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Abstract: Mathematical models have the potential to contribute to design and evaluate the infectivity
spreading and growth of human immunodeficiency virus (HIV). Providing a better understanding
of the dynamics of HIV infection in vivo and the immune system interactions with the virus can
improve the classification of the infected cells and drive to an early diagnosis of the disease and drug
evaluations. We analyze a two-dimensional environment HIV model from a new perspective, in terms
of a multi-objective optimization problem, by introducing a linear modeling approach and providing
numerical evidence for its suitability by introducing a general Instantaneous Control Algorithm.
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1. Introduction

Over the past decades, mathematical models have been studied to express the within-
host HIV dynamics. These models have become significant in describing the dynamics
of HIV and in helping the researchers evaluate the effect of the antiviral drugs and the
disease progression. The principal target of HIV infection is a class of lymphocytes or white
blood cells that are the CD4+ uninfected T-cells, thus, when the T-cells count drops under
200 mm−3, then the patient is classified as an HIV-infected patient. Furthermore, a number
of mathematical models have been developed to represent and define the behavior of the
immune system and in particular its interactions with the HIV infestation and consequential
decline of CD4+ T-cells.

The HIV infection model, which has become a staple regarding virus replication
studies, has been introduced by [1], where three types of variables have been considered:
uninfected and infected cells and free virus particles. Infected cells are produced from
uninfected cells and free virus at a certain rate, and the free virus is produced by the same
uninfected cells at another rate and considering a proper decline rate. This model has been
extended during the years by [2–6]. In the present paper, we start with a HIV Diffusion
model consisting of ordinary and partial differential equations (see [2]) introduced in
Section 2. Such a model admits two steady-state solutions, the uninfected and infected
states, whose stability analysis was performed in [2] from a theoretical viewpoint. It turns
out that the stability of both steady-state solutions, under sufficiently small and smooth
perturbations, depends on the value of the reproduction ratio and, in the case of the infected
steady state, also on other parameters (see the forthcoming Theorem 1).

Our aim here is to provide a different way to validate the results obtained in [2] by
means of a linear optimization approach.

As it is typical when dealing with stability issues, in Section 2, we linearize the model
around the two stationary states, as in [2]. Next, in order to face the computational complex-
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ity of the problem, we concentrate our effort on discretizing the problem in Section 3. The
resulting two models are approached as multi-objective optimization problems in Section 4
and a general Istantaneous Control Algorithm to efficiently handle the computation com-
plexity is reported in Section 5. Last, some experimental results are presented in Sections 6
and 7 to prove the effectiveness of the introduced algorithm and the correctness of the
produced models.

2. HIV Model

As already described before, in the presence of HIV, there are three main actors
responsible for virus replication that can be represented by a virus V and two types of
possible T-cells: uninfected cells S, infected cells I. The virus V is produced by the infected
cells I and it is supposed that, on average, the cells produce N kind of virions. The model
presented in [2], which we study in this paper, can be depicted as follows:

HIV-MOD:

∂S
∂t

= α− µSS + rS
(

1− S
Smax

)
− γVS,

∂I
∂t

= γVS− µI I,

∂V
∂t

= NµI I − µVV + dv∆V,

set on the spatial domain (0, `)× (0, `) and with a periodic boundary condition applied
to V. Here, ∆ represents the two-dimensional Laplace operator. The uninfected cells S
are produced at a constant rate α from a set of precursors and are dying at a rate µS. It is
reasonable to think of the term rS(1− S

Smax ) as the logistic growth for the S cells, where
r is the proliferation rate of these and Smax is the maximum concentration of the T-cells.
The infected cells I are produced by the uninfected cells S and the virus V at a rate γVS
minus the death rate µI times the infected cells. Furthermore, the virus V is generated from
infected cells I at a rate NµI , taking into account the decline rate µVV and the diffusion
term. The various terms and parameters are summarized in Table 1.

Table 1. Variables and Parameters.

Variables Description Units

S Concentration of uninfected CD4+ T-cells population mm−3

I Concentration of infected CD4+ T-cells density mm−3

V Concentration of HIV virus mm−3

Constants Description Maximum Value

r Proliferation rate of the CD4+ T-cells population varies day (−1)
N Number of virus produced by infected cells 300
α Production rate for uninfected CD4+ T-cells 1.5 day−1 mm−3

γ Infection rate of uninfected CD4+ T-cells 0.001 day−1 mm3

Smax Maximal population level of CD4+ T-cells 1500 mm−3

at which the CD4+ T-cells proliferation shuts off
µS Death rate of uninfected CD4+ T-cells population 0.1 day−1

µI Death rate of infected CD4+ T-cells population 0.5 day−1

µV Clearance rate of HIV virus 10 day−1

This HIV-MOD model is a generalization of a previous model by Perelson
et al. [5,6] without diffusivity (i.e., dv = 0). The idea of adding a diffusion term
in HIV-MOD is strongly inspired by a paper by Funk et al. [7], where the effects of
diffusion in a different HIV model have been taken into account to allow for a better
understanding of the propagation of the disease into the cells. As a matter of fact,
models consisting only on ODEs have been a very good starting point for the mathe-
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matical analysis of the HIV infection as well as other viral infections, but it has become
clear that such models do not completely capture the dynamics of the viral infection.
Considering an environment where cells are densely stuffed, that increases the capacity
of the diffusive contamination due to infected cells. In this respect, the diffusive term
helps to better investigate the infection dynamics. Nowadays, new models, which take
into account the diffusivity have been proposed and thoroughly analyzed (we refer the
reader to, e.g., [8–15]).

System HIV-MOD is a mixed problem consisting of two nonlinear ODEs and a linear
PDE of parabolic type. The nonlinearity is quadratic due to presence of the logistic growth
term VS, so the problem exhibits a critical growth.

One of the most interesting aspects in the study of any HIV model is the analysis of
the existence of steady states and their stability, since it provides important information
on the evolution of the solutions to the HIV model and, consequently, on the evolution of
the HIV infection. Such analysis has been performed for the system HIV-MOD, with no
diffusion, in [4,6] and in [2] for the model in its full generality. Both the models with no
diffusivity and with a diffusion term admit two steady states, which are also constant in
the space. They are the triples (S0, I0, V0) and (S1, I1, V1), where:

S0 = S0(r) =
r− µS +

√
(r− µS)2 + 4αr

Smax

2r
Smax,

I0 = 0,

V0 = 0,

and

S1 =
µv

γN
,

I1 =
α

µI
− µSµV

γµI N
+

µVr
γµI N

(
1− µv

γNSmax

)
,

V1 =
αN
µV
− µS

γ
+

r
γ

(
1− µv

γNSmax

)
.

The steady state (S0, I0, V0), usually referred to as uninfected steady state, due to the fact
that both the infected cells and the virus are not present in the human body, has physical
relevance for every choice of the parameters, since S0(r) is positive for every choice of such
parameters. On the contrary, the second steady state (typically referred to as the infected
steady state) has physical relevance only for the parameters in a suitable set I , which is the
set of all parameters such that the reproduction ratio R0 is greater than 1, where:

R0(N, r) =
γNS0(r)

µV
. (1)

One of the main results of [2] is the stability analysis of both the uninfected and the
infected steady states. To state such a result, we need to introduce the set:

P = {(N, r) : N > N0, r1 ≤ r ≤ r2}, (2)

where N0 is the largest root of the equation aN2 + bN + c = 0 with:

a = γ2µISmax{µIµVSmax − 4α(µI + µV)},
b = −2γµIµV{(µ2

I + 3µIµV + µ2
V)S

max − 4α(µI + µV)},
c = µV{µ4

I + 2µ2
I µV(3µI − 2µS) + 6µIµ

3
V + µIµ

2
V(11µI − 4µS) + µ4

V},
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and r1, r2 are the roots of the equation Ar2 + Br + C = 0, with:

A = µ4
V(µI + µV),

B = γµ2
V NSmax[−γµIµV NSmax + 2αγµI N + 2αγµV N + µ2

I µV + 3µIµ
2
V + µ3

V ],

C = N2γ2(Smax)2[αγµ3
V N + αγµIµV N(µI + µV) + α2γ2N2(µI + µV) + µIµSµ3

V ].

The stability analysis in [2] reads as follows.

Theorem 1 (Theorems 2.1, 3.1 and 3.2 in [2]). The following properties are satisfied.

(i) If the reproduction ratio is less than one, then the uninfected steady state is the unique
physically relevant steady state and it is asymptotically stable.

(ii) If the reproduction ratio is greater than one, then the uninfected and the infected steady states
are both physically relevant. Moreover,

– the uninfected steady state is unstable;
– the infected steady state is asymptotically stable if the pair (N, r) does not belong to P ;
– the infected steady state is unstable if (N, r) belongs to the interior of the set P .

Here, asymptotic stability means that the solutions, which correspond to initial data
close to the uninfected steady state, converge to this state exponentially fast. In terms of
the infection, this means that the HIV infection can be eliminated if the uninfected steady
state is stable and it cannot be eliminated if the infected steady state is stable.

Remark 1. We stress that, even if the neither N0, nor the parabola P depend on the diffusivity
constant dV , the dynamics of the model are crucially influenced by this constant. This is confirmed
not only from a theoretical point of view, but also experimentally.

In this paper, we transform the model HIV-MOD into an optimization problem and
test on this model the abstract results in Theorem 1. As a matter of fact, dealing with the
HIV transmission HIV-MOD model is very expensive from a computational point of view
due to the quadratic growth in two of each constituting equations. For this reasons, we
replace such a model with its linearization around the steady states. Such a model is clearly
simpler, but still captures the dynamics of the original system near the steady states.

To simplify the final linearized expression, we introduce the new unknowns:

S̃ = S− Sk, Ĩ = I − Ik, Ṽ = V −Vk

for each k = 0, 1, which represent the perturbation of Sk, Ik and Vk. Considering the first
steady state (S0, I0, V0), we obtain the system:

∂S̃
∂t

=

(
− µS + r− 2rS0

Smax

)
S̃− γS0Ṽ, (3)

∂ Ĩ
∂t

=γS0Ṽ − µI Ĩ, (4)

∂Ṽ
∂t

=NµI Ĩ − µVṼ + dv∆Ṽ. (5)

Instead, for the second equilibrium point (T1, I1, V1), we obtain the system:

∂S̃
∂t

=

(
− µS + r− 2rS1

Smax − γV1

)
S̃− γS1Ṽ, (6)

∂ Ĩ
∂t

=γV1S̃− µI Ĩ + γS1Ṽ, (7)

∂Ṽ
∂t

=NµI Ĩ − µvṼ + dv∆Ṽ. (8)



Mathematics 2022, 10, 2021 5 of 15

3. Discretization

We discretize the problem using the Lax–Wendroff temporal method [16,17]. To
discretize the time horizon [0, Tmax], we use a set of discretization time points T max :=
{0 = t0, t1, . . . , tn = Tmax} with ∆t used as time step size, so that tn+1 = tn + ∆t. To
discretize the spatial domain, a grid point G = {(m, n) : ∀m = 0, . . . , `, n = 0, . . . , `}
is introduced. Summing up, we write S

tj
m,n to denote the value of S̃ at time tj for each

j ∈ T := {0 = t0, t1, . . . , tn−1 = Tmax − ∆t} and at the spatial point of coordinates (m, n).
We follow a similar procedure with I

tj
m,n and V

tj
m,n.

Then, the three Equations (3)–(5) may be discretized as follows:

S
tj+1
m,n − S

tj
m,n

∆t
=

(
− µS + r− 2rS0

Smax

)
S

tj
m,n − γS0V

tj
m,n, (9)

I
tj+1
m,n − I

tj
m,n

∆t
=γS0V

tj
m,n − µI I

tj
m,n, (10)

V
tj+1
m,n −V

tj
m,n

∆t
=NµI I

tj
m,n − µVV

tj
m,n

+
dv

∆xy
(V

tj
m+1,n + V

tj
m−1,n − 4V

tj
m,n + V

tj
m,n+1 + V

tj
m,n−1),

(11)

for all tj ∈ T . Here, ∆xy is the spatial step area into the grid G.
Similarly, the three Equations (6)–(8) can be written as:

S
tj+1
m,n − S

tj
m,n

∆t
=

(
− µS + r− 2rS1

Smax − γV1

)
S

tj
m,n − γS1V

tj
m,n, (12)

I
tj+1
m,n − I

tj
m,n

∆t
=γV1S

tj
m,n − µI I

tj
m,n + γS1V

tj
m,n, (13)

V
tj+1
m,n −V

tj
m,n

∆t
=NµI I

tj
m,n − µvV

tj
m,n

+
dv

∆xy
(V

tj
m+1,n + V

tj
m−1,n − 4V

tj
m,n + V

tj
m,n+1 + V

tj
m,n−1),

(14)

for all tj ∈ T .

4. Multi-Objective Optimization Problems

Combining the results obtained in the previous Sections 2 and 3, we can define, for-
mulate and solve the problems as linear optimization problems. Integration of PDEs into
discrete optimization problems is rather new in the literature and is mainly available for
some network problems, see, e.g., [18–22]. See also [23], where a general framework is pre-
sented. In order to solve the problem for each steady state, we produce some formulations
and a general Instantaneous Control algorithm (i.e., Algorithm 1) to efficiently handle the
computation complexity, and present them in the next subsections.

4.1. Handle the First Point of Equilibrium (S0, I0, V0)

To approach the Equations (9)–(11), we produce the following linear program and we
term this model as Multi-objective First Equilibrium Point (MO-FEP).

MO-FEP:

f1 : min ψ1 ≥ |S
tj
m,n| ∀tj ∈ T , (m, n) ∈ G (15)

f2 : min ψ2 ≥ |I
tj
m,n| ∀tj ∈ T , (m, n) ∈ G (16)

f3 : min ψ3 ≥ |V
tj
m,n| ∀tj ∈ T , (m, n) ∈ G (17)
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such that:

V
tj+1
0,n = V

tj+1
`,n ∀tj ∈ T , (m, n) ∈ G (18)

V
tj+1
m,0 = V

tj+1
m,` ∀tj ∈ T , (m, n) ∈ G (19)

S
tj+1
m,n − S

tj
m,n

∆t
≤
(
− µS + r− 2rS0

Smax

)
S

tj
m,n − γS0V

tj
m,n ∀tj ∈ T , (m, n) ∈ G (20)

I
tj+1
m,n − I

tj
m,n

∆t
≥ γS0V

tj
m,n − µI I

tj
m,n ∀tj ∈ T , (m, n) ∈ G (21)

V
tj+1
m,n −V

tj
m,n

∆t
≥ NµI I

tj
m,n − µVV

tj
m,n

+
dv

∆xy
(V

tj
m+1,n+V

tj
m−1,n−4V

tj
m,n+V

tj
m,n+1+V

tj
m,n−1) ∀tj ∈ T , (m, n) ∈ G (22)

ψ1, ψ2, ψ3 ≥ 0 (23)

− S0 ≤ S
tj
m,n ≤ Smax − S0 ∀tj ∈ T max, (m, n) ∈ G (24)

0 ≤ I
tj
m,n ≤ Smax ∀tj ∈ T max, (m, n) ∈ G (25)

0 ≤ V
tj
m,n ≤ Smax ∀tj ∈ T max, (m, n) ∈ G. (26)

The objective functions f1, f2, and f3 push perturbation unknowns to converge to zero.
However, these objective functions make the problem not linear, so we proceed to linearize
them, adding these linear inequality constraints:

S
tj+1
m,n − ψ1 ≤ 0 ∀tj ∈ T , (m, n) ∈ G (27)

−S
tj+1
m,n − ψ1 ≤ 0 ∀tj ∈ T , (m, n) ∈ G (28)

I
tj+1
m,n − ψ2 ≤ 0 ∀tj ∈ T , (m, n) ∈ G (29)

−I
tj+1
m,n − ψ2 ≤ 0 ∀tj ∈ T , (m, n) ∈ G (30)

V
tj+1
m,n − ψ3 ≤ 0 ∀tj ∈ T , (m, n) ∈ G (31)

−V
tj+1
m,n − ψ3 ≤ 0 ∀tj ∈ T , (m, n) ∈ G, (32)

obtaining the linear version of MO-FEP model, namely, MO-FEPL:

MO-FEPL:

f1 : min ψ1 (33)

f2 : min ψ2 (34)

f3 : min ψ3 (35)

such that:

(18)–(26), (27)–(32).

In MO-FEPL, we wish to minimize S
tj
m,n, I

tj
m,n and V

tj
m,n, We can easily see that the

constraints (20) and (21) are local in space. This means that the value S
tj+1
m,n , i.e., the value

of the discretization of the perturbation of the uninfected CD4+ cells at time tj+1 and at
the spatial node (m, n), depends on its value at the same node of the grid G at time tj,
times a constant which depends on the parameters µS, r and on the ratio 2rS0/Smax, and
on the value at time tj and at the same spatial point of the grid G of the discretization of
the perturbation of the virus. Similarly, the value of the discretization of the perturbation

of the infected CD4+ cells, i.e., I
tj+1
m,n , depends on the values I

tj
m,n and V

tj
m,n. Different is the

case of the constraints (22), which have nonlocal structure. This is not surprising at all,
since these constraints come from a partial differential equation of parabolic type and it
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is well known that such type of equation is not local in space. Even if the initial datum
is compactly supported, as time evolves, the support of the solution becomes the whole
space. Further, the constraints (23) ensure that ψ1, ψ2, ψ3 only assume non-negative values.

Constraints (24) ensure that S
tj
m,n are within the interval [−S0, Smax]. Last, constraints (25)

and (26) impose that the variables values are within [0, Smax], respectively, for I
tj
m,n and V

tj
m,n.

The situation changes if we consider optimization problems that arise by decomposing
the discretized time steps and considering the time steps separately. Thus, we obtain the
Multi-objective First Equilibrium Point Instantaneous Linear model (MO-FEPIL).

MO-FEPIL:

f1 :min
tj

ψ1 ∀(m, n) ∈ G (36)

f2 :min
tj

ψ2 ∀(m, n) ∈ G (37)

f3 :min
tj

ψ3 ∀(m, n) ∈ G (38)

such that:

S
tj+1
m,n − ψ1 ≤ 0 ∀(m, n) ∈ G (39)

− S
tj+1
m,n − ψ1 ≤ 0 ∀(m, n) ∈ G (40)

I
tj+1
m,n − ψ2 ≤ 0 ∀(m, n) ∈ G (41)

− I
tj+1
m,n − ψ2 ≤ 0 ∀(m, n) ∈ G (42)

V
tj+1
m,n − ψ3 ≤ 0 ∀(m, n) ∈ G (43)

−V
tj+1
m,n − ψ3 ≤ 0 ∀(m, n) ∈ G (44)

V
tj+1
0,n = V

tj+1
`,n ∀(m, n) ∈ G (45)

V
tj+1
m,0 = V

tj+1
m,` ∀(m, n) ∈ G (46)

S
tj+1
m,n − S

tj
m,n

∆t
≤
(
− µS + r− 2rS0

Smax

)
S

tj
m,n − γS0V

tj
m,n ∀(m, n) ∈ G (47)

I
tj+1
m,n − I

tj
m,n

∆t
≥ γS0V

tj
m,n − µI I

tj
m,n ∀(m, n) ∈ G (48)

V
tj+1
m,n −V

tj
m,n

∆t
≥ NµI I

tj
m,n − µVV

tj
m,n

+
dv

∆xy
(V

tj
m+1,n + V

tj
m−1,n − 4V

tj
m,n + V

tj
m,n+1 + V

tj
m,n−1) ∀(m, n) ∈ G

(49)

ψ1, ψ2, ψ3 ≥ 0 (50)

− S0 ≤ S
tj
m,n ≤ Smax − S0 ∀(m, n) ∈ G (51)

0 ≤ I
tj
m,n ≤ Smax ∀(m, n) ∈ G (52)

0 ≤ V
tj
m,n ≤ Smax ∀(m, n) ∈ G (53)

for all tj ∈ T where V
tj
m,n, I

tj
m,n, S

tj
m,n refer to the variables of time step ∆t. The interpretation

of the MO-FEPIL constraints is similar to the MO-FEPL model ones. The changes on
the constraints are only regarding the |T | = 1 that here it is reduced to be equal to 1,
in fact, at each temporal instant tj, the only variables values taken into consideration in
each grid point (m, n) ∈ G are those belonging to the previous instant time tj−1. This
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approach considerably reduces the number of problem constraints, boiling down the
problem complexity and resolution time effort.

4.2. Handliing the Second Equilibrium Point (S1, I1, V1)

The same model construction idea may be used to handle Equations (12)–(14), pro-
ducing the following Multi-objective Second Equilibrium Point Instantaneous Linear
(MO-SEPIL) model.

MO-SEPIL:

f1 :min
tj

ψ1 ∀(m, n) ∈ G (54)

f2 :min
tj

ψ2 ∀(m, n) ∈ G (55)

f3 :min
tj

ψ3 ∀(m, n) ∈ G (56)

such that:

S
tj+1
m,n − S

tj
m,n

∆t
≤
(
− µS + r− 2rS1

Smax − γV1

)
S

tj
m,n

− γS1V
tj
m,n, ∀(m, n) ∈ G (57)

I
tj+1
m,n − I

tj
m,n

∆t
≥ γS0V

tj
m,n − µI I

tj
m,n + γV1S

tj
m,n, ∀(m, n) ∈ G (58)

− I1 ≤ I
tj
m,n ≤ Smax − I1 ∀(m, n) ∈ G (59)

−V1 ≤ V
tj
m,n ≤ Smax −V1 ∀(m, n) ∈ G (60)

(39)–(46), (49)–(51).

for all tj ∈ T , where V
tj
m,n, I

tj
m,n, S

tj
m,n refer to the variables of time step ∆t. As in the case of

MO-FEPL, the constraints (57) and (58) are local in space. Last, constraints (59) and (60)
impose that the variables values are within [−I1, Smax − I1], [−V1, Smax −V1], respectively

for I
tj
m,n and V

tj
m,n.

4.3. Multi-Objective Problems (MOP)

Optimality in multi-objective optimization problems is defined in terms of Pareto
dominance and Pareto front. Compared to single-objective optimization, where a single
objective function needs to be optimized, in a multi-objective optimization, the goal search
is finding a set of so-called non-dominated solutions, knows as a Pareto optimal set.
Any solution of this set is optimal in the sense that no improvement can be made on the
component of the objective vector without worsening at least another one of its components.
To fully understand the dominance, we provide the following definition:

Definition 1 (A solution non-dominated). A solution x dominates a solution x′ if x is at least
equally as good as x′ with respect to all the objective functions and better than x′ with respect to
at least one objective function. In formal terms, for each objective function fi ∈ { f1, . . . , fK} to be
minimized, x dominates x′ if fi(x) ≤ fi(x′) for all i = 1, . . . , K and fi(x) < fi(x′) for at least a i.

The aim of the resolution methods is to provide a good trade-off between the di-
mension of the set of efficient solutions and the time and memory requirements to obtain
them. It is crucial to find not just one Pareto-optimal solution, but as many of them as
possible, meeting two different types of goals: enhancing the convergence to the true Pareto
solutions, and maximizing the spread of the solutions over the Pareto front. Unfortunately,
a suitable methodology to find multiple solutions efficiently is not present in the literature,
but roughly there are two possible approaches: the former based on the classical method-
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ology that requires to solve repetitive application of the same algorithm, the latter based
on bio-inspired search paradigms, whose main advantage is to obtain multiple solutions
in a single run, realized by means of Meta-Heuristics procedures [24–28]. Most of these
Meta-Heuristics algorithms are based on a priori knowledge of the true Pareto front and,
nevertheless, this knowledge is necessary to estimate the measure of convergence of the
solutions. For these reasons, it is crucial to have available an exact approach able to provide
a good representation of the Pareto front solutions. Among the exact approaches, available
in literature, a good methodology that compromises implementation cost, computational
burden and parameters analysis is the parameter-based scalarization approach, which
solves a multi-objective optimization problem as a single-objective problem by means of a
set of weights. The Pareto front is, in general an infinite set of solutions, this means that, in
theory, it is necessary to solve the scalarized problem over the whole range of values of
weights for the scalarization. Computationally speaking, this is unworkable in any case,
because solving each scalarized problem can in itself be very costly. In practice, one may
be forced to obtain a reasonable approximation of the Pareto front, solving the scalarized
version problem over a partition of the space of weights by finding a subset of Pareto points.
Further discussions on the scalarization method can be found in [29,30].

In order to study the Pareto optimal solutions for both problems MO-FEPIL and MO-
SEPIL under investigation, we proceed with a scalarization technique analysis, in which
we proceed with a convex combination of f1, f2 and f3 to obtain a single objective function
z = min λ1ψ1 + λ2ψ2 + λ3ψ3 with ∑k=1,2,3 λk = 1, this approach is of easy implementation.
Experiments are conducted by varying the λ parameter in the range (0, 1].

5. Instantaneous Control Algorithm

To make the most of the instantaneous MO-FEPIL and MO-SEPIL models, we now
consider a general Instantaneous Control Algorithm that is stated in an abstract manner
in Algorithm 1. Instantaneous control algorithms are useful in approaching challenging
control problems, see, e.g., [31]. By such method, given a chosen problem MOD, in our
case one between MO-FEPIL and MO-SEPIL , the problem can be effectively solved along
the discretization time. Hence, the setup of the algorithm at the time t + ∆t, with ∆t = 1,
for each t ∈ T depends only on the data results obtained by the previous instant time t, all
this enables to solve the problem step by step. We only need to generate the initial data
necessary at time t = 0.

Algorithm 1 Instantaneous Control Algorithm

Input: a discretized time horizon T , initial solutions V0
m,n, I0

m,n, S0
m,n for all points (m, n)

belonging to the grid G at time t = 0, and a Problem MOD

1: ε← 10−5

2: for all tj ∈ T AND (V
tj
m,n > ε AND I

tj
m,n > ε AND S

tj
m,n > ε, ∀(m, n) ∈ G) do

3: Setup the problem MODtj+1 at time step tj+1 gathering all the solutions found at

step tj that are V
tj
m,n, I

tj
m,n, S

tj
m,n ∀(m, n) ∈ G.

4: Solve the problem MODtj+1 .
5: if the obtained MODtj+1 solution is infeasible then
6: return “No solution is found”
7: else
8: Store the found vector solutions Vtj+1 , Itj+1 , Stj+1

9: end if
10: end for
11: return Feasible vector solution ({V0, I0, S0},{Vt1 , It1 , St1 }, . . . , {Vtn−1 , Itn−1 , Stn−1 },

{Vtn , Itn , Stn })

The algorithm iterates over lines 2–10 until it meets the termination conditions that are:
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(i) time window T ;

(ii) when, for any (m, n) ∈ G, the values V
tj
m,n, I

tj
m,n, S

tj
m,n are sufficiently small, less than of

a chosen tiny quantity ε in order to be considered experimentally close to zero values.

To set up, data of the new problem MODtj+1 at time tj+1 are obtained from the data
solution of the previous problem MODtj whose results are gathered at line 3.

Remark 2. In the Algorithm 1, we solve the problems MO-FEPIL or MO-SEPIL at a certain point.
At each step, the input data depend only on the produced ones returned by the algorithm execution
at a previous instant time. Suppose that we are considering MOD = MO-FEPIL , if the algorithm
stops at line 11, then we can affirm that this solution is also a feasible solution for MO-FEP, but if
the Algorithm stops at line 6, then we cannot state anything about the infeasibility found. Thus,
this approach cannot guarantee the global optimality of MO-FEP in general.

6. Computational Testbed

In this section, we present the parameter values used for the computational exper-

iments. The data for V
tj
m,n, I

tj
m,n, S

tj
m,n at the time tj = 0, where each tj is the time step

expressed in days, for each grid point (m, n) ∈ G were generated as uniformly distributed.
Specifically, for each:

LS is an experimental value which indicates the upper bound of uninfected S cells at time
t = 0;

LI is an experimental value which indicates the upper bound of infected I cells at time
t = 0;

LV is an experimental value which indicates the upper bound of virus V at time t = 0;

S0
m,n is generated at random with a uniform distribution in the interval [0, LS];

I0
m,n is generated at random with a uniform distribution in the interval [0, LI ];

V0
m,n is generated at random with a uniform distribution in the interval [0, LV ].

In the generation of the grid G, we consider ` = 20 in order to have a square grid of
21 × 21 points (according to the numerical simulations in the pioneering paper [7]) and
Tmax = 25,550 days. The following parameters have been adopted:

ε = 1× 10−5 as feasible measurement used as convergence threshold of V
tj
m,n, I

tj
m,n, S

tj
m,n;

dv = 0.1 as diffusion parameter for both models;

∆xy = 1.0× 1.0 is the spatial step area into the grid G;

∆t = 1.0 is the time interval (expressed in days);

γ = 0.001 as infection rate of uninfected cells S;

α = 1.5 as the production rate of uninfected cells S;

N = 300 as the number of the virus produced by the infected cells;

Smax = 1500 as maximal population level of uninfected cells S;

µS = 0.1 as the death rate of uninfected cells S;

µI = 0.5 as the death rate of infected cells I;

µV = 10 as the death rate of the virus V.

The experiments were executed by using IBM ILOG CPLEX 12.9 on the Intel(R)
Core(TM) i7-9750H CPU @2.60 GHz processor machine with 16 GB of DDR4 memory. In
order to appraise the quality of the Pareto front solutions, several convex combinations of
the three objective functions were considered and experiments were conducted at varying
weight coefficients λi, i = 1, 2, 3, in the range (0, 1], with such interval divided in 10 steps for
each dimension, such that ∑i=1,2,3 λi = 1 for each triplet of weight coefficients considered.
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For this reason, for each triplet (LS, LI , LV), there are solved 66 combinations generated by
λ ranges. We denote with Tmin and Tmax the found minimum and the maximum amount
of days objective values among all the Pareto solutions reached for the configuration
(LS, LI , LV). Since we need all the objective function contributions, we consider instead of
zero a non-negative sufficiently small number, e.g., a value equal to 10−6. A large set of
instances of initial data have been generated for each steady state, in order to evaluate the
stability of the two steady states and the instability of the uninfected steady state.

In order to evaluate the time efficiency and effectiveness of the algorithm, we present
the execution time in seconds Time (s) and the percentage or the number of the solutions that
converge to the steady state. The computational time Time (s) for the scalarization technique
convey the sum of all computational times needed to solve the scalarized problem over
a the whole range of values of weights λi used for the scalarization, where no time limit
was applied.

7. Computational Results

The results produced by Algorithm 1 are depicted in the next Tables 2–4, in particular
in Tables 2 and 3 are reported the comparisons regarding the solutions values related to the
MO-FEPIL model, in Table 4 those regarding to the MO-SEPIL model.

Table 2. Results of Algorithm 1 applied to the triple (LS, LI , Lv).

LS LI LV Tmin Tmax Time (s) % Solns
[min–max] [min–max] Mean Convergent

1 [1–20] [1–20] [39, 711] [369, 931] 318.41 100
2 [1–20] [1–20] [39, 727] [369, 935] 365.94 100
3 [1–20] [1–20] [39, 704] [375, 935] 372.35 100
4 [1–20] [1–20] [39, 656] [369, 935] 370.69 100
5 [1–20] [1–20] [39, 705] [383, 933] 371.40 100
6 [1–20] [1–20] [39, 705] [383, 933] 371.99 100
7 [1–20] [1–20] [39, 622] [375, 933] 372.00 100
8 [1–20] [1–20] [39, 696] [363, 871] 364.97 100
9 [1–20] [1–20] [39, 711] [375, 932] 324.76 100
10 [1–20] [1–20] [39, 705] [379, 933] 324.51 100
11 [1–20] [1–20] [38, 696] [383, 932] 371.49 100
12 [1–20] [1–20] [39, 705] [369, 934] 371.92 100
13 [1–20] [1–20] [39, 636] [369, 928] 371.93 100
14 [1–20] [1–20] [39, 711] [363, 936] 372.14 100
15 [1–20] [1–20] [39, 701] [363, 934] 370.01 100
16 [1–20] [1–20] [39, 688] [383, 934] 371.22 100
17 [1–20] [1–20] [39, 649] [375, 934] 371.47 100
18 [1–20] [1–20] [39, 712] [375, 930] 371.30 100
19 [1–20] [1–20] [40, 672] [379, 934] 370.96 100
20 [1–20] [1–20] [39, 630] [383, 929] 371.81 100

Table 3. Results of Algorithm 1 applied to the triple (LS, LI , Lv).

LS LI LV Tmin Tmax Time (s) # Solns
[min–max] [min–max] Mean Convergent

1 [1–30] [1–30] [1, 3] [1, 3] 1.82 0
2 [1–30] [1–30] [1, 3] [1, 3] 1.79 0
3 [1–30] [1–30] [1, 3] [1, 3] 1.97 0
4 [1–30] [1–30] [1, 3] [1, 3] 1.98 0
5 [1–30] [1–30] [1, 3] [1, 3] 2.12 0
6 [1–30] [1–30] [1, 3] [1, 3] 2.14 0
7 [1–30] [1–30] [1, 3] [1, 3] 1.92 0
8 [1–30] [1–30] [1, 3] [1, 3] 1.62 0
9 [1–30] [1–30] [1, 3] [1, 3] 2.00 0
10 [1–30] [1–30] [1, 3] [1, 3] 2.38 0
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Table 4. Results of Algorithm 1 applied to the triple (LS, LI , Lv).

LS LI LV Tmin Tmax Time (s) % Solns
[min–max] [min–max] Mean Convergent

1 [1–10] [10–150] [56, 202] [159, 207] 98.57 100
2 [1–10] [10–150] [3, 200] [157, 207] 93.10 100
3 [1–10] [10–150] [2, 198] [154, 207] 91.33 100
4 [1–10] [10–150] [2, 197] [154, 207] 90.30 100
5 [1–10] [10–150] [2, 195] [150, 206] 86.55 100
6 [1–10] [10–150] [2, 192] [144, 206] 84.13 100
7 [1–10] [10–150] [2, 188] [152, 206] 91.44 100
8 [1–10] [10–150] [2, 186] [149, 206] 88.70 100
9 [1–10] [10–150] [2, 184] [149, 206] 86.34 100
10 [1–10] [10–150] [2, 185] [142, 206] 84.15 100
11 [1–10] [10–150] [2, 178] [138, 206] 81.65 100
12 [1–10] [10–150] [2, 181] [143, 206] 80.13 100
13 [1–10] [10–150] [2, 171] [123, 206] 76.33 100
14 [1–10] [10–150] [2, 175] [142, 206] 73.51 100
15 [1–10] [10–150] [2, 155] [144, 206] 71.87 100
16 [1–10] [10–150] [2, 149] [139, 206] 72.80 100
17 [1–10] [10–150] [2, 23] [135, 206] 69.19 100
18 [1–10] [10–150] [2, 159] [133, 206] 67.00 100
19 [1–10] [10–150] [2, 23] [142, 207] 66.22 100
20 [1–10] [10–150] [2, 16] [134, 206] 63.43 100
21 [1–10] [10–150] [2, 16] [121, 206] 62.40 100
22 [1–10] [10–150] [2, 16] [109, 206] 60.58 100
23 [1–10] [10–150] [2, 16] [21, 205] 58.76 100
24 [1–10] [10–150] [2, 15] [121, 205] 56.00 100
25 [1–10] [10–150] [2, 15] [124, 206] 55.12 100
26 [1–10] [10–150] [2, 15] [24, 206] 53.65 100
27 [1–10] [10–150] [2, 15] [24, 205] 50.21 100
28 [1–10] [10–150] [2, 14] [21, 206] 47.01 100
29 [1–10] [10–150] [2, 14] [22, 206] 45.41 100
30 [1–10] [10–150] [2, 14] [23, 206] 44.74 100

In the next subsections, we describe into details the obtained numerical results. More
precisely, in Sections 7.1 and 7.2, we analyze the MO-FEPIL model in both the cases when
the reproduction ratio (R0, see (1)) is less or greater than the crucial threshold of value one.
Next, in Section 7.3, we analyze the MO-SEPIL model in a case where the reproduction
ratio is greater than one.

In the next Tables 2–4, for presentation reasons, we report the found solutions analyzed
into ranges (i.e., LI , LV ∈ [1–20] for Table 2 and LI , LV ∈ [1–30] for Tables 3 and 4. Among
all the found Pareto solutions for each triple (LS, LI , Lv), we present, in columns 2 and 3, the
minimum and maximum number of days (Tmin and Tmax) needed to reach the equilibrium,
i.e., to converge to the uninfected steady state. Column 4 reports computational time
average of Algorithm 1 execution. Last, the percentage of convergence or the number of
found feasible solutions is presented in column 5.

7.1. Results for MO-FEPIL Model with R0 < 1

Here, we assume that the proliferation rate of the CD4+ T-cell population (r) is equal
to 0.02. Due to the choice of the other parameters already set in Section 6, the value of the
reproduction ratio R0 is equal to 0.56.

Table 2 shows that the MO-FEPIL model produces all the feasible solutions at λ
variations for every value of LS, LI and LV , in the range [1–20].

It should be noted that there are few differences in the minimum of the value of
Tmin whereas some differences occur in the maximum values of Tmin and Tmax and in the
minimum value of Tmax. The main oscillations are observed in the maximum values of
Tmin and Tmax, which are respectively equal to 105 and 65 days, whereas the oscillations
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of the minimum value of Tmax are equal to 20 days. No relevant differences are observed
in the average time machine needed to solve the Algorithm 1, where the oscillation is less
than one minute.

It becomes clear that Table 2 proves the efficacy of the Algorithm 1, because we are able
to exploit efficiently the Pareto front in few minutes, obtaining a good number of different
solutions that spans effectively over the Pareto front. In addition, all the solutions are given
in, on average, under only 7 min. The results in Table 2 are in accordance with the theoretical
result in Theorem 1, which states the stability of the uninfected steady state. Furthermore,
we can assert experimentally that the found stability of the system is maintained also for
instances that are not small compared to the steady state (S0, I0, V0) = (18.69, 0, 0).

7.2. Results for MO-FEPIL Model with R0 > 1

Here, we assume that the proliferation rate of the CD4+ T-cell population (r) is equal
to 0.2. Considering the assigned values of the other parameters already set in Section 6,
the reproduction ratio is equal to 22.94. Finally, we observe that S0 = 764.71, I0 = 0 and
V0 = 0.

The results depicted in Table 3 show that the Algorithm 1 produces no convergent
solutions for whichever value of the parameter LS in the range [1–10] and LI , LV in the
range [1–30]. This result is in accordance with Theorem 1, which states the instability of the
uninfected steady state (S0, I0, V0) when the reproduction ratio R0 is greater than one.

7.3. Results for MO-SEPIL Model with R0 > 1

To handle the problem from a medical point of view, here, we assume that the prolifer-
ation rate of CD4+ T-cells is equal to 0.2, so that the reproduction ratio R0 is equal to 22.94.
Moreover, N0 = 140.01, r1 = 2.18 and r2 = 464.12. Hence, the pair (N, r) does not belong
to the interior of P (see (2)). Finally, we observe that S1 = 33.33, I1 = 9.37 and V1 = 140.55.

Table 4 shows that the MO-SEPIL model produces only feasible solutions for every
value of LS in the range [1–30] and LI in [1–10] and LV in [10–150], the latter with a step
equivalent to 10.

So far, the results depicted in Table 4 prove once more the theoretical property pre-
sented in Theorem 1, which shows that the infected steady state is stable, since the pair
(N, r) does not belong to the set P .

Furthermore, Table 4 proves the performance of the Algorithm 1, because we are able
to generate the Pareto front solutions in computational times of mostly less than 2 min.

Finally, we stress that no sensible differences in the minimum value of Tmin occur apart
from the case LS = 1. Similarly, no relevant differences are observed in the maximum value
of Tmax, whose oscillation is equal to two days. On the other hand, relevant differences
occur in the maximum value of Tmin: here, the difference between the minimum and
maximum value is 188 days. Similarly, the oscillation of the minimum value of Tmax is
138 days.

8. Conclusions

In this paper, we have analyzed a model proposed to describe the in vivo dynamics of
HIV in human beings. We have linearized and discretized the model in order to solve it
using instantaneous Control Algorithm. Our computational results, presented in Section 7,
agree with the theoretical results presented in Theorem 1, confirming the validity of the
MO-FEPIL and MO-SEPIL models. Despite the adopted simplifications, the two models
still capture the real dynamics of the infection. An additional outcome of the experiments
is assessing the efficiency of the Algorithm 1 and its efficacy in identifying the set of Pareto
Optimal solutions for the MO-FEPIL and MO-SEPIL problems.

We played with the values of the proliferation rate, taken in the admissible set of
values, to guarantee that the assumptions of point (i) and (ii) of Theorem 1 are satisfied. We
found this the easiest way to meet the assumptions of the quoted theorem. Of course, one
could rather change the values of the parameter γ, N, µS, µI and µV , but this, of course,
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would make the problems much more different from each other. Furthermore, it becomes
clear from the presented outcomes the efficacy and the efficiency of the Algorithm 1 to
identify the set of Pareto Optimal solutions in few minutes. These performances are quite
suitable for an interactive use of the algorithm in the real-time biomedical applications.
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