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Abstract: In this work, we introduce a mixed type of quadratic-additive (QA) functional equation
and obtain its general solution. The objective of this work is to investigate the Ulam–Hyers stability
of this quadratic-additive (QA) functional equation in matrix paranormed spaces (briefly, MP spaces)
using the Hyers method for the factor sum of norms.
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1. Introduction

The problem of Ulam [1] about the stability of group homomorphisms was originated
by the stability problem of functional equations: suppose that A is a group, B(d) is a metric
group, and ψ : A→ B. For any ε > 0, does there exists a δ > 0 such that

d(ψ(ab), ψ(a)ψ(b)) < δ, ∀ a, b ∈ A,

holds and which gives a unique homomorphism W : A→ B is such that

d(ψ(a), W(a)) < ε,

for all a ∈ A? If the answer is affirmative, we can say that the Cauchy equation ψ(ab) =
ψ(a)ψ(b) is stable.

In 1941, Hyers [2] provided the case of approximately additive mapping F : A→ A
′
,

where A and A
′

are Banach spaces and F satisfies the below Hyers inequality

‖F(a + b)− F(a)− F(b)‖ ≤ ε, ∀ a, b ∈ A.

This proved that the limit

B(a) = lim
n→∞

F(2na)
2n , ∀ a ∈ A,

exists with the unique additive mapping B : A→ A
′
, which satisfies

‖F(a)− B(a)‖ ≤ ε, ∀ a ∈ A.
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Moreover, if ψ(σa) is continuous in σ for each fixed a ∈ A, then the function B is linear.
The result declared was that the Cauchy functional equation is stable for any pair of

Banach spaces. The method that was provided by Hyers formed the additive function B(a)
called the Direct Method. This is called the stability (Hyers–Ulam stability) of the Cauchy
additive functional equation.

Every solution of the following Cauchy additive functional equation

ψ(u + v) = ψ(u) + ψ(v), (1)

is known as additive. The functional equation

ψ(u + v) + ψ(u− v) = 2ψ(u) + 2ψ(v), (2)

is connected to a symmetric bi-additive. A quadratic function is a name given to each
solution of the functional Equation (2). It is widely known that real vector space ψ is
quadratic if and only if a single symmetric bi-additive function B exists for all a and
ψ(u) = B(u, u). The function B is presumptively assumed by

B(u, v) =
1
4
(ψ(u + v)− ψ(u− v)).

Skof explored the Ulam–Hyers stability problem for the functional Equation (2) for the
mapping ψ between a normed space and a Banach space. The stability results of a cubic-
additive functional equation have been established by Jun [3]. Najati [4] has investigated
stability of a quadratic-additive, in quasi-Banach spaces. After this, Najati [5] introduced
an additive-cubic functional equation and examined its stability for a mapping between
two quasi-Banach spaces.

In 2012, Choonkil Park [6] examined the stability of the functional Equations (1) and (2)
in paranormed spaces. In 2013, Choonkil Park extended this work to examine (Ref. [7])
the stability results of the functional Equations (1) and (2) and the below Cauchy additive
functional inequality

ψ(a) + ψ(b) + ψ(c) ≤ ψ(a + b + c),

in matrix paranormed spaces. Based on these two works, Murali et al. [8] investigated the
stability for the quadratic and cubic functional equations in matrix paranormed spaces.
Moreover, Murali et al. [9] investigated the Hyers–Ulam stability of the quartic mappings in
the same space. Tamilvanan et al., who developed this work, explored numerous functional
equations in various normed spaces [10–12].

2. Quadratic-Additive Functional Equation and Its General Solution

We introduce a new mixed type of quadratic-additive (in brief, QA) functional equation:

ψ
( l

∑
h=1

hah

)
= ∑

1≤h<g≤l
ψ
(

hah + gag

)
− (l − 2)

l

∑
h=1

h2
[

ψ(ah) + ψ(−ah)

2

]

−(l − 2)
l

∑
h=1

h
[

ψ(ah)− ψ(−ah)

2

]
, (3)

where l ≥ 4, and we obtain its general solution. The main objective of this work is to inves-
tigate the Ulam–Hyers stability results of this functional equation in matrix paranormed
spaces by using the Hyers method for the factor sum of norms.

We utilize some notions from [7,13] as follows:

• Ml(V) is the set of all l × l-matrices in V;
• ei ∈ M1,l(C) is the ith element, which is 1, and the remaining elements are 0;
• Ehi ∈ Ml(C) indicates that the (h, i)-element is 1 and the remaining elements are 0;
• Ehi ⊗ a ∈ Ml(V) indicates that the (h, i)-element is a and the remaining elements are 0.
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For a ∈ Ml(V), b ∈ Mm(V),

a⊕ b =

(
a 0
0 b

)
.

We remark that (V, ‖·‖l) is a matrix normed space if and only if (Ml(V), ‖·‖l) is a
normed space for every integer l > 0 and

‖EaF‖m ≤ ‖E‖‖F‖‖a‖l ,

holds for all E ∈ Mm,l , a = [ahi] ∈ Ml(V) and all F ∈ Ml,m, and that (V, ‖·‖l) is a matrix
Banach space if and only if (V, ‖·‖l) is a matrix normed space, where V is a Banach space.

Lemma 1. If an even mapping ψ : V → W, which satisfies the functional Equation (3) for all
a1, a2, · · · , al ∈ V, then the mapping ψ : V →W is quadratic.

Proof. In terms of the evenness of ψ, we obtain ψ(−a) = ψ(a). Now, Equation (3) becomes

ψ
( l

∑
h=1

hah

)
= ∑

1≤h<g≤l
ψ
(

hah + gag

)
− (l − 2)

l

∑
h=1

h2ψ(ah), (4)

for all a1, a2, · · · , al ∈ V. Replacing (a1, a2, · · · , al) by (0, 0, · · · , 0) in (4), we have ψ(0) = 0.
Now, replacing (a1, a2, · · · , al) by (0, a, 0, · · · , 0) in (4), we obtain

ψ(2a) = 2ψ(a), (5)

for all a ∈ V. Replacing a by 2a in (5), we obtain

ψ(22a) = 24ψ(a), (6)

for all a ∈ V. Replacing a by 2a in (6), we obtain

ψ(23a) = 26ψ(a), (7)

for all a ∈ V. Finally, we conclude that, for any non-negative integer l, we obtain

ψ(2la) = 22lψ(a), (8)

for all a ∈ V. Now, replacing (a1, a2, · · · , al) by
(

0, a
2 , 0, · · · , 0

)
in (4), we have

ψ
( a

2

)
=

1
22 ψ(a), (9)

for all a ∈ V. Replacing a by a
2 in (9), we obtain

ψ
( a

22

)
=

1
24 ψ(a), (10)

for all a ∈ V. Replacing a by a
2 in (10), we obtain

ψ
( a

23

)
=

1
26 ψ(a),

for all a ∈ V. Finally, we conclude that, for any non-negative integer i, we obtain

ψ
( a

2i

)
=

1
22i ψ(a),

for all a ∈ V. Replacing
(

a1, a2, · · · , al

)
by
(

a, b
2 ,− a

3 ,− b
4 , 0, · · · , 0

)
in (4), we obtain (2) for

all a, b ∈ V. Therefore, the mapping ψ : V →W is quadratic.
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Lemma 2. If an odd mapping ψ : V → W, which satisfies the functional Equation (3) for all
a1, a2, · · · , al ∈ V, then the mapping ψ : V →W is additive.

Proof. In terms of the evenness of ψ, we obtain ψ(−a) = −ψ(a). Now, Equation (3)
becomes

ψ
( l

∑
h=1

hah

)
= ∑

1≤h<g≤l
ψ
(

hah + gag

)
− (l − 2)

l

∑
h=1

hψ(ah), (11)

for all a1, a2, · · · , al ∈ V. Now, replacing (a1, a2, · · · , al) by (0, 0, · · · , 0) in (11), we have
ψ(0) = 0. Next, replacing (a1, a2, · · · , al) by (0, a, 0, · · · , 0) in (11) and using the oddness of
ψ, we obtain

ψ(2a) = 2ψ(a), (12)

for all a ∈ V. Again, replacing a by 2a in (12), we have

ψ(22a) = 22ψ(a), (13)

for all a ∈ V. Replacing a by 2a in (13), we obtain

ψ(23a) = 23ψ(a),

for all a ∈ V. Finally, we conclude that for any non-negative integer l, we have

ψ(2la) = 2lψ(a),

for all a ∈ V. Now, replacing (a1, a2, · · · , al) by
(

0, a
2 , 0, · · · , 0

)
in (11), we obtain

ψ
( a

2

)
=

1
2

ψ(a), (14)

for all a ∈ V. Replacing a by a
2 in (14), we obtain

ψ
( a

22

)
=

1
22 ψ(a), (15)

for all a ∈ V. Replacing a by a
2 in (15), we obtain

ψ
( a

23

)
=

1
23 ψ(a),

for all a ∈ V. Finally, we conclude that for any non-negative integer i, we have

ψ
( a

2i

)
=

1
2i ψ(a),

for all a ∈ V. Replacing
(

a1, a2, · · · , al

)
by
(

a, b
2 , a

3 , b
4 , 0, · · · , 0

)
in (11), we reach (1) for all

a, b ∈ V. Therefore, the mapping ψ : V →W is additive.

Lemma 3. A mapping ψ : V → W such that ψ(0) = 0 and (3) for all a1, a2, · · · , al ∈ V if and
only if there exist a mapping Y : V × V → W which is symmetric bi-additive and a mapping
X : V →W which is additive such that ψ(a) = Y(a, a) + X(a) for all a ∈ V.

Proof. Let ψ with ψ(0) = 0 satisfy (3). Now, split ψ into an even part and odd part
by taking

ψe(a) =
1
2
(ψ(a) + ψ(−a)) and ψo(a) =

1
2
(ψ(a)− ψ(−a)),
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for all a ∈ V. Clearly, ψ(a) = ψe(a) + ψo(a) for all a ∈ V. Thus, ψe and ψo satisfy the
functional Equation (3). From Lemmas 1 and 2, we obtain that ψe (quadratic) and φo
(additive). Thus, there exists Y : V ×V →W, which satisfies ψe(a) = B(a, a) for all a ∈ V.
Therefore,

ψ(a) = X(a) + Y(a, a), a ∈ V,

where X(a) = ψo(a).
Conversely, suppose that there exist mappings Y : V × V → W and X : V → W

satisfies
ψ(a) = B(a, a) + X(a), a ∈ V.

Easily, we can prove that the mappings a 7→ Y(a, a) and X satisfy the functional
Equation (3). Thus, the mapping ψ satisfies the functional Equation (3).

3. Stability Results in Matrix Paranormed Spaces

Here, we take (V, ‖·‖l) as a matrix Banach space and (W, Pl(·)) as a matrix Frechet
space. For a mapping ψ : V →W, define Dψ : V l →W and Dψl : Ml(V l)→ Ml(W) by

Dψ(a1, a2, · · · , al) := ψ
( l

∑
h=1

hah

)
− ∑

1≤h<g≤l
ψ
(

hah + gag

)
+(l − 2)

l

∑
h=1

h2
[

ψ(ah) + ψ(−ah)

2

]

+(l − 2)
l

∑
h=1

h
[

ψ(ah)− ψ(−ah)

2

]
,

and

Dψl
(
(a1)ij], [(a2)ij], · · · , [(al)ij]

)
:= ψl

( l

∑
h=1

h[(ah)ij]
)

− ∑
1≤h<g≤l

ψl

(
h[(ah)ij] + g[(ag)ij]

)
+(l − 2)

l

∑
h=1

h2
[

ψl([(ah)ij]) + ψl([(−ah)ij])

2

]

+(l − 2)
l

∑
h=1

h
[

ψl([(ah)ij])− ψl([(−ah)ij])

2

]
,

for all a1, a2, · · · , al ∈ V and all at = [(at)ij] ∈ Ml(V), t = 1, 2, · · · , l.

Note that P(2a) ≤ 2P(a) for all a ∈W.

Theorem 1. Let α, λ ∈ R+ with α > 2. If an even mapping ψ : V →W such that

Pl

(
Dψl

(
[(a1)ij], [(a2)ij], · · · , [(al)ij]

))
≤

l

∑
i,j=1

λ

(
l

∑
t=1

∥∥(at)ij
∥∥α

)
, (16)

for all at = [(at)ij] ∈ Ml(V), t = 1, 2, · · · , l, then there exists a unique quadratic mapping
Q : V →W satisfying

Pl
(
ψl
(
[aij]

)
−Ql

(
[aij]

))
≤

l

∑
i,j=1

λ

(l − 2)(2α − 22)

∥∥aij
∥∥α,

for all a = [aij] ∈ Ml(V).
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Proof. Let l = 1 in (16). Then, the inequality (16) becomes

P(Dψ(a1, a2, · · · , al)) ≤ λ

(
l

∑
t=1
‖at‖α

)
, (17)

for all a1, a2, · · · , al ∈ V. Replacing (a1, a2, · · · , al) by (0, 0, 0, · · · , 0) in (17), we obtain

P
((

2l4 − l3 − 7l2 − l + 6
6

)
ψ(0)

)
≤ 0.

Therefore, ψ(0) = 0. Replacing (a1, a2, · · · , al) by (0, a, 0, · · · , 0) in (17), we have

P((l − 2)ψ(2a)− 4(l − 2)ψ(a)) ≤ λ‖a‖α, (18)

for all a ∈ V. From inequality (18), we have

P(ψ(2a)− 4ψ(a)) ≤ λ

(l − 2)
‖a‖α,

and so

P
(

ψ(a)− 22ψ
( a

2

))
≤ λ

(l − 2)2α ‖a‖
α,

for all a ∈ V. Clearly,

P
(

22rψ
( a

2r

)
− 22sψ

( a
2s

))
≤

s−1

∑
δ=r

22δλ

(l − 2)2(δ+1)α
‖a‖α, (19)

for all a ∈ V and all positive integers r, s with r < s. From (19), the sequence
{

22δψ
(

a
2δ

)}
is Cauchy for every a ∈ V.

Since W is complete, the sequence
{

22δψ
(

a
2δ

)}
converges. Next, we can define a

mapping Q : V →W by

Q(a) = lim
δ→∞

22δψ
( a

2δ

)
,

for all a ∈ V. Setting r = 0 and taking the limit s that tends to ∞ in (19), we have

P(ψ(a)−Q(a)) ≤ λ

(l − 2)(2α − 22)
‖a‖α, (20)

for all a ∈ V. From inequality (17),

P
(

22δ
(

Dψ
( a1

2δ
,

a2

2δ
, · · · ,

al

2δ

)))
≤ 22δP

(
Dψ
( a1

2δ
,

a2

2δ
, · · · ,

al

2δ

))
≤ 22δλ

2δα

(
l

∑
t=1
‖at‖α

)
→ 0 as δ→ ∞.
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Therefore, P(Q(a1, a2, · · · , al)) = 0. Therefore, the function Q satisfies the functional
Equation (3). Hence, the function Q is quadratic. Now, we prove that Q is unique. Consider
Q
′

to be another quadratic function which satisfies the functional Equation (3). Hence,

P
(

Q(a)−Q
′
(a)
)

= P
(

22sQ
( a

2s

)
− 22sQ

′( a
2s

))
≤ P

(
22s
(

Q
( a

2s

)
− ψ

( a
2s

)))
+ P

(
22s
(

ψ
( a

2s

)
−Q

′( a
2s

)))
≤ 22s+1λ

(l − 2)(2α − 22)2sα
‖a‖α

→ 0 as s→ ∞,

for all a ∈ V. Thus, Q(a) = Q
′
(a) for all a ∈ V. This shows that Q is a unique function. By

Lemma 2.1 in [5] and (20), we can conclude that

Pl
(
ψl
(
[aij]

)
−Ql

(
[aij]

))
≤

l

∑
i,j=1

P
(
ψ
(
aij
)
−Q

(
aij
))
≤

l

∑
i,j=1

λ

(l − 2)(2α − 22)

∥∥aij
∥∥α,

for all a = [aij] ∈ Ml(V). Hence, the proof of the theorem is now completed.

Theorem 2. Let α, λ ∈ R+ with α < 2. If an even mapping ψ : W → V such that

∥∥∥Dψl

(
[(a1)ij], [(a2)ij], · · · , [(al)ij]

)∥∥∥
l
≤

l

∑
i,j=1

λ

(
l

∑
t=1

P
(
(at)ij

)α

)
, (21)

for all at = [(at)ij] ∈ Ml(W), t = 1, 2, · · · , l, then there exists a unique quadratic mapping
Q : W → V satisfying

∥∥ψl
(
[aij]

)
−Ql

(
[aij]

)∥∥
l ≤

l

∑
i,j=1

λ

(l − 2)(22 − 2α)
P
(
aij
)α,

for all a = [aij] ∈ Ml(W).

Proof. Assume that l = 1 in (21). Then, the inequality (21) becomes

‖Dψ(a1, a2, · · · , al)‖ ≤ λ

(
l

∑
t=1

P(at)
α

)
, (22)

for all a1, a2, · · · , al ∈W. Replacing (a1, a2, · · · , al) by (0, 0, 0, · · · , 0) in (22), we have∥∥∥∥(2l4 − l3 − 7l2 − l + 6
6

)
ψ(0)

∥∥∥∥ ≤ 0.

Therefore, ψ(0) = 0. Replacing (a1, a2, · · · , al) by (0, a, 0, · · · , 0) in (22), we have

‖(l − 2)ψ(2a)− 4(l − 2)ψ(a)‖ ≤ λP(a)α, (23)

for all a ∈W. It follows from the inequality (23) that we obtain∥∥∥∥ψ(2a)
22 − ψ(a)

∥∥∥∥ ≤ λ

22(l − 2)
P(a)α,

for all a ∈W. Replacing a by 2a and dividing by 22 in inequality (23), we obtain∥∥∥∥ψ(22a)
24 − ψ(2a)

22

∥∥∥∥ ≤ 2αλ

24(l − 2)
P(a)α,
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for all a ∈W. Clearly,∥∥∥∥ψ(2ra)
22r − ψ(2sa)

22s

∥∥∥∥ ≤ r−1

∑
δ=s

2αδλ

22(δ+1)(l − 2)
P(a)α, (24)

for all a ∈W and all positive integers r, s with s < r. From (24), the sequence
{

ψ(2δa)
22δ

}
is a

Cauchy sequence for all a ∈W.

Since V is complete, the sequence
{

ψ(2δa)
22δ

}
converges. Next, we can define a mapping

Q : W → V by

Q(a) = lim
δ→∞

ψ
(
2δa
)

22δ
,

for all a ∈W. Now, setting s = 0 and taking the limit r → ∞ in (24), we have

‖ψ(a)−Q(a)‖ ≤ λ

(l − 2)(22 − 2α)
P(a)α, (25)

for all a ∈W. From inequality (22),∥∥∥∥ 1
22δ

(
Dψ
(

2δa1, 2δa2, · · · , 2δal

))∥∥∥∥ ≤ 1
22δ

∥∥∥Dψ
(

2δa1, 2δa2, · · · , 2δal

)∥∥∥
≤ 2δα

22δ
λ

(
l

∑
t=1
‖at‖α

)
→ 0 as δ→ ∞.

Therefore, ‖Q(a1, a2, · · · , al)‖ = 0. Thus, the function Q satisfies the functional
Equation (3). Hence, the function Q is quadratic. Now, we prove that the quadratic
function Q is unique. Consider Q

′
to be another quadratic function which satisfies the

functional Equation (3). Hence,

∥∥∥Q(a)−Q
′
(a)
∥∥∥ =

∥∥∥∥∥Q(2ra)
22r − Q

′
(2ra)
22r

∥∥∥∥∥ ≤
∥∥∥∥Q(2ra)

22r − ψ(2ra)
22r

∥∥∥∥+
∥∥∥∥∥ψ(2ra)

22r − Q
′
(2ra)
22r

∥∥∥∥∥
≤ 2(rα+1)λ

(l − 2)(22 − 2α)22r P(a)α → 0 as r → ∞,

for all a ∈W. Thus, Q(a) = Q
′
(a) for all a ∈W. This proves that the function Q is unique.

By Lemma 2.2 in [5] and (25), we can conclude that

∥∥ψl
(
[aij]

)
−Ql

(
[aij]

)∥∥
l ≤

l

∑
i,j=1

∥∥ψ
(
aij
)
−Q

(
aij
)∥∥ ≤ l

∑
i,j=1

λ

(l − 2)(22 − 2α)
P
(
aij
)α,

for all a = [aij] ∈ Ml(W), which ends the proof.

Theorem 3. Let α, λ ∈ R+ with α > 1. If an odd mapping ψ : V →W such that

Pl

(
Dψl

(
[(a1)ij], [(a2)ij], · · · , [(al)ij]

))
≤

l

∑
i,j=1

λ

(
l

∑
t=1

∥∥(at)ij
∥∥α

)
, (26)
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for all at = [(at)ij] ∈ Ml(V), t = 1, 2, · · · , l, then there exists a unique additive mapping
A : V →W satisfying

Pl
(
ψl
(
[aij]

)
− Al

(
[aij]

))
≤

l

∑
i,j=1

λ

(l − 2)(2α − 2)

∥∥aij
∥∥α (27)

for all a = [aij] ∈ Ml(V).

Proof. Assume that l = 1 in (26). Then, the inequality (26) becomes

P(Dψ(a1, a2, · · · , al)) ≤ λ

(
l

∑
t=1
‖at‖α

)
, (28)

for all a1, a2, · · · , al ∈ V. Replacing (a1, a2, · · · , al) by (0, a, 0, · · · , 0) in (28), we have

P((l − 2)ψ(2a)− 4(l − 2)ψ(a)) ≤ λ‖a‖α, (29)

for all a ∈ V. From the inequality (29), we obtain

P(ψ(2a)− 2ψ(a)) ≤ λ

(l − 2)
‖a‖α,

and so

P
(

ψ(a)− 2ψ
( a

2

))
≤ λ

(l − 2)2α ‖a‖
α, (30)

for all a ∈ V. Replacing a by a
2 and multiply by 2 in (30), we obtain

P
(

2ψ
( a

2

)
− 22ψ

( a
22

))
≤ 2λ

(l − 2)22α
‖a‖α,

for all a ∈ V. It is easy to show that

P
(

2rψ
( a

2r

)
− 2sψ

( a
2s

))
≤

s−1

∑
δ=r

2δλ

(l − 2)2(δ+1)α
‖a‖α, (31)

for all a ∈ V and all positive integers r, s with r < s. From (31), the sequence
{

2δψ
(

a
2δ

)}
is

a Cauchy sequence for all a ∈ V.
Since W is complete, the sequence

{
2δψ

(
a

2δ

)}
converges. Next, we can define a

mapping A : V →W by

A(a) = lim
δ→∞

2δψ
( a

2δ

)
,

for all a ∈ V. Now, taking r = 0 and the limit s that tends to ∞ in (31), we arrive at

P(ψ(a)− A(a)) ≤ λ

(l − 2)(2α − 2)
‖a‖α, (32)



Mathematics 2022, 10, 1940 10 of 17

for all a ∈ V. From inequality (28),

P
(

2δ
(

Dψ
( a1

2δ
,

a2

2δ
, · · · ,

al

2δ

)))
≤ 2δP

(
Dψ
( a1

2δ
,

a2

2δ
, · · · ,

al

2δ

))
≤ 2δλ

2δα

(
l

∑
t=1
‖at‖α

)
→ 0 as δ→ ∞.

Therefore, P(A(a1, a2, · · · , al)) = 0. That is, the function A satisfies the functional
Equation (3). Thus, the function A is additive. Now, we want to prove that the function
A is unique. Consider A

′
as another additive function which satisfies the functional

Equation (3). Hence,

P
(

A
′
(a)− A(a)

)
= P

(
2s A

( a
2s

)
− 2s A

′( a
2s

))
≤ P

(
2s
(

A
( a

2s

)
− ψ

( a
2s

)))
+ P

(
2s
(

ψ
( a

2s

)
− A

′( a
2s

)))
≤ 2s+1λ

(l − 2)(2α − 2)2sα ‖a‖
α → 0 as s→ ∞,

for all a ∈ V. Thus, A(a) = A
′
(a) for all a ∈ V. This proves that the function A is a unique

function. By Lemma 2.1 in [5] and (32), we can conclude that

Pl
(
ψl
(
[aij]

)
− Al

(
[aij]

))
≤

l

∑
i,j=1

P
(
ψ
(
aij
)
− A

(
aij
))
≤

l

∑
i,j=1

λ

(l − 2)(2α − 2)

∥∥aij
∥∥α,

for all a = [aij] ∈ Ml(V). Hence, the proof of the theorem is now completed.

Theorem 4. Let α, λ ∈ R+ with α < 1. If an odd mapping ψ : W → V such that

∥∥∥Dψl

(
[(a1)ij], [(a2)ij], · · · , [(al)ij]

)∥∥∥
l
≤

l

∑
i,j=1

λ

(
l

∑
t=1

P
(
(at)ij

)α

)
, (33)

for all at = [(at)ij] ∈ Ml(W), t = 1, 2, · · · , l, then there exists a unique additive mapping
A : W → V satisfying

∥∥ψl
(
[aij]

)
− Al

(
[aij]

)∥∥
l ≤

l

∑
i,j=1

λ

(l − 2)(2− 2α)
P
(
aij
)α,

for all a = [aij] ∈ Ml(W).

Proof. Assume that l = 1 in (33). Then, the equality (33) becomes

‖Dψ(a1, a2, · · · , al)‖ ≤ λ

(
l

∑
t=1

P(at)
α

)
, (34)

for all a1, a2, · · · , al ∈W. Replacing (a1, a2, · · · , al) by (0, a, 0, · · · , 0) in (34), we obtain

‖(l − 2)ψ(2a)− 2(l − 2)ψ(a)‖ ≤ λP(a)α, (35)

for all a ∈W. It follows from the inequality (35) that we obtain∥∥∥∥ψ(2a)
2
− ψ(a)

∥∥∥∥ ≤ λ

2(l − 2)
P(a)α, (36)
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for all a ∈W. Replacing a by 2a and dividing by 2 in (36), we obtain∥∥∥∥ψ(22a)
22 − ψ(2a)

2

∥∥∥∥ ≤ 2αλ

22(l − 2)
P(a)α,

for all a ∈W. It is easy to show that∥∥∥∥ψ(2ra)
2r − ψ(2sa)

2s

∥∥∥∥ ≤ r−1

∑
δ=s

2αδλ

2(δ+1)(l − 2)
P(a)α, (37)

for all a ∈W and all positive integers r, s with s < r. From (37), the sequence
{

ψ(2δa)
2δ

}
is a

Cauchy sequence for all a ∈W.

Since V is complete, the sequence
{

ψ(2δa)
2δ

}
converges. Next, we can define a mapping

A : W → V by

A(a) = lim
δ→∞

ψ
(
2δa
)

2δ
,

for all a ∈W. Now, setting s = 0 and taking the limit r → ∞ in (37), we obtain

‖ψ(a)− A(a)‖ ≤ λ

(l − 2)(2− 2α)
P(a)α, (38)

for all a ∈W. From inequality (34),∥∥∥∥ 1
2δ

(
Dψ
(

2δa1, 2δa2, · · · , 2δal

))∥∥∥∥ ≤ 1
2δ

∥∥∥Dψ
(

2δa1, 2δa2, · · · , 2δal

)∥∥∥
≤ 2δα

2δ
λ

(
l

∑
t=1
‖at‖α

)
→ 0 as δ→ ∞.

Therefore, ‖A(a1, a2, · · · , al)‖ = 0. That is, the function A satisfies (3). Hence, the
function A is additive. Now, we want to prove that the additive function A is unique.
Consider A

′
as another additive function which satisfies the functional Equation (3). Hence,

∥∥∥A(a)− A
′
(a)
∥∥∥ =

∥∥∥∥∥A(2ra)
2r − A

′
(2ra)
2r

∥∥∥∥∥
≤

∥∥∥∥A(2ra)
2r − ψ(2ra)

2r

∥∥∥∥+
∥∥∥∥∥ψ(2ra)

2r − A
′
(2ra)
2r

∥∥∥∥∥
≤ 2(rα+1)λ

(l − 2)(2− 2α)2r P(a)α

→ 0 as r → ∞,

for all a ∈W. Thus, A(a) = A
′
(a) for all a ∈W. This shows that A is a unique function. By

Lemma 2.2 in [5] and (38), we can conclude that

∥∥ψl
(
[aij]

)
− Al

(
[aij]

)∥∥
l ≤

l

∑
i,j=1

∥∥ψ
(
aij
)
− A

(
aij
)∥∥ ≤ l

∑
i,j=1

λ

(l − 2)(2− 2α)
P
(
aij
)α,

for all a = [aij] ∈ Ml(W), which ends the proof.
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Proposition 1. Let α, λ ∈ R+ with α > 2 or α > 1. Let ψ : V →W be a mapping with ψ(0) = 0
such that (16) holds for all at = [(at)ij] ∈ Ml(V), t = 1, 2, · · · , l. Then, there exists a unique
quadratic mapping Q : V →W and a unique additive mapping A : V →W that satisfies

Pl
(
ψl
(
[aij]

)
−Ql

(
[aij]

)
− Al

(
[aij]

))
≤

l

∑
i,j=1

λ

(l − 2)

∥∥aij
∥∥α
[ 1
(2α − 22)

+
1

(2α − 2)

]
,

for all a = [aij] ∈ Ml(V).

Proof. Let us define ψ([aij]) = ψe([aij]) + ψo([aij]), where

ψe([aij]) =
ψ([aij]) + ψe(−[aij])

2
and ψ0([aij]) =

ψ([aij])− ψe(−[aij])

2

are even and odd functions, respectively. Hence,

Pl
(
ψl
(
[aij]

)
−Ql

(
[aij]

)
− Al

(
[aij]

))
= Pl

(
(ψl)e

(
[aij]

)
+ (ψl)o

(
[aij]

)
−Ql

(
[aij]

)
− Al

(
[aij]

))
≤ Pl

(
(ψl)e

(
[aij]

)
−Ql

(
[aij]

))
+ Pl

(
(ψl)o

(
[aij]

)
− Al

(
[aij]

))
for all [aij] ∈ Ml(V). The remaining proof is followed by the results of Theorem 1 and
Theorem 3.

Proposition 2. Let α, λ ∈ R+ with α < 2 or α < 1. Let ψ : W → V be a mapping with ψ(0) = 0
such that (16) holds for all at = [(at)ij] ∈ Ml(W), t = 1, 2, · · · , l. Then, there exists a unique
quadratic mapping Q : W → V and a unique additive mapping A : W → V such that

∥∥ψl
(
[aij]

)
−Ql

(
[aij]

)
− Al

(
[aij]

)∥∥
l ≤

l

∑
i,j=1

λ

(l − 2)
P
(
aij
)α
[ 1
(22 − 2α)

+
1

(2− 2α)

]
,

for all a = [aij] ∈ Ml(W).

Proof. Let us define ψ([aij]) = ψe([aij]) + ψo([aij]), where

ψe([aij]) =
ψ([aij]) + ψe(−[aij])

2
and ψ0([aij]) =

ψ([aij])− ψe(−[aij])

2

are even and odd functions, respectively. Hence,

∥∥ψl
(
[aij]

)
−Ql

(
[aij]

)
− Al

(
[aij]

)∥∥
l

=
∥∥(ψl)e

(
[aij]

)
+ (ψl)o

(
[aij]

)
−Ql

(
[aij]

)
− Al

(
[aij]

)∥∥
l

≤
∥∥(ψl)e

(
[aij]

)
−Ql

(
[aij]

)∥∥
l +
∥∥(ψl)o

(
[aij]

)
− Al

(
[aij]

)∥∥
l ,

for all [aij] ∈ Ml(W). The remaining proof is followed by the results of Theorem 2 and
Theorem 4.

4. Illustrative Example

We use a suitable example to show that the functional Equation (3) fails to be stable
in the singular situation. In response to Gajda’s excellent example in [14], we give the
following counter-example, which demonstrates the instability in Theorem 1 of Equation (3)
under specific conditions α = 2.
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Remark 1. If an even mapping ψ : R → V satisfies the functional Equation (3), then the below
assertions hold:

(1) ψ(mc/2a) = mcφ(a), for all a ∈ R, m ∈ Q and c ∈ Z.
(2) ψ(a) = a2ψ(1), for all a ∈ R if the function ψ is continuous.

Example 1. Let an even mapping ψ : R→ R defined by

ψ(a) =
∞

∑
p=0

φ(2pa)
22p , (39)

where

φ(a) =

{
λa2, −1 < a < 1
λ, else.

Suppose that the function ψ defined in (39) satisfies

|Dψ(a1, a2, · · · , al)| ≤
(

2l4 − l3 − 2l2 − 5l + 6
6

)
8
3

λ

(
l

∑
j=1
|aj|2

)
, (40)

for all a1, a2, · · · , al ∈ R. We show that there does not exist a quadratic mapping Q : R → R
such that

|ψ(a)−Q(a)| ≤ δ|a|2, (41)

for all a ∈ R, where λ and δ are constants.
We can easily find that ψ is bounded by 22

3 λ on R. If ∑l
j=1 |aj|2 ≥ 1

22 or 0, then

|Dψ(a1, a2, · · · , al)| <
(

2l4 − l3 − 2l2 − 5l + 6
6

)
22

3
λ.

Thus, (40) is valid. Next, suppose that

0 <
s

∑
j=1
|aj|2 <

1
22 ,

and then there is an integer s > 0 that satisfies

1
22(s+2)

≤
l

∑
j=1
|aj|2 <

1
22(s+1)

. (42)

Thus, 22s|a1| < 1
22 , 22s|a2| < 1

22 , 22s|a3| < 1
22 , · · · , 22s|al | < 1

22 and

2ta1, 2ta2, · · · , 2tal( l

∑
h=1

2thah

)
∑

1≤h<g≤l

(
2thah + 2tgag

)
l

∑
h=1

h2(2tah)


∈]− 1, 1[, t = 0, 1, · · · , s− 1.
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Moreover, for t = 0, 1, · · · , s− 1

Ψ(a1, a2, · · · , al) = φ
( l

∑
h=1

hah

)
− ∑

1≤h<g≤l
φ
(

hah + gag

)
+(l − 2)

l

∑
h=1

h2φ(ah)

= 0.

Next, by inequality (42), we obtain that

|Dψ(a1, a2, · · · , al)| ≤
∞

∑
t=0

1
22t |Ψ(2ta1, 2ta2, · · · , 2tal)|

≤
∞

∑
t=s

1
22t

(
2l4 − l3 − 2l2 − 5l + 6

6

)
λ.

It follows from (42) that

|Dψ(a1, a2, · · · , al)| ≤
(

2l4 − l3 − 2l2 − 5l + 6
6

)
8λ

3

(
l

∑
j=1
|aj|2

)
.

Thus, the function ψ satisfies the inequality (40). Suppose, on the contrary, that there exists a
quadratic mapping Q : R→ R which satisfies (41).

From Remark 1, Q must be Q(a) = ca2, a ∈ R. Thus, we obtain

|χ(a)| ≤ (δ + |c|)|a|2, a ∈ R.

However, we have a choice s > 0 with sλ > δ + |c|. If a ∈
(

0, 1
2s−1

)
, then 2ta ∈ (0, 1) for

every t = 0, 1, · · · , s− 1, we have

ψ(a) =
∞

∑
t=0

φ(2ta)
22t ≥

s−1

∑
t=0

λ(2ta)2

22t = sλa2 > (δ + |c|) |a2|,

which contradicts. Thus, Equation (3) is not stable.

The upcoming counter-example shows the non-stability in a particular condition α = 1
in Theorem 3 of the functional Equation (3).

Remark 2. If an odd mapping ψ : R → V satisfies the functional Equation (3), then the below
assertions hold:

(1) ψ(mca) = mcφ(a), a ∈ R, m ∈ Q and c ∈ Z.
(2) ψ(a) = aψ(1), a ∈ R if the function ψ is continuous.

Example 2. Let an odd mapping ψ : R→ R defined by

ψ(a) =
∞

∑
p=0

φ(2pa)
2p , (43)

where

φ(a) =

{
λa, −1 < a < 1
λ, else.
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Suppose that the function ψ is defined in (43) such that

|Dψ(a1, a2, · · · , al)| ≤
(

2l4 − l3 − 2l2 − 5l + 6
6

)
4λ

(
l

∑
j=1
|aj|2

)
(44)

for all a1, a2, · · · , al ∈ R. We show that there does not exist an additive mapping A : R → R
satisfying

|ψ(a)− A(a)| ≤ δ|a|, a ∈ R, (45)

where λ and δ are constants.
We can easily find that ψ is bounded by 2λ on R. If ∑l

j=1 |aj| ≥ 1
2 or 0, then

|Dψ(a1, a2, · · · , al)| <
(

2l4 − l3 − 2l2 − 5l + 6
6

)
2λ.

Thus, (44) is valid. Next, suppose that

0 <
s

∑
j=1
|aj| <

1
2

,

and then there exists an integer s > 0 that satisfies

1
2(s+2)

≤
l

∑
j=1
|aj| <

1
2(s+1)

. (46)

Thus, 2s|a1| < 1
2 , 2s|a2| < 1

2 , 2s|a3| < 1
2 , · · · , 2s|al | < 1

2 and

2ta1, 2ta2, · · · , 2tal( l

∑
h=1

2thah

)
∑

1≤h<g≤l

(
2thah + 2tgag

)
l

∑
h=1

h(2tah)


∈]− 1, 1[, t = 0, 1, · · · , s− 1.

Moreover, for t = 0, 1, · · · , s− 1

Ψ(a1, a2, · · · , al) = φ
( l

∑
h=1

hah

)
− ∑

1≤h<g≤l
φ
(

hah + gag

)
+(l − 2)

l

∑
h=1

hφ(ah)

= 0.

Next, by inequality (46), we obtain that

|Dψ(a1, a2, · · · , al)| ≤
∞

∑
t=0

1
2t |Ψ(2ta1, 2ta2, · · · , 2tal)|

≤
∞

∑
t=s

1
2t

(
2l4 − l3 − 2l2 − 5l + 6

6

)
λ.
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It follows from (46) that

|Dψ(a1, a2, · · · , al)| ≤
(

2l4 − l3 − 2l2 − 5l + 6
6

)
4λ

(
l

∑
j=1
|aj|
)

. (47)

Thus, the function ψ satisfies the inequality (44). Assume that, on the contrary, there is an
additive mapping A : R→ R which satisfies (45).

From Remark 2, A must be A(a) = ca, a ∈ R. Thus, we have

|χ(a)| ≤ (δ + |c|)|a|, a ∈ R.

However, we have the choice of s > 0 with sλ > δ + |c|. If a ∈
(

0, 1
2s−1

)
, then 2ta ∈ (0, 1)

for all t = 0, 1, · · · , s− 1, and we have

ψ(a) =
∞

∑
t=0

φ(2ta)
2t ≥

s−1

∑
t=0

λ(2ta)
2t = sλa > (δ + |c|) |a|,

which contradicts. Thus, the functional Equation (3) is not stable.

5. Conclusions

In this work, we have introduced a new dimension to the finite variable QA functional
Equation (3) and its general solution for the function ψ was derived. Mainly, Ulam–
Hyers stability in the matrix paranormed spaces has been explored by employing the
Hyers method for the sum of norms factor of the generalized finite variable QA functional
Equation (3).
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