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Abstract: The early warning system detects early and responds quickly to emergencies in high-risk
patients, such as cardiac arrest in hospitalized patients. However, traditional early warning systems
have the problem of frequent false alarms due to low positive predictive value and sensitivity. We
conducted early prediction research on cardiac arrest using time-series data such as biosignal and
laboratory data. To derive the data attributes that affect the occurrence of cardiac arrest, we performed
a correlation analysis between the occurrence of cardiac arrest and the biosignal data and laboratory
data. To improve the positive predictive value and sensitivity of early cardiac arrest prediction, we
evaluated the performance according to the length of the time series of measured biosignal data,
laboratory data, and patient data range. We propose a machine learning and deep learning algorithm:
the decision tree, random forest, logistic regression, long short-term memory (LSTM), gated recurrent
unit (GRU) model, and the LSTM–GRU hybrid model. We evaluated cardiac arrest prediction models.
In the case of our proposed LSTM model, the positive predictive value was 85.92% and the sensitivity
was 89.70%.
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1. Introduction

Cardiac arrest is a disease in which the heart stops. In the U.S, 356,000 people expe-
rience cardiac arrest every year [1]. In the Republic of Korea, 30,000 people experience
cardiac arrest every year [2]. In cardiac arrest, the golden time is less than 3 min [3]. Delays
in cardiopulmonary resuscitation lead to death. Therefore, cardiac arrest is important
for early prediction. Cardiac arrest has been studied as having a precursor symptom or
asymptomatic precursor symptoms [4,5]. To determine a patient’s health, hospitals measure
biosignal data and laboratory data via medical sensors and blood. The hospital operated a
rapid response team (RRT) to manage ill patients such as cardiac arrest patients. RRT uses
an early warning system (EWS) such as the national early warning score (NEWS) or the
modified early warning score (MEWS). However, EWS has a low positive predictive value
(PPV) and false alarms [6].

Recently, machine learning has been applied in healthcare [7–11]. Additionally,
machine learning has been applied in the early prediction of cardiac arrest [6,12–18].
Sbrollini et al. [19] and Ibrahim et al. [20] developed models for predicting myocardial
infarction, which is a precursor to cardiac arrest, using electrocardiograms (ECGs). How-
ever, it is difficult make the early prediction of cardiac arrest based on myocardial infarction
because cardiac arrest is not necessarily preceded by myocardial infarction. Yosuf El
Saadany et al. developed a wireless Internet of Things (IoT) device that predicts cardiac
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arrest based on abnormal patterns on measured ECG [21]. However, the ECG has a disad-
vantage in that the measurement equipment requires being worn by each patient. They
studied the early prediction of cardiac arrest based on machine learning such as decision
tree, random forest, logistic regression, support vector machine, and recurrent neural net-
work [6,13–18]. The PPV of the prediction cardiac arrest algorithm improves the traditional
EWS, but the PPV of the prediction cardiac arrest algorithm is lower than 10% [6]. Thus,
they have a problem with false alarms. Early cardiac arrest prediction mainly used age,
sex, race, biosignal, and laboratory data. Churpek et al. proposed maximum respiration
rate and minimum diastolic blood pressure (DBP) as important parameters in predicting
cardiac arrest [22]. In this research, we developed an early prediction model for cardiac
arrest that improved the PPV and the sensitivity of traditional EWS based on shallow and
deep learning.

2. Materials

We performed a retrospective cohort study at Soonchunhyang University Cheonan
Hospital in the Republic of Korea. This research population consisted of patients admitted
to Soonchunhyang University Cheonan Hospital between January 2016 and June 2019.
This research excludes patients under 18 years of age and patients who were dead or
with cardiac arrest within 8 h of admission. In addition, we excluded patients whose
albumin, bilirubin, creatinine, platelet, hemoglobin, or white blood cell rates were never
measured. In our previous research [23], we used input parameters such as laboratory
data and laboratory check variables, but it was not properly considered. Table 1 shows the
characteristics of our study population.

Table 1. Characteristics of the study population.

Characteristics Description

Study period January 2016–June 2019

Total patients, n 34,452

Patients with in-hospital cardiac arrest, n 573

Number of features, n 14

Number of data for each patient, n 72

Sequence data slice size 8

Age, years, (mean ± SD) 58.6 ± 17.0

Males, n (%) 16,760 (48.7%)

Hospital Soonchunhyang University Cheonan Hospital
SD: standard deviation.

Medical sensors measured the biosignal data and laboratory data. The biosignal data
were manually typed into the hospital information system. The biosignal data therefore
suffered from human error. We used electronic health records (EHRs) data. Table 2 shows
the EHRs parameters. We ignored the abnormal biosignal data and biosignal data with
human error.

Table 2. Electronic health records (EHR) data parameters.

Variable Description

Age Age at hospitalization

Sex Male (1) or female (2)

DBP Diastolic blood pressure (30 ≤ DBP ≤ 300, mmHg)
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Table 2. Cont.

Variable Description

SBP Systolic blood pressure (30 ≤ SBP ≤ 300, mmHg)

Body temperature Body temperature (30 ≤ body temperature ≤ 45)

Respiratory rate Breaths per minute (3 ≤ breath ≤ 60)

Blood pressure Blood pressure (30 ≤ blood pressure ≤ 300, mmHg)

Albumin Albumin values (laboratory data)

Bilirubin Bilirubin values (laboratory data)

Creatinine Creatinine values (laboratory data)

PLT Number of platelets (laboratory data)

Hb Number of hemoglobin (laboratory data)

WBC Number of white blood cells (laboratory data)

AST Aspartate aminotransferase values (laboratory data)

ALT Alanine aminotransferase values (laboratory data)
DBP: diastolic blood pressure; SBP: systolic blood pressure; PLT: platelets; Hb: hemoglobin; WBC: white blood
cell; AST: aspartate aminotransferase; ALT: alanine aminotransferase.

3. Methods

We used the TensorFlow, Keras, and scikit-learn libraries for machine learning [24–26].
We expressed data in three dimensions using a recurrent neural network (RNN) model.
Figure 1 shows the workflow of cardiac arrest early prediction.

Figure 1. The workflow of cardiac arrest prediction.

3.1. Shallow and Deep Learning
3.1.1. Decision Tree

Decision Tree is a supervised learning method used for classification and regression. It
consists of nodes and branches. When it is constructed by recursively evaluation different
features and using at each node the feature that best splits the data. Table 3 shows variables
of the decision tree. At each node a variable is evaluated to decide which path to follow and
chooses the left leaf node or right leaf node based on a threshold. It is a similar rule-based
expert system. However, it is trained via a dataset. It uses a heuristic algorithm such as
information gain [27]. The decision tree computes the maximum impurity considering
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a feature and a threshold. In this paper, the decision tree selects one feature from the
biosignal sign and laboratory data. The decision tree calculates the maximum impurity to
classify cardiac arrest patients and patients without cardiac arrest.

Table 3. Variables of the decision tree.

Variable Description

p The function of calculating classes ratio.

count The function of count label data. In this paper, the function counts
cardiac arrest patients and patients without cardiac arrest.

dataset Input element and target dataset.
The EHRs dataset and event of cardiac arrest in this paper.

n The number of the dataset.

getLeftNode The function returns the dataset in which the value of the feature
is less or equal to the threshold.

getRightNode The function returns the dataset in which the value of the feature
is greater than the threshold.

The decision tree calculates the impurity through Equation (1). The impurity is used
to calculate the distribution of cardiac arrest patients and patients without cardiac arrest.

I(dataset) = 1− p(count(dataset, 0))2 − p(count(dataset, 1))2 (1)

The maximum information gain is calculated through Equation (2), and the optimal
feature and threshold are obtained through iterative calculations.

IG(dataset, f eature, threshold) = I(dataset)
− count(0)

n I(getLe f tNode(dataset, f eature, threshold))
− count(1)

n I(getRightNode(dataset, f eature, threshold))
(2)

3.1.2. Random Forest

Random Forest is an ensemble algorithm-based decision tree [27,28]. The random
forest consists of many decision trees and uses bootstrapping [28]. It predicts based on the
voting of many decision trees. Random forest bootstraps via the training data of EHRs data
and predicts cardiac arrest events using voting by many decision trees.

3.1.3. Logistic Regression

The logistic regression algorithm is a linear classifier algorithm [27]. The logistic
regression algorithm applies a logistic function to the result of a linear classifier [27,29]. A
logistic regression calculated gradient and bias to classify cardiac arrest patients based on
the EHRs data.

3.1.4. Recurrent Neural Network

The recurrent neural network (RNN) model is fit for time-series data. The RNN model
calculates the hidden state and considers the result of previous hidden states and the
current input parameters [30]. The vanilla RNN cell considers short-term memory. Table 4
shows the variable used in the RNN cell [30].

Vanilla RNN cells are calculated by sequentially calculating the previous hidden state
and time series data as shown in Equation (3) [30]. The RNN model trains to make the
early prediction of cardiac arrest by calculating weights using EHRs data measured at
one-hour intervals.

Ht = tanh(ht−1Wh + Wxxt + b) (3)
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Table 4. Variables of the RNN cell.

Variable Description

tanh Hyperbolic tangent function.
h Hidden state. ht means a hidden state of the t time.
x Input value. xt means the input value of the t time.

W Weight matrices. Wh means the weight of the hidden state. Wx
means the weight of the input value.

b The bias of the hidden value.

The long short-term memory (LSTM) cell solves the long-term dependency problem
proposed by Horchreiter et al. [31]. Table 5 shows the variable used in the LSTM cell [31].

Table 5. Variables of the LSTM cell.

Variable Description

σ Logistic sigmoid function.
i Value of input gate. It means the value of the input gate of the t time.
f Value of forget gate. ft means the value of the forget gate of the t time.
o Value of output gate. ot means the value of the output gate of the t time.
c Long-term memory. Ct means the long-term memory of the t time.
h Hidden state. Ht means a hidden state of the t time.

W
Weight matrices of matrices. W{x or h}{i or f or o or c} means the weight of the input

value or hidden state and input gate or forget gate or output gate or
long-term memory.

b
The bias of hidden value. bi means the bias of input gate. b f means the bias

of forget gate. bo means the bias of output gate. bc means the bias of
long-term memory.

In this paper, the importance weights of cardiac arrest are calculated in sequence
through Equation (4) [31].

it = σ(Wxiixt + Whiht−1 + bi) (4)

In this paper, LSTM cells calculate unnecessary weights for predicting cardiac arrest
through Equation (5), and long-term weights are updated through Equation (6) [31].

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(5)

ct = ft · ct−1 + it · tanh(Wxcxt + Whcht−1 + bc) (6)

In this paper, the LSTM cells calculate the output result of the LSTM cell through
Equation (7), and make the early prediction of cardiac arrest within 8 h through
Equation (8) [31].

ot = σ(Wxoxt + Whoht−1 + bo) (7)

ht = ot · tanh(ct) (8)

We used Adam algorithm as the optimizer of the LSTM model. The Adam algorithm
is one of the stochastic gradient descent methods that considers adaptive estimation and
moments [32]. The LSTM model requires input features and previous weights to calculate
weights. In this paper, input features are EHRs data transmitted to the input gate, the forget
gate, and the output gate. The input gate calculates the weight of cardiac arrest prediction
through Equation (4) and transmits it to the forget gate. The forget gate calculates the unnec-
essary weights for predicting cardiac arrest through Equation (5). It removes unnecessary
weights from the long-term memory and updates the weights through Equation (6). The
updated long-term memory is transferred to the output gate. The output gate calculates
the weights to predict cardiac arrest through Equations (7) and (8) based on short-term
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memory and long-term memory and EHRs data and stores the short-term memory. We
used the Adam algorithm to calculate the weight through backpropagation. We organized
an output layer after the LSTM model to predict cardiac arrest within 8 h.

Our LSTM models are subsequently constructed of the LSTM layer, dropout layer,
LSTM layer, dropout layer, LSTM layer, dropout layer, LSTM layer, dropout layer, and
dense layer.

The gated recurrent unit (GRU) cell designed by Cho et al. [33] improved the pro-
cessing time compared with the LSTM cell and obtained a result similar to the LSTM cell.
Table 6 shows the variable used in the GRU cell [33].

Table 6. Variables of the GRU cell.

Variable Description

σ Logistic sigmoid function.

tanh Hyperbolic tangent function.

r Value of reset gate. rt means the value of the reset gate of the t time.

z Value of update gate. zt means the value of the update gate of the t time.

h Hidden state. ht means a hidden state of the t time.

W Weight matrices of matrices. W{x or h}{r or z} means the weight of input value or
hidden state and reset gate or update gate.

B The bias of hidden value. Br means bias of reset gate. Bz means bias of update gate.

In the GRU cell, it is decided whether to use the previous result weight or update the
weight of the cardiac arrest prediction to reduce the number of operations. In this paper,
the GRU cell determines whether to use the previous weight through Equation (9) [33], and
calculates the cardiac arrest weight using the EHR data.

Rt = σ(Wxrxt + Whrht−1 + br) (9)

In this paper, the GRU cell determines whether to use the previous cardiac arrest
weight or calculate the cardiac weight using EHRs data through Equation (10) [33].

Zt = σ(Wxzxt + Whzht−1 + bz) (10)

In this paper, the GRU cell predicts cardiac arrest using EHRs data through
Equation (11) [33].

Ht = (1 − zt)· tanh(Whr(rt ·ht−1) + Whzht−1 + br) + zt · ht−1 (11)

The GRU model requires input features and previous weights to calculate weights. In
this paper, input features are EHRs data transmitted to the reset gate and the update gate.
The reset gate calculates the weight of cardiac arrest prediction through Equation (9). The
update gate calculates whether to use the stored weight or the newly calculated weight
through Equation (10). The short-term memory determines whether to use the previous
weight or to store the newly calculated weight through Equation (11). We used the Adam
algorithms to calculate weight through backpropagation. We organized an output layer
after the GRU model to predict cardiac arrest within 8 h.

Our GRU model consists of a stack of the GRU layer, dropout layer, GRU layer,
dropout layer, GRU layer, dropout layer, GRU layer, dropout layer, and dense layer. Our
LSTM–GRU hybrid model is constructed the following LSTM layer, dropout layer, LSTM
layer, dropout layer, GRU layer, dropout layer, GRU layer, dropout layer, and dense layer.

Our model hyperparameters are as follows: the activation function of the LSTM and
GRU layers is hyperbolic tangent; the activation function of the dense layer is sigmoid; the
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maximum epoch is 100; the monitoring value of early stop is the validation f1 score; the
loss function is binary cross-entropy; and the optimizer is Adam.

3.2. Synthetic Minority Oversampling Technique

Synthetic minority oversampling technique (SMOTE) is a kind of oversampling algo-
rithm proposed by Chawlas et al. [34]. In this research, cardiac arrest patients and other
patients are unbalanced. Therefore, it is difficult for machine learning to correctly predict
cardiac arrest. We solved the overfitting problem by applying the SMOTE algorithm to the
training dataset. We applied the SMOTE algorithm with a majority to minority ratio of 1:1.

3.3. Data Preprocessing

Time series data require equal measurement intervals. The medical staff measures
biosignal and laboratory data in consideration of the patients’ health conditions. Therefore,
the measurement interval is different for each patient. In the case of medical staff typing
a biosignal, it may have human error. Therefore, EHRs data require data preprocessing.
We changed the measurement interval to one hour because the measurement interval is
one hour in ICU patients. The EHRs data express the patient information, measurement
item, and measurement value. Patient information includes patient identification (ID), age,
and sex. Hospitals measure biosignal data and laboratory data when monitoring patient
health; therefore, the measurement intervals of each patient may be different. We replaced
the missing value with the last measured values. Each patient data range is different. We
only used 72 h of patient data.

Machine learning is generally split into training and test datasets or training and
validation and test datasets. In our patient data, if the data of the same patient is divided
into a training dataset, a validation dataset, and a test dataset, this may cause an overfitting
problem. Considering this overfitting problem, we grouped the same patient data into one
group and then split the dataset.

We split the training and test datasets based on the grouped patients and shuffled
the datasets via the train_test_split method provided by scikit-learn [26]. The ratio of the
training to test datasets was 9:1. Additionally, we split the training and validation datasets
and shuffled the datasets via the train_test_split method based on the training dataset in
deep learning. The ratio of the training to validation datasets was 9:1. We data sliced the
data of the grouped patients into past patient data. We applied the SMOTE algorithm to
the training dataset.

4. Result
4.1. Performance Evaluation Method

In general, machine learning uses accuracy as a performance evaluation for classifica-
tion. In healthcare, machine learning considers PPV and sensitivity. Figure 2 shows four
types of data prediction.

Figure 2. Four types of data prediction.
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PPV was calculated by Equation (12). PPV considers the predicted cardiac arrest.
Sensitivity considers cardiac arrest patients. The F1 score considers both PPV and sensitivity
with the same weight.

PPV =
TP

TP + FP
(12)

A negative predictive value (NPV) was calculated by Equation (13). NPV considers
the predicted non-cardiac arrest.

NPV =
TN

TN + FN
(13)

Sensitivity was calculated by Equation (14).

sensitivity =
TP

TP + FN
(14)

F1 score was calculated by Equation (15).

F1 score = 2 × PPV × sensitivity
PPV + sensitivity

(15)

4.2. Performance Evaluation Results according to Input Parameters

We evaluated according to the input parameters for the correlation analysis of the
input parameters. The training dataset used 49–72 h from each patient, and the validation
and test datasets used 1–72 h of data from each patient. We performed cardiac arrest
predictions within 8 h based on 24 h of data. We set 24 h of data because this decreases
the learning time. We compared each laboratory datum based on patient information
(e.g., age, sex) and each biosignal datum (e.g., SBP, DBP, body temperature, breaths per
minute, blood pressure) also based on patient information. We compared the maximum
SBP and minimum SBP based on patient information and biosignal data. Table 7 shows
the average PPV, sensitivity, and F1 score based on the LSTM model via input parameters.
Each parameter was performed five times.

Table 7. Performance evaluation of each parameter.

Input Parameters PPV NPV Sensitivity F1 Score

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood pressure 3.07% 99.89% 61.27% 0.0583

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood pressure, albumin 4.06% 99.94% 78.68% 0.0771

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood pressure, bilirubin 3.38% 99.91% 69.30% 0.0643

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood

pressure, creatinine
2.80% 99.9% 67.63% 0.0533

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood pressure, PLT 6.85% 99.91% 69.08% 0.1150

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood pressure, Hb 3.82% 99.91% 67.85% 0.0722

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood pressure, WBC 3.36% 99.9% 64.56% 0.0639

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood pressure, AST 2.80% 99.92% 72.15% 0.0536
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Table 7. Cont.

Input Parameters PPV NPV Sensitivity F1 Score

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood pressure, ALT 2.35% 99.94% 79.04% 0.0454

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood pressure, AST,

ALT
2.38% 99.93% 76.40% 0.0460

Age, sex, SBP, body temperature, breaths per
minute, blood pressure 1.98% 99.94% 79.04% 0.0385

Age, sex, DBP, body temperature, breaths
per minute, blood pressure 15.77% 98.64% 51.14% 0.0519

Age, sex, body temperature, breath, blood
pressure 2.36% 99.92% 73.73% 0.0519

Age, DBP, SBP, body temperature, breaths
per minute, blood press 2.11% 99.93% 76.40% 0.0490

Sex, DBP, SBP, body temperature, breaths per
minute, blood pressure 1.44% 99.91% 75.79% 0.0282

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood pressure,

maximum SBP in 72 h
3.49% 99.92% 73.11% 0.0660

Age, sex, DBP, SBP, body temperature,
breaths per minute, blood pressure,

maximum SBP in 24 h
3.13% 99.92% 71.11% 0.0597

Age, DBP, SBP, body temperature, breaths
per minute, blood pressure, minimum SBP

in 72 h
3.68% 99.93% 77.63% 0.0696

Age, DBP, SBP, body temperature, breaths
per minute, blood pressure, minimum SBP

in 24 h
3.99% 99.89% 61.97% 0.0750

Age, DBP, SBP, body temperature, breaths
per minute, blood pressure, maximum SBP

in 72 h, minimum SBP in 72 h
5.23% 99.94% 81.18% 0.0976

PPV: positive predictive value; NPV: negative predictive value; DBP: diastolic blood pressure; SBP: systolic
blood pressure.

We confirmed that the PPV or sensitivity increased each laboratory data based on
patient information and biosignal data. We compared each AST, ALT, and both AST and
ALT. In the case of AST, the average PPV was 0.5% higher than others. In the case of
ALT, the average sensitivity was 79.04% higher than others. We confirmed that if sex and
DBP were ignored, then the sensitivity was increased. We compared the maximum SBP
in 72 h and minimum SBP in 72 h based on patient information—biosignal data—and the
sensitivity was increased. Therefore, we used age, SBP, maximum SBP in 72 h, minimum
SBP in 72 h, body temperature, breaths per minute, blood pressure, albumin, bilirubin,
creatinine, PLT, Hb, WBC, ALT. Figure 3 shows the receiver operating characteristic (ROC)
curve of each parameter.

4.3. Performance Evaluation Results according to the Number of Past Patient Data and Data Range

We evaluated according to the number of past patient data and data range. The
training dataset used each data range, and the validation and test dataset used 1–72 h of
data from each patient. Each LSTM model was performed five times. Table 8 shows the
average PPV, sensitivity, and F1 score based on the LSTM model considering the past data
and data range.
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Figure 3. Receiver operating characteristic (ROC) curve of each parameter.

Table 8. Performance evaluation of the number of past patient data and patient data range.

Number of Past
Patient Data Patient Data Range PPV NPV Sensitivity F1 Score

8 h

1~72 h 9.03% 99.96% 81.23% 0.1623

9~72 h 8.11% 99.97% 84.82% 0.1478

17~72 h 9.04% 99.96% 81.53% 0.1626

25~72 h 8.72% 99.97% 85.18% 0.1581

33~72 h 8.25% 99.96% 79.61% 0.1493

41~72 h 8.19% 99.96% 82.54% 0.1488

49~72 h 7.22% 99.96% 80.53% 0.1321

57~72 h 6.01% 99.96% 81.18% 0.1117

16 h

1~72 h 8.59% 99.96% 82.81% 0.1554

9~72 h 9.29% 99.95% 80.18% 0.1664

17~72 h 9.03% 99.95% 82.41% 0.1627

25~72 h 8.63% 99.96% 81.75% 0.1558

33~72 h 8.68% 99.96% 85.31% 0.1574

41~72 h 9.74% 99.96% 82.85% 0.1742

49~72 h 6.87% 99.96% 83.90% 0.1267



Mathematics 2022, 10, 2049 11 of 17

Table 8. Cont.

Number of Past
Patient Data Patient Data Range PPV NPV Sensitivity F1 Score

24 h

1~72 h 10.58% 99.97% 87.83% 0.1882

9~72 h 10.83% 99.96% 84.69% 0.1919

17~72 h 7.84% 99.96% 84.61% 0.1423

25~72 h 10.65% 99.95% 83.64% 0.1889

33~72 h 9.37% 99.96% 84.12% 0.1678

41~72 h 9.47% 99.95% 80.95% 0.1690

32 h

1~72 h 15.71% 99.94% 83.16% 0.2641

9~72 h 13.86% 99.94% 82.32% 0.2369

17~72 h 10.31% 99.82% 81.49% 0.1822

25~72 h 10.44% 99.93% 80.09% 0.1844

33~72 h 9.45% 99.94% 83.16% 0.1687

40 h

1~72 h 19.39% 99.95% 87.41% 0.3173

9~72 h 17.41% 99.94% 85.57% 0.2888

17~72 h 11.63% 99.93% 82.59% 0.2020

25~72 h 9.99% 99.94% 85.26% 0.1778

48 h

1~72 h 23.85% 99.93% 87.32% 0.3740

9~72 h 17.05% 99.9% 82.63% 0.2802

17~72 h 14.93% 99.91% 83.73% 0.2504

56 h
1~72 h 37.60% 99.88% 85.83% 0.5229

9~72 h 30.59% 99.88% 85.75% 0.4438

64 h 1~72 h 61.26% 99.72% 83.60% 0.7001
PPV: positive predictive value; NPV: negative predictive value.

The dataset of this research has a few cases of cardiac arrest data. In the case of the
number of past patient data of 64 h, PPV and sensitivity were highest. Figure 4 shows the
receiver operating characteristic (ROC) curve of the past patient data range.

4.4. Performance Evaluation Result of Machine Learning Algorithm

We performed machine learning based on early cardiac arrest predictions. We changed
the stratified k-fold for shallow machine learning and the unit size of layers for deep
learning. We performed machine learning algorithms such as decision tree, random forest,
logistic regression, LSTM model, GRU model, and LSTM–GRU hybrid model. Each algo-
rithm was performed five times. Table 9 shows the average PPV, sensitivity, and F1 score
based on each algorithm.

In the case of shallow machine learning, we used the stratified K-Fold algorithm
provided by scikit-learn [26]. In the case of deep learning, we used EarlyStopping provided
by TensorFlow [24] and its monitoring value was a validation F1 score. However, a few
deep learning models overfit. We considered the maximum PPV of each algorithm.

The decision tree had low PPV and sensitivity. The random forest had the highest PPV
but low sensitivity. Logistic regression had low PPV but had the highest sensitivity in shal-
low machine learning. Deep learning models were similar to the sensitivity of the logistic
regression and had higher PPV than the logistic regression. Figure 5 shows the receiver
operating characteristic (ROC) curve for each algorithm that has the best performance.
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Figure 4. Receiver operating characteristic (ROC) curve of the past patient data range.

Table 9. Performance evaluation of the machine learning algorithm.

Algorithms Hyperparameter PPV NPV Sensitivity F1 Score

Decision tree

K set 4 56.14% 99.21% 53.25% 0.5458

K set 5 59.90% 99.26% 55.83% 0.5778

K set 10 69.34% 99.29% 57.76% 0.6298

Random forest

K set 4 87.91% 99.22% 53.07% 0.6617

K set 5 86.25% 99.26% 55.70% 0.6768

K set 10 90.71% 99.26% 55.75% 0.6901

Logistic regression

K set 4 23.50% 99.80% 88.82% 0.3717

K set 5 21.70% 99.81% 89.47% 0.3492

K set 10 21.85% 99.84% 90.83% 0.3523

LSTM model

The unit size of layers set 32 72.20% 99.78% 87.15% 0.7883

The unit size of layers set 64 73.95% 99.81% 89.04% 0.8075

The unit size of layers set 96 71.68% 99.78% 87.15% 0.7756

The unit size of layers set 128 67.85% 99.81% 88.64% 0.7583
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Table 9. Cont.

Algorithms Hyperparameter PPV NPV Sensitivity F1 Score

GRU model

The unit size of layers set 32 66.68% 99.78% 87.02% 0.7487

The unit size of layers set 64 70.09% 99.79% 87.32% 0.7707

The unit size of layers set 96 81.19% 99.85% 91.10% 0.8582

The unit size of layers set 128 73.86% 99.86% 91.61% 0.8121

LSTM–GRU hybrid model

The unit size of layers set 32 63.78% 99.75% 84.96% 0.7233

The unit size of layers set 64 61.05% 99.78% 86.93% 0.7000

The unit size of layers set 96 60.43% 99.64% 79.05% 0.6692

The unit size of layers set 128 69.35% 99.84% 90.35% 0.7825

PPV: positive predictive value; NPV: negative predictive value.

Figure 5. Receiver operating characteristic (ROC) curve of each algorithm.

5. Discussion

We proposed a cardiac arrest early prediction model to improve traditional EWS
for PPV. We used biosignal data and laboratory data. We compared other cardiac arrest
prediction algorithms based on biosignal and laboratory data. However, the performance of
each algorithm is hard to evaluate because each algorithm uses different datasets. Table 10
shows the performance of the EWS and the proposed methods in this paper. Our proposed
LSTM model had the highest PPV and F1 scores.
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Table 10. Comparison of performance with previous studies for predicting in-hospital cardiac arrest.

Algorithms PPV NPV Sensitivity Specificity F1 Score

Traditional EWS [6]

SPPTS 0.4% 99.9% 60.7% 77.0% 0.8

MEWS ≥ 3 0.5% 99.9% 63.0% 79.9% 0.0100

MEWS ≥ 4 0.6% 99.9% 49.3% 86.8% 0.0120

MEWS ≥ 5 0.6% 99.9% 37.3% 90.6% 0.0130

RF 0.4% 99.9% 75.3% 69.9% 0.0080

LR 0.2% 99.9% 76.3% 34.6% 0.0040

Joon-myoung
Kwon et al. [6]

DEWS ≥ 2.9 0.5% 99.9% 75.7% 76.5% 0.0100

DEWS ≥ 3 0.5% 99.9% 75.3% 77.0% 0.0100

DEWS ≥ 7.1 0.8% 99.9% 63.0% 87.0% 0.0150

DEWS ≥ 8.0 0.8% 99.9% 60.7% 88.3% 0.0160

DEWS ≥ 18.2 1.4% 99.9% 49.3% 94.6% 0.0280

DEWS ≥ 52.8 3.7% 99.9% 37.3% 98.4% 0.0710

Ueno Ryo et al. [18]

RF (medical patient,
biosignal data) 4.7% 99.7% 80.3% 78.3% 0.0888

RF (medical patient, biosignal,
and laboratory data) 5.2% 99.7% 79.6% 80.9% 0.0976

RF (surgical patient,
biosignal data) 2.0% 99.8% 70.8% 81.9% 0.0389

RF (surgical patient, biosignal,
and laboratory data) 1.8% 99.8% 70.7% 79.5% 0.0351

RF (ICU patient,
biosignal data) 34.6% 90.5% 88.9% 38.4% 0.4981

RF (ICU patient, biosignal, and
laboratory data) 38.2% 85.9% 72.5% 56.0% 0.5004

RF (ward patient,
biosignal data) 2.2% 99.9% 81% 79.1% 0.0428

RF (ward patient, biosignal,
and laboratory data) 2.4% 99.9% 78.2% 81.4% 0.0466

Our previous
research [23]

DT 46.80% 99.01% 28.99% 99.54% 0.3580

RF 98.22% 98.95% 24.25% 100.00% 0.3894

LR 5.14% 99.57% 76.33% 80.35% 0.0964

LSTM model 38.37% 99.06% 32.66% 99.27% 0.3528

GRU model 34.59% 99.09% 34.59% 99.09% 0.3469

LSTM–GRU hybrid model 30.53% 99.14% 38.65% 98.77% 0.3412

Our proposed methods

DT 75.80% 99.28% 57.02% 99.69% 0.6508

RF 96.88% 99.24% 54.39% 99.97% 0.6966

LR 23.84% 99.81% 89.04% 95.22% 0.3761

LSTM model 85.92% 99.83% 89.69% 99.75% 0.8777

GRU model 84.95% 99.84% 90.35% 99.73% 0.8757

LSTM–GRU hybrid model 79.76% 99.80% 88.16% 99.62% 0.8375

SPTTS: single-parameter track and trigger system; MEWS: the modified early warning score; DEWS: deep learning-
based early warning system; DT: decision tree; RF: random forest; LR: logistic regression; LSTM: long short-term
memory; GRU: gated recurrent unit; PPV: positive predictive value; NPV: negative predictive value.
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Traditional EWS is useful for classifying emergency patients [6] but there is a problem
with false alarms in predicting cardiac arrest. DEWS performs prediction through a deep
learning algorithm based on biosignal data [6] which we will apply to hospitals. Therefore,
we considered laboratory data. Ueno Ryo et al. studied the random forest algorithm that
showed low PPV [18]. Our proposed methods show higher PPV and sensitivity.

We confirmed that early cardiac arrest prediction models based on deep learning
have high PPV. In our previous study, we excluded patients without laboratory data and
performed evaluation. We confirmed that the check of the measurement of laboratory
data did not train as intended. We only used 8 h of past patient data in the previous
study [23]. In this study, we excluded a patient whose laboratory data were not measured.
We changed the past patient range because we improved the PPV and sensitivity. However,
our proposed methods are difficult to apply to patients whose data range is under 64 h.

The dataset in our research had three limitations. First, each patient had different
measurement interval times because each patient’s data were measured by the medical
staff who considered the patient’s individual condition. However, deep learning based
on the RNN model requires the same interval time. We changed the patient measurement
interval time to 1 h. We replaced the missing values and set last measure values. Second,
our datasets were only collected from Soonchunhyang University Cheonan Hospital. In
this research, the population was therefore homogenous. Third, we did not consider patient
data which were less than 64 h in the test dataset. Therefore, it is difficult to apply our
method to patients with short-stay patients.

Deep learning methods based on RNN models can potentially predict cardiac arrest at
an early stage using time-series data. In this research, we predict cardiac arrest within 8
h. The cardiac arrest early prediction algorithm has potential within 1 h in the future. In
this research, we only used 72 h of patient data. When using real-time data from hospitals
without data preprocessing, we have to solve the problem of low PPV and sensitivity.

6. Conclusions

We proposed in-hospital cardiac arrest prediction models in Soonchunhyang Univer-
sity Cheonan Hospital based on machine learning. We demonstrated improved perfor-
mance based on input parameters (e.g., consider: maximum SBP, minimum SBP; ignore:
sex, DBP, AST). We demonstrated improved performance based on the number of past
patient data (64 h). We demonstrated improved performance based on hyperparameter
tuning (decision tree: k set 10; random forest: k set 10; logistic regression: k set 4; LSTM
model: the unit size of the layer set 96; GRU model: the unit size of the layer set 96;
LSTM–GRU hybrid model: the unit size of the layer set 64). Our proposed methods only
predict cardiac arrest or lack of cardiac arrest. In the future, we plan to develop a scoring
system for medical staff to confirm cardiac arrest risk levels and an explainable artificial
intelligence (XAI) model for cardiac arrest prediction. In the future, we aim to predict
the cardiac arrest forecast time such as within 1 h, 2 h, 4 h, 8 h, 12 h, and 16 h. We will
test our machine learning algorithms in Soonchunhyang University Cheonan Hospital,
Soonchunhyang University Bucheon Hospital, Soonchunhyang University Seoul Hospital,
and Soonchunhyang University Gumi Hospital.
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