cally written as g1 ≺ g2), if an analytic function v appears in D with the restriction v(0) = 0
and |v(z)| < 1 in such a manner that f (z) = g(v(z)) hold. Moreover, if g2 in D is univalent,
the following connection holds:

g1(z) ≺ g2(z), (z ∈ D)

if and only if
g1(0) = g2(0) & g1(D) ⊂ g2(D).

By employing the principle of subordination, Ma and Minda [15] considered a unified
version of the class S∗(φ) in 1992, which is stated below as

S∗(φ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ φ(z) for z ∈ D

}
,

where φ is a univalent function with φ′(0) > 0 and <φ > 0. Moreover, the region φ(D) is
star-shaped about the point φ(0) = 1 and is symmetric along the real line axis. In the past
few years, numerous sub-families of the collection S have been examined as particular
choices of the class S∗(φ). For example,

(i) If we choose φ(z) = 1+(1−2ξ)z
1−z with 0 ≤ ξ < 1, then we achieved the class S∗(ξ) :=

S∗
(

1+(1−2ξ)z
1−z

)
of starlike function family of order ξ. Furthermore, S∗ := S∗

(
1+z
1−z

)
is

the familiar starlike function family.
(ii) The family S∗L := S∗(φ(z)) with φ(z) =

√
1 + z was developed in [16] by Sokól and

Stankiewicz. The function φ(z) =
√

1 + z maps the region D onto the the image
domain, which is bounded by |w2 − 1| < 1.

(iii) By selecting φ(z) = 1 + sin z, the class S∗(φ(z)) lead to the family S∗sin, which was
explored in [17], while S∗e ≡ S∗(ez) has been produced in the article [18].

(iv) The family S∗cos := S∗(cos(z)) and S∗cosh := S∗(cosh(z)) were contributed, respec-
tively, by Raza and Bano [19], and Alotaibi et al. [20]. In both the papers, the authors
studied good properties of these families.

For given parameters q, n ∈ N = {1, 2, . . .}, the Hankel determinant Hq,n( f ) was
defined by Pommerenke [21,22] for a function f ∈ S of the form Equation (1), which is
given by

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣. (2)

The growth of Hq,n( f ) has been investigated for different sub-collections of univalent
functions. Specifically, the absolute sharp bounds of the functional H2,2( f ) = a2a4 − a2

3
were found in [23,24] for each of the sets C, S∗ and R, where the family R contained
functions of bounded turning. This determinant has also been recently studied for two
new subfamilies of bi-univalent functions in [25,26]. However, the exact estimate of this
determinant for the family of close-to-convex functions is still undetermined [27]. Later on,
many authors published their work regarding the upper bounds of the Hankel determinant
for different sub-collections of univalent functions, see [28–37].
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According to the definition, it is not hard to calculate that for f ∈ S , its logarithmic
coefficients are given by

γ1 =
1
2

a2 (3)

γ2 =
1
2

(
a3 −

1
2

a2
2

)
(4)

γ3 =
1
2

(
a4 − a2a3 +

1
3

a3
2

)
(5)

γ4 =
1
2

(
a5 − a2a4 + a2

2a3 −
1
2

a2
3 −

1
4

a4
2

)
. (6)

Recently, Kowalczyk and Lecko [38,39] proposed the study of the Hankel determinant
Hq,n

(
Ff /2

)
, whose elements are logarithmic coefficients of f , that is

Hq,n

(
Ff /2

)
=

∣∣∣∣∣∣∣∣∣
γn γn+1 . . . γn+q−1
γn+1 γn+2 . . . γn+q
...

... . . .
...

γn+q−1 γn+q . . . γn+2q−2

∣∣∣∣∣∣∣∣∣. (7)

It is observed that H2,1

(
Ff /2

)
= γ1γ3 − γ2

2 is just corresponding to the well-known

functional H2,1( f ) = a3− a2
2 over the class S or its subclasses. Some basic calculations gives

the expressions of Hq,n

(
Ff /2

)
in the following, which we will discuss in the present paper.

H2,1

(
Ff /2

)
= γ1γ3 − γ2

2, (8)

H2,2

(
Ff /2

)
= γ2γ4 − γ2

3. (9)

In [40], Kumar and Arora introduce an interesting subclass of the starlike function,
defined by

S∗ρ :=
{

f ∈ A :
z f ′(z)

f (z)
≺ 1 + sinh−1 z (z ∈ D)

}
. (10)

Let φ(z) = 1+ sinh−1 z. It can be noted that φ(z) = 1+ ln
(

z +
√

1 + z2
)

and is convex inD.
In geometry, it maps the unit disk onto a petal-shaped domain Ωρ = {ω ∈ C : |sinh(ω− 1)| < 1}
symmetric about the line<ω = 1. Using this function, Barukab and his coauthors [41] considered a
subclass of the bounded turning function, given by

BT s =
{

f ∈ A : f ′(z) ≺ 1 + sinh−1 z (z ∈ D)
}

. (11)

In the current article, our main goal is to calculate the sharp logarithmic coefficient-
related problems for the class BT s of bounded turning functions linked with the petal-
shaped domain. The sharp bounds of Fekete-Szegö inequality, Zalcman inequality of
logarithmic coefficients, H2,1

(
Ff /2

)
and H2,2

(
Ff /2

)
are obtained for the class BT s.

2. A Set of Lemmas

Let P represent the class of all functions p that are holomorphic in D with <(p(z)) > 0
and has series representation given in the form of

p(z) = 1 +
∞

∑
n=1

cnzn (z ∈ D). (12)

To prove the main results, we need the following lemmas.
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Lemma 1 (see [42]). Let p ∈ P and be the form of (12). Then for x, τ, ρ ∈ D,

2c2 = c2
1 + x

(
4− c2

1

)
, (13)

4c3 = c3
1 + 2

(
4− c2

1

)
c1x− c1

(
4− c2

1

)
x2 + 2

(
4− c2

1

)(
1− |x|2

)
τ, (14)

8c4 = c4
1 +

(
4− c2

1

)
x
[
c2

1

(
x2 − 3x + 3

)
+ 4x

]
− 4
(

4− c2
1

)(
1− |x|2

)
[
c(x− 1)τ + xτ2 −

(
1− |τ|2

)
ρ
]
. (15)

Lemma 2. If p ∈ P and be the form of (12), we obtain

|cn| ≤ 2 (n ≥ 1). (16)

and

|cn+k − µcnck| ≤ 2 max{1, |2µ− 1|} =
{

2 f or 0 ≤ µ ≤ 1;
2|2µ− 1| otherwise.

. (17)

Also, If B ∈ [0, 1] and B(2B− 1) ≤ D ≤ B, we obtain∣∣∣c3 − 2Bc1c2 + Dc3
1

∣∣∣ ≤ 2. (18)

The inequalities in (16)–(18) are taken from [43–45], respectively.

Lemma 3 (see [46]). Let α, β, r and a satisfy the inequalities 0 < α < 1, 0 < a < 1 and

8a(1− a)
(
(αβ− 2r)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 ≤ 4aα2(1− α)2(1− a). (19)

If p ∈ P is of the form (12), then∣∣∣∣rc4
1 + ac2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣ ≤ 2.

3. Coefficient Inequalities for the Class BT s

We begin this section by finding the absolute values of the first four initial logarithmic
coefficients for the function of class BT s.

Theorem 1. If f ∈ BT s and has the series representation (1), then

|γ1| ≤
1
4

, (20)

|γ2| ≤
1
6

, (21)

|γ3| ≤
1
8

, (22)

|γ4| ≤
1

10
. (23)

These bounds are the best possible.

Proof. Let f ∈ BT s. Then, (11) can be written in the form of a Schwarz function, as

f ′(z) = 1 + sinh−1(z), (z ∈ D). (24)
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If p ∈ P , and it may be written in terms of Schwarz function w(z) as

p(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + c3z3 + · · · ,

equivalently,

w(z) =
p(z)− 1
p(z) + 1

=
c1z + c2z2 + c3z3 + c4z4 + · · ·

2 + c1z + c2z2 + c3z3 + c4z4 + · · · . (25)

From (1), we obtain

f ′(z) = 1 + 2a2z + 3a3z2 + 4a4z3 + 5a5z4 + · · · . (26)

By simplification and using the series expansion of (25), we obtain

1 + sinh−1(w(z)) = 1 +
(

1
2

c1

)
z +

(
1
2

c2 −
1
4

c2
1

)
z2 +

(
1
2

c3 −
1
2

c1c2 +
5
48

c3
1

)
z3

+

(
− 1

32
c4

1 −
1
4

c2
2 −

1
2

c1c3 +
5

16
c2

1c2 +
1
2

c4

)
z4 + · · · . (27)

Comparing (26) and (27), we obtain

a2 =
1
4

c1,

a3 =
1
6

c2 −
1
12

c2
1,

a4 =
1
8

c3 −
1
8

c1c2 +
5

192
c3

1,

a5 = − 1
160

c4
1 −

1
20

c2
2 −

1
10

c1c3 +
5

80
c2

1c2 +
1

10
c4. (28)

Plugging (28) in (3)–(6), we obtain

γ1 =
1
8

c1, (29)

γ2 =
1

12
c2 −

11
192

c2
1, (30)

γ3 =
5

192
c3

1 −
1
12

c1c2 +
1
16

c3, (31)

γ4 =
1

20
c4 −

23
720

c2
2 −

1033
92160

c4
1 +

17
288

c2
1c2 −

21
320

c1c3. (32)

For γ1, implementing (16), in (29), we obtain

|γ1| ≤
1
4

.

For γ2, we can write (30), as

γ2 =
1

12

(
c2 −

11
16

c2
1

)
.

Using (17) we have

|γ2| ≤
1
6

.

For γ3, we can write (31) as

|γ3| =
1
16

∣∣∣∣(c3 − 2
(

2
3

)
c1c2 +

5
12

c3
1

)∣∣∣∣.
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From (18), we have

0 ≤ B =
2
3
≤ 1, B =

2
3
≥ D =

5
12

,

and
B(2B− 1) =

2
9
≤ D =

5
12

.

Application of triangle inequality plus (18) lead us to

|γ3| ≤
1
8

.

For γ4, we can rewrite (32) as

γ4 = − 1
20

(
1033
4608

c4
1 +

(
23
36

)
c2

2 + 2
(

21
32

)
c1c3 −

3
2

(
85

108

)
c2

1c2 − c4

)
.

= − 1
20

(
rc4

1 + ac2
2 + 2αc1c3 −

3
2

βc2
1c2 − c4

)
, (33)

where
r =

1033
4608

, a =
23
36

, α =
21
32

, β =
85

108
,

are such that

8a(1− a)
(
(αβ− 2r)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 ≤ 4aα2(1− α)2(1− a),

0 < α < 1, 0 < a < 1, therefore by (19) and (33), we have

|γ4| ≤
1

10
.

These outcomes are best possible. For this, we consider a function

f ′n(z) = 1 + sinh−1(zn),

where n = 1, 2, 3, 4. Thus, we have

f1(z) =
∫ z

0

(
1 + sinh−1(t)

)
dt = z +

1
2

z2 − 1
24

z4 + · · · ,

f2(z) =
∫ z

0

(
1 + sinh−1

(
t2
))

dt = z +
1
3

z3 − 1
42

z7 + · · · ,

f3(z) =
∫ z

0

(
1 + sinh−1

(
t3
))

dt = z +
1
4

z4 − 1
60

z10 + · · · ,

f4(z) =
∫ z

0

(
1 + sinh−1

(
t4
))

dt = z +
1
5

z5 − 1
78

z13 + · · · .

Theorem 2. If f ∈ BT s is of the form Equation (1) , then∣∣∣γ2 − λγ2
1

∣∣∣ ≤ max
{

1
6

,
∣∣∣∣3|λ|+ 3

48

∣∣∣∣}, for λ ∈ C.

This inequality is sharp.

Proof. Employing (29), and (30), we may write∣∣∣γ2 − λγ2
1

∣∣∣ = ∣∣∣∣ 1
12

c2 −
11
192

c2
1 −

λ

64
c2

1

∣∣∣∣.
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Application of (17), leads us to∣∣∣γ2 − λγ2
1

∣∣∣ ≤ 2
12

max
{

1,
∣∣∣∣3λ + 11

8
− 1
∣∣∣∣}.

After the simplification, we obtain∣∣∣γ2 − λγ2
1

∣∣∣ ≤ max
{

1
6

,
∣∣∣∣3|λ|+ 3

48

∣∣∣∣}.

The required result is sharp and is determined by using (3) and (4) and

f2(z) =
∫ z

0

(
1 + sinh−1

(
t2
))

dt = z +
1
3

z3 − 1
42

z7 + · · · .

Theorem 3. If f ∈ BT s has the form of Equation (1), then

|γ1γ2 − γ3| ≤
1
8

.

This inequality is sharp.

Proof. Using (29)–(31), we have

|γ1γ2 − γ3| =
1

16

∣∣∣∣c3 − 2
(

3
4

)
c1c2 +

17
32

c3
1

∣∣∣∣.
From (18), we have

0 ≤ B =
3
4
≤ 1, B =

3
4
≥ D =

17
32

,

and
B(2B− 1) =

3
8
≤ D =

17
32

.

Using (18), we obtain

|γ1γ2 − γ3| ≤
1
8

.

This result is the best possible and is obtained by using (3)–(5) and

f3(z) =
∫ z

0

(
1 + sinh−1

(
t3
))

dt = z +
1
4

z4 − 1
60

z10 + · · · .

Theorem 4. Let f ∈ BT s be of the form Equation (1). Then∣∣∣γ4 − γ2
2

∣∣∣ ≤ 1
10

.

This inequality is the best possible.

Proof. From (30) and (32), we obtain∣∣∣γ4 − γ2
2

∣∣∣ = ∣∣∣∣ 2671
184320

c4
1 −

7
180

c2
2 −

21
320

c1c3 +
79

1152
c2

1c2 +
1
20

c4

∣∣∣∣.
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After simplifying we have∣∣∣γ4 − γ2
2

∣∣∣ = 1
20

∣∣∣∣2671
9216

c4
1 +

7
9

c2
2 + 2

(
21
32

)
c1c3 −

3
2

(
395
432

)
c2

1c2 − c4

∣∣∣∣. (34)

Comparing the right side of (34) with∣∣∣∣rc4
1 + ac2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣, (35)

where
r =

2671
9216

, a =
7
9

, α =
21
32

, β =
395
432

,

are such that

8a(1− a)
(
(αβ− 2r)2 + (α(a + α)− β)2

)
+ α(1− α)(β− 2aα)2 ≤ 4aα2(1− α)2(1− a),

0 < α < 1, 0 < a < 1, therefore by Equations (19) and (35), we have∣∣∣γ4 − γ2
2

∣∣∣ ≤ 1
10

.

This required inequality is sharp and is determined by using Equations (4) and (6) and

f4(z) =
∫ z

0

(
1 + sinh−1

(
t4
))

dt = z +
1
5

z5 − 1
78

z13 + · · · .

4. Hankel Determinant with Logarithmic Coefficients for the Class BT s

Theorem 5. If f belongs to BT s, then∣∣∣H2,1

(
Ff /2

)∣∣∣ = ∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
36

.

The inequality is sharp.

Proof. From (29)–(31),we have

H2,1

(
Ff /2

)
= − 1

36864
c4

1 +
1

128
c1c3 −

1
1152

c2
1c2 −

1
144

c2
2.

Using (13) and (14) to express c2 and c3 in terms of c1 and, noting that without loss in
generality we can write c1 = c, with 0 ≤ c ≤ 2, we obtain∣∣∣H2,1

(
Ff /2

)∣∣∣ =

∣∣∣∣− 1
4096

c4 − 1
512

c2x2
(

4− c2
)
− 1

576
x2
(

4− c2
)2

+
1

256
c
(

4− c2
)(

1− |x|2
)

τ

∣∣∣∣,
with the aid of the triangle inequality and replacing |τ| ≤ 1, |x| = b, where b ≤ 1 and
taking c ∈ [0, 2]. So∣∣∣H2,1

(
Ff /2

)∣∣∣ ≤ 1
4096

c4 +
1

512
c2b2

(
4− c2

)
+

1
576

b2
(

4− c2
)2

+
1

256
c
(

4− c2
)(

1− b2
)

:= φ(c, b) .
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It is a simple exercise to show that ∂φ
∂b ≥ 0 on [0, 1], so that φ(c, b) ≤ φ(c, 1). Putting

b = 1 gives∣∣∣H2,1

(
Ff /2

)∣∣∣ ≤ 1
4096

c4 +
1

512
c2
(

4− c2
)
+

1
576

(
4− c2

)2
:= φ(c, 1).

Since ∂φ(c,1)
∂c < 0, so φ(c, 1) is a decreasing function, and obtains its maximum value at

c = 0 is ∣∣∣H2,1

(
Ff /2

)∣∣∣ ≤ 1
36

.

The required Hankel determinant is sharp and is obtained by using (3)–(5) and

f2(z) =
∫ z

0

(
1 + sinh−1

(
t2
))

dt = z +
1
3

z3 − 1
42

z7 + · · · .

Theorem 6. If f belongs to BT s, and has the form Equation (1). Then∣∣∣H2,2

(
Ff /2

)∣∣∣ = ∣∣∣γ2γ4 − γ2
3

∣∣∣ ≤ 1
64

.

This result is the best possible.

Proof. The H2,2

(
Ff /2

)
can be written as

H2,2

(
Ff /2

)
= γ2γ4 − γ2

3.

Putting (30)–(32), with c1 = c we obtain

H2,2

(
Ff /2

)
=

1
17694720

(
−637c6 + 432c4c2 + 8928c3c3 − 3456c2c2

2 − 50688c2c4

+87552cc2c3 − 47104c3
2 + 73728c2c4 − 69120c2

3

)
. (36)

Let w = 4− c2 in (13)–(15). Now using the simplified form of these lemmas, we obtain

432c4c2 = 216c6 + 216c4wx,

8928c3c3 = −2232c4wx2 + 4464c3w
(

1− |x|2
)

τ + 4464c4xw + 2232c6,

3456c2c2
2 = 864c6 + 1728c4wx + 864c2w2x2,

50688c2c4 = 6336c6 + 6336c4wx3 − 19008c4wx2 + 19008c4xw + 25344wc2x2

−25344c3w
(

1− |x|2
)

τx− 25344c2w
(

1− |x|2
)

xτ2 + 25344c2w(
1− |x|2

)(
1− |τ|2

)
ρ + 25344c3w

(
1− |x|2

)
τ,

87552cc2c3 = −10944x3w2c2 − 10944c4wx2 + 21888cxw2
(

1− |x|2
)

τ

+21888c2x2w2 + 21888c3w
(

1− |x|2
)

τ + 32832c4xw + 10944c6,

47104c3
2 = 5888c6 + 17664c4wx + 17664c2w2x2 + 5888w3x3,
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73728c2c4 = 4608c6 + 4608c4wx3 − 13824c4wx2 + 18432c4xw + 18432wc2x2

−18432c3w +
(

1− |x|2
)

τx− 18432c2w
(

1− |x|2
)

xτ2 + 18432c2w(
1− |x|2

)(
1− |τ|2

)
ρ + 18432c3w

(
1− |x|2

)
τ + 4608x4w2c2

−13824x3w2c2 + 13824c2x2w2 + 18432x3w2 − 18432x2w2(
1− |x|2

)
cτ − 18432xw2x

(
1− |x|2

)
xτ2 + 18432xw2

(
1− |x|2

)
(

1− |τ|2
)

ρ + 18432cxw2
(

1− |x|2
)

τ,

69120c2
3 = 4320x4w2c2 − 17280x2w2

(
1− |x|2

)
cτ − 17280x3w2c2 − 8640c4wx2

+17280w2
(

1− |x|2
)2

τ2 + 34560cxw2
(

1− |x|2
)

τ + 17280c2x2w2

+17280c3w
(

1− |x|2
)

τ + 17280c4xw + 4320c6.

Putting the above expressions in (36), we obtain,

H2,3( f ) =
1

17694720

{
−5888x3w3 + 18432x3w2 − 17280w2

(
1− |x|2

)2
τ2

+264c4xw + 648c4wx2 − 96c2x2w2 − 6912wc2x2 − 1728c4wx3

−7488x3w2c2 + 288x4w2c2 + 6912c3w
(

1− |x|2
)

τx + 6912c2w(
1− |x|2

)
xτ2 − 6912c2w

(
1− |x|2

)(
1− |τ|2

)
ρ + 5760cxw2(

1− |x|2
)

τ − 1152x2w2
(

1− |x|2
)

cτ − 18432xw2
(

1− |x|2
)

xτ2

+18432xw2
(

1− |x|2
)(

1− |τ|2
)

ρ− 45c6 + 2160c3w
(

1− |x|2
)

τ
}

.

Since w = 4− c2, it follows that

H2,2

(
Ff /2

)
=

1
17694720

(
r1(c, x) + r2(c, x)τ + r3(c, x)τ2 + r4(c, x, τ)ρ

)
,

where ρ, x, τ ∈ D, and

r1(c, x) = −45c6 +
(

4− c2
)[(

4− c2
)(
−5120x3 − 1600c2x3 − 96c2x2 + 288c2x4

)
−6912c2x2 + 264c4x + 648c4x2 − 1728c4x3

]
,

r2(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−1152cx2 + 5760cx

)
+ 6912c3x + 2160c3

]
,

r3(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−1152|x|2 − 17280

)
+ 6912c2x

]
,

r4(c, x, τ) =
(

4− c2
)(

1− |x|2
)(

1− |τ|2
)[
−6912c2 + 18432x

(
4− c2

)]
.

Now, by using |x| = x, |τ| = y and utilizing the fact |ρ| ≤ 1, we obtain∣∣∣H2,2

(
Ff /2

)∣∣∣ ≤ 1
17694720

(
|r1(c, x)|+ |r2(c, x)|y + |r3(c, x)|y2 + |r4(c, x, τ)|

)
.

≤ 1
17694720

(S(c, x, y)), (37)

where
S(c, x, y) = t1(c, x) + t2(c, x)y + t3(c, x)y2 + t4(c, x)

(
1− y2

)
,
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with

t1(c, x) = 45c6 +
(

4− c2
)[(

4− c2
)(

5120x3 + 1600c2x3 + 96c2x2 + 288c2x4
)

+6912c2x2 + 264c4x + 648c4x2 + 1728c4x3
]
,

t2(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

1152cx2 + 5760cx
)
+ 6912c3x + 2160c3

]
,

t3(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

1152x2 + 17280
)
+ 6912c2x

]
,

t4(c, x) =
(

4− c2
)(

1− x2
)[

6912c2 + 18432x
(

4− c2
)]

.

Now, we have to maximize S(c, x, y) in the closed cuboid Θ : [0, 2]× [0, 1]× [0, 1].
For this, we have to discuss the maximum values of S(c, x, y) in the interior of Θ, in

the interior of its six faces and on its twelve edges.
1. Interior points of cuboid Θ :
Let (c, x, y) ∈ (0, 2)× (0, 1)× (0, 1), and differentiating partially S(c, x, y) with respect

to y, we obtain

∂S
∂y

= 144
(

4− c2
)
(1− x2)

[
16y(x− 1)

((
4− c2

)
(x− 15) + 6c2

)
+8c

(
x
(

4− c2
)
(x + 5) + 6c2

(
x +

5
16

))]
.

Putting ∂S
∂y = 0, yields

y =
8c
(
x
(
4− c2)(x + 5) + 6c2(x + 5

16
))

16(x− 1)((4− c2)(15− x)− 6c2)
= y0.

If y0 is a critical point inside Θ, then y0 ∈ (0, 1), which is possible only if

c3(48x + 15) + 8cx
(

4− c2
)
(x + 5) + 16(1− x)

(
4− c2

)
(15− x) < 96c2(1− x). (38)

and

c2 >
4(15− x)

21− x
. (39)

For the existence of the critical points, we have to obtain the solutions which satisfy
both inequalities in Equations (38) and (39).

Let g(x) = 4(15−x)
21−x . As g′(x) < 0 in (0, 1), it can be observed that g(x) is decreasing

over (0, 1). Hence c2 > 14
5 . It is not difficult to be verified that the inequality Equation (38)

can not hold true in this situation for x ∈
[ 2

5 , 1
)
. Thus, there is no critical point of S(c, x, y)

exist in (0, 2)×
[ 2

5 , 1
)
× (0, 1).

Suppose that there is a critical point (c̃, x̃, ỹ) of S existing in the interior of cuboid Θ,
clearly, it must satisfy that x̃ < 2

5 . From the above discussion, it can be also known that
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c̃2 ≥ 292
103 and ỹ ∈ (0, 1). Presently, we will prove that S(c̃, x̃, ỹ) < 276480. For (c, x, y) ∈(√

292
103 , 2

)
×
(
0, 2

5
)
× (0, 1), by invoking x < 2

5 and 1− x2 < 1; it is not hard to observe that

t1(c, x) ≤ 45c6 +
(

4− c2
)[(

4− c2
)(

5120
(

2
5

)3
+ 1600c2

(
2
5

)3
+ 96c2

(
2
5

)2

+288c2
(

2
5

)4
)
+ 6912c2

(
2
5

)2
+ 264c4

(
2
5

)
+ 648c4

(
2
5

)2

+1728c4
(

2
5

)3
]

,

= 45c6 +
1

625

(
4− c2

)(
121712c4 + 799232c2 + 819200

)
:= ς1(c),

t2(c, x) ≤
(

4− c2
)[(

4− c2
)(

1152c
(

2
5

)2
+ 5760c

(
2
5

))
+ 6912c3

(
2
5

)
+ 2160c3

]
,

=
1

25

(
4− c2

)(
60912c3 + 248832c

)
:= ς2(c),

t3(c, x) ≤
(

4− c2
)[(

4− c2
)(

1152
(

2
5

)2
+ 17280

)
+ 6912c2

(
2
5

)]
,

=
1

25

(
4− c2

)(
−367488c2 + 1746432

)
:= ς3(c),

t4(c, x) ≤
(

4− c2
)[

6912c2 + 18432
(

2
5

)(
4− c2

)]
,

=
1
5

(
4− c2

)(
−2304c2 + 147456

)
:= ς4(c).

Therefore, we have

S(c, x, y) ≤ ς1(c) + ς4(c) + ς2(c)y + [ς3(c)− ς4(c)]y2 := Γ2(c, y).

Obviously, it can be observed that

∂Γ2

∂y
= ς2(c) + 2y[ς3(c)− ς4(c)],

and
∂2Γ2

∂y2 = 2[ς3(c)− ς4(c)] =
2

25

(
4− c2

)(
−355968c2 + 1009152

)
.

Since ς3(c)− ς4(c) ≤ 0 for c ∈
(√

292
103 , 2

)
, we obtain that ∂2Γ2

∂y2 ≤ 0 for y ∈ (0, 1) and

thus it follows that

∂Γ2

∂y
≥ ∂Γ2

∂y
|y=1=

(
4− c2)

25

(
60912c3 − 711936c2 + 248832c + 2018304

)
≥ 0,

for c ∈
(√

292
103

, 2

)
.

Therefore, we have

Γ2(c, y) ≤ Γ2(c, 1) = ς1(c) + ς2(c) + ς3(c) := Υ2(c).
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It is easy to be calculated that Υ2(c) attains its maximum value 74510.302 at c ≈
1.683731. Thus, we have

S(c, x, y) < 276480, (c, x, y) ∈
(√

292
103

, 2

)
×
(

0,
2
5

)
× (0, 1).

Hence S(c̃, x̃, ỹ) < 276480. This implies that S is less than 276480 at all the critical
points in the interior of Θ. Therefore, S has no optimal solution in the interior of Θ.

2. Interior of all the six faces of cuboid Θ :
(i) On the face c = 0, S(c, x, y) takes the form

L1(x, y) = S(0, x, y) = 2048
(

40x3 + 9(1− x2)
(

y2(x− 1)(x− 15) + 16x
))

, x, y ∈ (0, 1).

Then,
∂L1

∂y
= 36864y(1− x2)(x− 1)(x− 15), x, y ∈ (0, 1).

Thus L1(x, y) has no critical point in the interval (0, 1)× (0, 1).
(ii) On the face c = 2, S(c, x, y) becomes

S(2, x, y) = 2880 < 276480.

(iii) On the face x = 0, S(c, x, y) reduces to

L2(c, y) = S(c, 0, y) = 45c6 + (4− c2)
(

2160c3y + (−24192c2 + 69120)y2 + 6912c2
)

.

Differentiating L2(c, y) partially with respect to y

∂L2

∂y
= (4− c2)

(
2160c3 +

(
−48384c2 + 138240

)
y
)

.

Putting ∂L2
∂y = 0, we obtain

y =
5c3

16(7c2 − 20)
= y1.

For the given range of y, y1 should belong to (0, 1),, which is possible only if
c > c0, c0 ≈ 1.76094199. Moreover, the derivative of L2(c, y), partially with respect to
c, is

∂L2

∂c
= 270c5 +

(
4− c2

)(
6480c2y− 48384cy2 + 13824c

)
− 13824c3

− 4320c4y +
(

48384c2 − 138240
)

cy2. (40)

By substituting the value of y in (40), plugging ∂L2
∂c = 0 and simplifying, we obtain

∂L2

∂c
= −27c

(
35c8 + 49576c6 − 385072c4 + 983040c2 − 819200

)
= 0. (41)

A calculation gives the solution of (41) in the interval (0, 1) that is c ≈ 1.3851278. Thus,
L2(c, y) has no optimal point in the interval (0, 2)× (0, 1).

(iv) On the face x = 1, S(c, x, y) yields

L3(c, y) = S(c, 1, y) = 45c6 + (4− c2)
(
(4− c2)(1984c2 + 5120) + 6912c2 + 2640c4

)
.
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Then
∂L3

∂c
= −3666c5 − 28416c3 + 36864c.

Putting ∂L3
∂c = 0 and solving, we obtain c ≈ 1.0639470. Thus, we have

S(c, 1, y) ≤ max L3(c, y) = 92795.48842 < 276480.

(v) On the face y = 0, S(c, x, y) becomes

L4(c, x) = S(c, x, 0) = 288c6x4 − 128c6x3 − 552c6x2 − 2304c4x4 − 264c6x

− 19200c4x3 + 45c6 + 1824c4x2 + 4608c2x4 + 19488c4x

+ 132096c2x3 − 6912c4 + 1536c2x2 − 147456c2x

− 212992x3 + 27648c2 + 294912x.

Presently, differentiating partially with respect to c, then, with respect to x and simpli-
fying, we have

∂L4

∂c
= 1728c5x4 − 768c5x3 − 3312c5x2 − 9216c3x4 − 1584c5x

−76800c3x3 + 270c5 + 7296c3x2 + 9216cx4 + 77952c3x

+264192cx3 − 27648c3 + 3072cx2 − 294912cx + 55296c. (42)

and

∂L4

∂x
= 1152c6x3 − 384c6x2 − 1104c6x− 9216c4x3 − 264c6 − 57600c4x2

+3648c4x + 18432c2x3 + 19488c4 + 396288c2x2 + 3072c2x

−147456c2 − 638976x2 + 294912. (43)

A numerical computation demonstrates that the solution does not exist for the system
of Equations (42) and (43) in (0, 2)× (0, 1). Hence L4(c, x) has no optimal solution in the
interval (0, 2)× (0, 1).

(vi) On the face y = 1, S(c, x, y) yields

L5(c, x) = S(c, x, 1) = 288c6x4 − 128c6x3 − 1152c5x4 − 552c6x2 + 1152c5x3

−3456c4x4 − 264c6x + 3312c5x2 + 6144c4x3 + 9216c3x4 + 45c6

−1152c5x− 21216c4x2 + 18432c3x3 + 13824c2x4 − 2160c5

−5856c4x− 17856c3x2 − 43008c2x3 − 18432cx4 + 17280c4

−18432c3x + 158208c2x2 − 92160cx3 − 18432x4 + 8640c3

+27648c2x + 18432cx2 + 81920x3 − 138240c2 + 92160cx

−258048x2 + 276480.

Partial derivative of L5(c, x) with respect to c and then with respect to x, we have

∂L5

∂c
= 1728c5x4 − 768c5x3 − 5760c4x4 − 3312c5x2 + 5760c4x3 − 13824c3x4

−1584c5x + 16560c4x2 + 24576c3x3 + 27648c2x4 + 270c5 − 5760c4x

−84864c3x2 + 55296c2x3 + 27648cx4 − 10800c4 − 23424c3x− 53568

c2x2 − 86016cx3 − 18432x4 + 69120c3 − 55296c2x + 316416cx2

−92160x3 + 25920c2 + 55296cx + 18432x2 − 276480c + 92160x. (44)
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and

∂L5

∂x
= 1152c6x3 − 384c6x2 − 4608c5x3 − 1104c6x + 3456c5x2 − 13824c4x3

−264c6 + 6624c5x + 18432c4x2 + 36864c3x3 − 1152c5 − 42432c4x

+55296c3x2 + 55296c2x3 − 5856c4 − 35712c3x− 129024c2x2

−73728cx3 − 18432c3 + 316416c2x− 276480cx2 − 73728x3

+27648c2 + 36864cx + 245760x2 + 92160c− 516096x. (45)

As in the above case, we conclude the same result for the face y = 0, that is the system
of Equations (44) and (45) has no solution in (0, 2)× (0, 1).

3. On the Edges of Cuboid Θ :
(i) On the edge x = 0 and y = 0, S(c, x, y) takes the form

S(c, 0, 0) = 45c6 − 6912c4 + 27648c2 = L6(c).

It is clear that
L′6(c) = 270c5 − 27648c3 + 55296c.

Putting L′6(c) = 0 and solving, we obtain c0 ≈ 1.4285192 at which S(c, 0, 0) = L6(c)
receives its maximum. Thus

S(c, 0, 0) ≤ max L6(c) = L6(c0) = 28018.979 < 276480.

(ii) On the edge x = 0 and y = 1, S(c, x, y) becomes

S(c, 0, 1) = 45c6 − 2160c5 + 17280c4 + 8640c3 − 138240c2 + 276480 = L7(c).

It follows that

L′7(c) = 270c5 − 10800c4 + 69120c3 + 25920c2 − 276480c.

Noting that L′7(c) < 0 in [0, 2], L7(c) is decreasing over [0, 2]. Thus L7(c) has its maxima
at c = 0. Therefore, max L7(c) = L7(0) = 276480. Hence

S(c, 0, 1) ≤ 276480.

(iii) On the edge c = 0 and x = 0, S(c, x, y) reduces to

S(0, 0, y) = 276480y2 = L8(y).

Since L′8(y) > 0 in [0, 1], it is clear that L8(y) is increasing over [0, 1]. Thus, L8(y) has
its maxima at y = 1. Therefore, max L8(y) = L8(1) = 276480. Hence

S(0, 0, y) ≤ 276480.

(iv) On the edges of S(c, 1, 0) and S(c, 1, 1)
Since S(c, 1, y) is free of y, therefore

S(c, 1, 0) = S(c, 1, 1) = −611c6 − 7104c4 + 18432c2 + 81920 = L9(c).

and
L′9(c) = −3666c5 − 28416c3 + 36864c.

Putting L′9(c) = 0, gives the critical point c0 ≈ 1.06394704 at which S(c, 1, 0) =
S(c, 1, 1) = L9(c) attains its maximum, therefore max L9(c) = L9(c0) = 92795.4884. Thus

S(c, 1, 0) = S(c, 1, 1) ≤ 92795.4884 < 276480.
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(v) On the edge c = 0 and x = 1, S(c, x, y) becomes

S(0, 1, y) = 81920 < 276480.

(vi) On the edge c = 2, S(c, x, y) reduces to

S(2, x, y) = 2880 < 276480.

S(2, x, y) is independent of x and y,, therefore

S(2, 0, y) = S(2, 1, y) = S(2, x, 0) = S(2, x, 1) = 2880 < 276480.

(vii) On the edge c = 0 and y = 1, S(c, x, y) takes the form

S(0, x, 1) = −18432x4 + 81920x3 − 258048x2 + 276480 = L10(x).

Clearly
L′10(x) = −73728x3 + 245760x2 − 516096x.

Note that L′10(x) < 0 in [0, 1], L10(x) is decreasing over [0, 1]. Thus, L10(x) has its
maxima at x = 0. Therefore, max L10(x) = L10(0) = 276480. Hence

S(0, x, 1) ≤ 276480.

(viii) On the edge c = 0 and y = 0, S(c, x, y) becomes

S(0, x, 0) = −212992x3 + 294912x = L11(x).

and
L′11(x) = −638976x2 + 294912.

Putting L′11(x) = 0, gives the critical point x0 ≈ 0.6793662 at which L11(x) receives its
maximum. Therefore, max L11(x) = L11(x0) =

196608
13

√
6
√

13. Thus,

S(0, x, 0) ≤ 196608
13

√
6
√

13 < 276480.

Thus, from the above cases we conclude that

S(c, x, y) ≤ 276480 on [0, 2]× [0, 1]× [0, 1].

From Equation (37) we have∣∣∣H2,2

(
Ff /2

)∣∣∣ ≤ 1
17694720

(S(c, x, y)) ≤ 1
64
≈ 0.0156.

If f ∈ BT s, then the sharp bound for this Hankel determinant is determined by using
Equations (4)–(6) and

f3(z) =
∫ z

0

(
1 + sinh−1

(
t3
))

dt = z +
1
4

z4 − 1
60

z10 + · · · .

5. Conclusions

Due to the great importance of logarithmic coefficients, Kowalczyk and Lecko [38,39]
proposed the topic of studying the Hankel determinant with the entry of logarithmic
coefficients. In the current article, we considered a subclass of bounded turning functions
denoted as BT s. This family of univalent functions was connected with a petal-shaped
domain with f ′(z) subordinated to 1 + sinh−1 z. We gave an estimate for some initial
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logarithmic coefficients and some related inequalities problems on logarithmic coefficients.
The bounds of Hankel determinant with logarithmic coefficients as the entry for this class
were determined. All the estimations were proven to be sharp.

In proving our main results, finding the upper bounds of the Hankel determinant for
functions belonging to BT s were transformed to a maximum value problem of a function
with three variables in a domain of cuboid. Based on the analysis of all the possibilities that
the maxima might occur, we were able to obtain the sharp upper bounds for this class. Since
some of the calculations are very complicated, numerical analysis are used. Obviously,
this method is useful sometimes to find bounds for functions of different subfamilies of
univalent functions. However, in most cases, it is not so lucky to obtain the sharp results.

The use of the familiar quantum or basic (or q-) calculus, as shown in similar recent
articles [47–49], could be a promising area for future study based on our present investiga-
tion. Many authors have investigated the third and fourth-order Hankel determinants in
recent years, see [50–52]. The methodology provided in this article might potentially be
used to study these higher-order Hankel determinants.
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