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Abstract: This paper is concerned with linear matrix inequality conditions to design observer-based
H∞-controllers for discrete-time Markov jump fuzzy systems with regard to incomplete transition
probabilities and sensor failures. Since some system states involved in fuzzy premise variables are
immeasurable or under sensor failures, the observer-based fuzzy controller does not share the same
fuzzy basic functions with plants, leading to a mismatch phenomenon. Our work contributes a new
single-step LMI method for synthesizing the observer-based controller of the Markov jump fuzzy
system in the presence of sensor failures with regard to the mismatched phenomenon. The non-
convex H∞-stabilization conditions induced by the output-feedback scheme are firstly formulated
in terms of multiple-parameterized linear matrix inequalities (PLMIs). Secondly, by assuming that
the differences of fuzzy basic functions between the controller and plant are bounded, the multi-
PLMI-based conditions are cast into linear matrix inequalities standing for tractable conditions. The
designed observer-based controller guarantees the stochastic stability of the closed-loop system and
less conservative results compared to existing works in three numerical examples.

Keywords: Markov jump fuzzy systems; mismatched phenomenon; sensor failures

MSC: 93C42; 93E15

1. Introduction

Markov jump systems (MJSs), a particular class of stochastic hybrid systems, have
revealed versatile abilities to describe random quick changes, including sensor failures and
abrupt changes of interconnected systems [1,2]. The past decade has witnessed various
widespread experiments associated with discrete-time MJSs such as power systems [3] and
communication systems [4]. The transition probabilities of Markov process, however, are
often completely or partially unknown in almost any practical application. According to
the goals of disturbance attenuation and to cover more realistic problems, there have been
diverse studies [5,6] investigating theH∞-stabilization problem with partially unknown
transition probabilities (TPs).

The Takagi–Sugeno (T–S) fuzzy model has been recognized as an extremely effective
tool for describing nonlinear dynamics via the mean of foreknown linear models [7].
There have been many studies devoted to the systematic design of various nonlinear
control problems by the T–S fuzzy model, typically in robotics [8], H∞-control [9], and
output-feedback control [10]. Recently, linear-matrix-inequality (LMI)-based control design
has been deeply rooted in synthesizing fuzzy controllers for nonlinear systems [11,12].
Moreover, [13,14] introduced non-parallel distributed compensation (non-PDC) control
laws and proved that the obtained non-PDC approaches are less conservative than PDC
approaches. In T–S fuzzy systems, the premise variables associated with the immeasurable
states lead to the differences of fuzzy basic (weighting) functions (FBFs) between the plant
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and its controller, named as the mismatched phenomenon of FBFs. Accordingly, several
attempts have been devoted to dealing with the mismatched phenomenon including
stability and stabilization [15,16] andH∞- and dissipative control [17].

As is well known in the LMI-based approach, most of the output-feedback design
unavoidably is confronted with special terms of bilinear (or rather bi-affine) matrix inequal-
ities (BMIs) [18], which, however, are in general non-convex and NP-hard problems [19].
The sequential-LMI approach proposed in [20,21] can obtain a local solution of the BMIs
by solving sequentially series of LMIs with an ultra-high computational burden. The
authors in [9,22] presented a two-step procedure to relax BMIs (in designs of anH∞ output-
feedback controller for T–S fuzzy systems) into two LMI conditions solved consecutively.
However, the two-step approach has brought much conservatism and sensitivity due to
the weak selection of decision variables in the first step [23]. To alleviate the concerns, the
studies in [23–25] performed genius work to synthesis the observer-based controllers by
single-step LMIs. Our work here is to present an observer-based control design based on a
novel single-step LMI with regard to the enhancement of assignedH∞ performance.

In vast real-world control systems, sensor operations are usually under the negative
effects of electromagnetic or heating interference due to hazardous operating environments,
whose impacts can lead to inaccurate measurements, operation failures, or even disastrous
situations [26,27]. Moreover, contingent failures frequently happen for all sensors in any
real-time control system [28,29], especially for systems with a large number of control
loops. For aviation systems where safety is the highest priority, such as flight control and
navigation systems, an observer-based control scheme must ensure flight performances
or active safety control processes despite the low or high impacts of sensor failures. For
reliability and safety goals, sensor failure has become an attractive issue in the control
community. At the beginning, a typical method to deal with sensor failure relied on sensor
redundancy, i.e., measurement is rendered by multiple sensors. For fuzzy systems, the
sensor failures not only result in inaccurate measurements, but also lead to the mismatched
phenomenon in fuzzy basic functions between the controller side and the plant side.
Recently, various works have been devoted to the control design of fuzzy systems with
regard to random sensor failures [30,31] and bounded models of sensor failures [32,33].
However, as far as we are concerned, none of the existing works on sensor failures are
associated with the mismatched phenomenon.

Along with this development, the T–S fuzzy model has been propagated fruitfully in
the control of nonlinear MJSs that merely form a backbone of Markov jump fuzzy systems
(MJFSs) [34,35]. To the best of our knowledge, there have been no attempts made toward
observer-based control of discrete-time MJFSs regarding the sensor failures, mismatched
fuzzy basic functions, and incomplete TPs. The mismatched phenomenon frequently takes
place in the output-feedback control scheme since (i) some system states involved in fuzzy
premise variables are immeasurable or (ii) some sensors are affected by disturbance or
under failure. As reported in [36], the mismatched phenomenon possibly demolishes the
stability of closed-loop systems when its presence is not considered in the control design
process. In recent times, [37] developed a sliding mode observer for MJFSs, and [38] used
the two-step LMI approach to derive an observer-based controller with completely known
TPs. Nevertheless, the former has not been concerned with output-feedback schemes, while
the later has not considered probabilistic uncertainties. In addition, both of them have not
concerned sensor failures in control design.

Inspired by the above observations, this paper is devoted to observer-based
H∞-control design for discrete-time Markovian jump fuzzy systems concerning the mis-
matched fuzzy basic functions and sensor failures. Our work provides a single-step LMI-
based procedure to design the observer-based controller. Overall, the main contributions of
this paper are highlighted as follows:

• It is logical that the sensor failures and the output-feedback scheme naturally cause the
mismatched phenomenon of fuzzy basic functions in fuzzy systems. Thus, differing
from existing studies on observer-based control for MJFSs, this paper is the first
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work considering sensor failures, mismatched phenomena, and incomplete TPs in
LMI-based control design to cover more realistic problems.

• To overcome the drawbacks of the two-step approach in [22,38], this paper presents an
LMI-based design that opens the possibilities to gain comparativeH∞ performances
by a single-step LMI procedure. Firstly, to deal with the non-convexity induced by
the output-feedback scheme, theH∞-stabilization condition is formulated in multiple
parameterized linear matrix inequalities (PLMIs), which is our first relaxation process.

• It is stressed that the unknown TPs, the sensor failures, and the mismatched phe-
nomenon result in unexpected time-varying parameters in the multiple PLMIs, which,
in turn, challenge the relaxation processes to derive LMI-based conditions. Thus, this
paper proposes a relaxation technique that considers the levels of the mismatched
phenomenon to relax the multiple PLMIs in terms of the LMI-based H∞-condition.
The relaxed condition shows less conservative results than those of [22,25,38], which
are shown by numerical examples.

Notations: The asterisk (∗) in a symmetric block matrix indicates blocks induced by
symmetry; the operator E{·} stands for the stochastic expectation; L2[0, ∞) represents for
the set of square summable sequences over the interval [0, ∞); In is the identity matrix in
Rn×n; diag(·) denotes a matrix with all entries in the main diagonal; ⊗ denotes the Kro-
necker product; He{M} =M+MT for any square matrixM. For S = {a1, a2, · · · , as},
the following matrix expansion notation is used:

[
Mi
]

i∈S =

Ma1
...
Mas

,
[
Mij

]
i,j∈S

=

Ma1a1 · · · Ma1as
...

. . .
...

Masa1 · · · Masas

,

[
Mi
]d

i∈S = diag(Ma1 ,Ma2 , . . . ,Man),

whereMi andMij stand for real matrices with appropriate dimensions.

2. Preliminaries

Consider a discrete-time Markov process Π(k) (or Πk) belonging to a finite set of
states SΠ = {1, 2, . . . , s}, defined in a given complete probability space, and denote
πgh,k ∈ [0, 1] as a one-step time-varying transition probability (TP) between states h and g:
πgh,k = Pr

(
Πk+1 = h|Πk = g

)
, ∀g, h ∈ SΠ. Then, according to the preknowledge of the

TPs, we can organize the Markov states into two subsets:

Gg =
{

h ∈ SΠ|πgh,k = πgh is time-invariant and known
}

,
G̃g =

{
h ∈ SΠ|πgh,k is bounded, πgh,k ∈ [πgh, πgh]

}
,

(1)

where πgh and πgh are known scalar values representing the upper and lower bounds of
the unknown TPs. In addition, from ∑h∈SΠ

πgh,k = 1, all unknown transition probabilities

also belong to the set G̃g. On the other hand, it can be followed that SΠ = Gg
⋃
G̃g. In light

of the above definitions, let us consider a nonlinear system that can be approximated by
T–S fuzzy model with

Plan rule i: IF σ1(xk) is Fi1, . . . , if σp(xk) is Fip, THEN
xk+1 = Ai(Πk)xk + Bi(Πk)uk + Ei(Πk)dk,
yk = Ci(Πk)xk + Di(Πk)dk,
zk = Gi(Πk)xk + Hi(Πk)uk + Ji(Πk)dk,

i ∈ Sη = {1, 2, · · · , v}. (2)

Here, σk = σ(xk) =
[
σ1(xk), · · · , σp(xk)

]T ∈ Rp stands for the premise variable vec-
tor; Fij is the fuzzy set, and v ≤ 2p is the number of model rules; xk ∈ Rnx , yk ∈ Rny ,
uk ∈ Rnu , zk ∈ Rnz , and dk ∈ Rnw denote the state, the performance output, the con-
trol input, the measured output, and the disturbance belonging to L2[0, ∞), respectively;
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Ai(Πk), Bi(Πk), Ei(Πk), Ci(Πk), Di(Πk), Gi(Πk), Hi(Πk), Ji(Πk) are system matrices with
appropriate dimensions. In addition, let η(σk) (or, simply, ηk) = [η1(σk), η2(σk), · · · , ηv(σk))]

T

∈ Rv be the vector of fuzzy-basis function, where ηi(σk) (or, simply, ηi,k) denotes the i-th
normalized fuzzy basis function with constraints: ∑v

i=1 ηi,k = 1 and ηi,k ∈ [0, 1] for all
i ∈ Sη . It should be noted that the jumping behavior of Πk in (2) possibly represents sudden
changes or failures in many control systems. With the help of the well-known fuzzifier and
defuzzifier, the Markov jump fuzzy system can be inferred:

xk+1 = A(ηk, Πk)xk + B(ηk, Πk)uk + E(ηk, Πk)dk,

yk = C(ηk, Πk)xk + D(ηk, Πk)dk,

zk = G(ηk, Πk)xk + H(ηk, Πk)uk + J(ηk, Πk)dk,

(3)

where Q(ηk, Πk = g)=Qg(ηk)=∑v
i=1ηi,kQgi for all Q := A, B, E, C, D, G, H, J.

This paper assumes that each output is measured by one sensor; thus, we can consider
the following model of sensor failures:

yF
k = Θkyk, Θk = diag

(
θ1,k, θ2,k, . . . , θny ,k

)
,

where θi,k ∈ [θi, θ̄i] (0 ≤ θi ≤ θ̄i ≤ 1) denotes a bounded output gain of sensor i; θi, θ̄i
are known real constants, which characterize the admissible failures of the i-th sensor.
Obviously, the i-th sensor has a complete failure when θi = θ̄i = 0 and has no failure when
θi = θ̄i = 1. For the sake of simplicity, let Θ = diag

(
θ1, θ2, . . . , θny

)
, Θ = diag{θ1, θ2, . . . , θny},

Θ0 = 1
2 (Θ + Θ), and B = 1√

2
diag

(√
θ1 − θ1,

√
θ2 − θ2, . . . ,

√
θny − θny

)
, then the sensor

failure function matrix Θk can be rewritten as

Θk = Θ0 + B∆kB with ∆k∆T
k < Iny . (4)

Since the premise variable herein depends on a few states of vector xk, if the states
cannot be measured directly on the controller side or affected by disturbances, that is the
mismatched phenomenon, then it is impractical for fuzzy control laws to use the same
premise variables or fuzzy basic functions as the dynamic system (3). Thus, the mismatched
phenomenon must be concerned in the following fuzzy observer-based control law:{

x̂k+1 = Ag(η̂k)x̂k+Bg(η̂k)uk+Lg(η̂k)
(
yF

k−Cg(η̂k)x̂k
)
,

uk = Fg(η̂k)x̂k,
(5)

with Πk = g, where x̂k ∈ Rnx denotes the estimated state; η̂k =
[
η̂1,k, η̂2,k, . . . , η̂v,k

]T denotes
the estimated (or mismatched) fuzzy-basis function vector in which η̂i,k = ηi,k(σ̂k) and
σ̂k = σ(x̂k); Lg(η̂k) and Fg(η̂k) are the mode-dependent gain matrices to be designed later:

Ag(η̂k) =
v

∑
i=1

η̂i,k Agi, Bg(η̂k) =
v

∑
i=1

η̂i,kBgi, Cg(η̂k) =
v

∑
i=1

η̂i,kCgi.

Let ek = xk − x̂k, ξk = [xT
k , eT

k ]
T ∈ R2nx and η̃k =

[
η̃1,k, η̃2,k, . . . , η̃v,k

]T with
η̃i,k = ηi,k − η̂i,k; the closed-loop control system of (3) with controller (5) can be formed
as follows: {

ξk+1 = Ag(ηk, η̂k)ξk + Eg(ηk, η̂k)dk,

zk = Gg(ηk, η̂k)ξk + Jg(ηk)dk,
(6)

where

Ag(ηk, η̂k) =

[
Ag(η̂k) + Bg(η̂k)Fg(η̂k)

Ag(η̃k)+Bg(η̃k)Fg(η̂k)−Lg(η̂k)(ΘkCg(ηk)−Cg(η̂k))
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−Bg(ηk)Fg(η̂k)
Ag(η̂k)−Lg(η̂k)Cg(η̂k)−Bg(η̃k)Fg(η̂k)

]
,

Ag(η̃k)= Ag(ηk)− Ag(η̂k), Bg(η̃k) = Bg(ηk)− Bg(η̂k),

Eg(ηk, η̂k) =

[
Eg(ηk)

Eg(ηk)− Lg(η̂k)ΘkDg(ηk)

]
,

Gg(ηk, η̂k) =
[

Gg(ηk) + Hg(ηk)Fg(η̂k) −Hg(ηk)Fg(η̂k)
]
.

In the above matrices, ηk and η̂k act as time-varying parameters belonging to a standard
simplex:

v

∑
i=1

ηi,k =
v

∑
i=1

η̂i,k = 1 and ηi,k, η̂i,k > 0, ∀i ∈ Sη (7)

which forms stabilization conditions in terms of multi-parameterized matrix inequalities
afterward. Before going ahead, the following definitions are adopted.

Definition 1 ([5,39]). For dk ≡ 0, System (6) is said to be stochastically stable if the following
inequality holds for any initial condition ξ0 =

[
xT

0 , eT
0
]T and ρ0:

E

{
∞

∑
k=0
‖ξk‖2

∣∣∣ ξ0, ρ0

}
< ∞. (8)

Definition 2 ([6,40]). For ξ0 ≡ 0, System (6) is said to haveH∞ performance with β disturbance
attenuation if the following condition holds for β > 0 and T > 0:

T

∑
k=0

E
{

zT
k zk

}
≤β2

T

∑
k=0

E
{

dT
k dk

}
, (9)

where β stands for the disturbance attenuation.

According to Definition 2, our work here is to determine Lg(η̂k) and Fg(η̂k) in the
fuzzy controller (5) such that (6) is stochastically stable and theH∞ performance under the
following constraint: ∣∣ηi,k − η̂i,k

∣∣ ≤ µi, ∀i ∈ Sη , (10)

where η̂i = ηi(σ(x̂k)) and µi < 1 is a positive scalar standing for levels of the mismatched
phenomenon in the fuzzy basic functions (the higher µi is, the stronger the mismatched
phenomenon). The special case µi = 0 represents an ideal case (no mismatch), which was
investigated in [22,24,25]. Apart form this, some useful lemmas are considered throughout
this paper.

Lemma 1 ([41]). The inequality 0 ≤ ∑v
i=1 ∑v

j=1 ηi,kηj,kLij holds for any matrix Lij =LT
ij if it is

satisfied that

0 ≤ Lii, ∀i ∈ Sη , (11)

0 ≤ 1
r− 1

Lii +
1
2
(Lij + Lji), ∀i, j( 6= i) ∈ Sη . (12)

Lemma 2 ([42]). For any matrices R = RT , Q, and W, with appropriate dimensions, the inequality
R + He{QW} < 0 is fulfilled if there exist matrix S and scalar α such that[

R (∗)
αQT + SW −αHe{S}

]
< 0. (13)
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Lemma 3 ([43]). Let A = AT , B1, B2, and Ξ be real matrices with appropriate dimensions such
that ΞΞT ≤ I. Then, the condition 0 > A+ He{B1ΞB2} holds if there exists a positive scalar ε:

0 >

[
A+ εB1BT

1 (∗)
B2 −εI

]
. (14)

Lemma 4 ([44]). For any symmetric matrices Γg, Ng ∈ Rn×n with g ∈ SΠ, the parameterized
linear matrix inequalities

0 > Γg +
s

∑
h=1

πgh,k Nh, ∀g ∈ SΠ (15)

hold if there exist symmetric matrices Tgh ∈ Rn×n such that: ∀g ∈ SΠ,

0 >


Γg+Ng+∑h∈Gg\{g} πgh(Nh−Ng)

+∑h∈G̃g\{g}
π̄ghπghHe{Tgh}

(∗)[
Nh−Ng−(π̄gh+πgh)Tgh

]
h∈G̃g\{g}

[
He{Tgh}

]d
h∈G̃g\{g}

. (16)

3. Control Synthesis

To analyze stochastic stability of the closed-loop system (6) and design the observed-
based controller (5), we take a mode-dependent Lyapunov function V(ξk, Πk) of the form:

V(ξk, Πk = g) = Vk = ξT
k P(η̂k, g)ξk, (17)

where P(η̂k, g) = Pg(η̂k) = PT
g (η̂k) > 0. By denoting η̂k+1 = η(σ(x̂k+1)) and Pg(η̂k+1) =

∑s
h=1 πgh,k Ph(η̂k+1), it can be obtained from (6) and (17) that

∆Vk = E
{

V(ξk+1, Πk+1 = h)
∣∣Πk = g

}
−Vk

= ξT
k+1Pg(η̂k+1)

(
Ag(ηk, η̂k)ξk+Eg(ηk, η̂k)dk

)
− ξT

k Pg(η̂k)ξk. (18)

The following theorem shows the stochastic H∞-condition of the closed-loop system (6)
formulated in terms of PLMIs depending on multiple parameters ηk, η̂k, η̂k+1, and πgh,k.

Theorem 1. For given scalars α 6= 0 and ε > 0, if there exist symmetric matrices 0 < Pg(η̂k)∈
R2nx×2nx , 0 < Pg(η̂k+1) ∈ R2nx×2nx , and 0 < Q1,g, Q2,g ∈ Rnx×nx and matrices Xg(η̂k) ∈
Rnz×nz , Yg(η̂k), Zg(η̂k) ∈ Rnx×nx , Sg(η̂k) ∈ Rnu×nu , F̄g(η̂k) ∈ Rnu×nx , and L̄g(η̂k) ∈ Rnx×ny ,
such that the following condition holds for all g ∈ SΠ:

0 > Γg(ηk, η̂k) =


Γ(1)

g (ηk, η̂k) (∗)

Γ(2)
g (ηk, η̂k) −αHe{Sg(η̂k)}

+εΓ(3)T
g (ηk)B2Γ(3)

g (ηk) (∗)

[
0 0 0 0 0 B L̄T

g (η̂k) 0
]

−εIny

, (19)

0 > −Qg +
s

∑
h=1

πgh,kPh(η̂k+1), (20)

where Qg = diag
(
Q1,g, Q2,g

)
, B = 1√

2
diag

(√
θ1 − θ1,

√
θ2−θ2, . . . ,

√
θny−θny

)
and
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Γ(1)
g (ηk, η̂k) =


−Pg(η̂k) 0 (∗) (∗) (∗)

0 −β2 I (∗) (∗) (∗)
(4, 1) −Hg(ηk)F̄g(η̂k) Xg(η̂k)Jg(ηk) (4, 4) 0 0

(4, 2) −Bg(ηk)F̄g(η̂k) Yg(η̂k)Eg(ηk) 0 (5, 5) 0
(6, 1) (6, 2) (6, 3) 0 0 (6, 6)

,

Γ(2)
g (ηk, η̂k) =

[
F̄g(η̂k),−F̄g(η̂k), 0, α

(
HT

g (ηk)XT
g (η̂k)−ST

g (η̂k)HT
g (η̂k)

)
,

α
(
BT

g (ηk)YT
g (η̂k)−ST

g (η̂k)BT
g (ηk)

)
, αBT

g (η̃k)ZT
g (η̂k)

]
,

Γ(3)
g (ηk) =

[
Cg(ηk) 0 −Dg(ηk) 0 0 0 0

]
,

(4, 1) = Xg(η̂k)Gg(ηk)+Hg(ηk)F̄g(η̂k), (4, 2) = Yg(η̂k)Ag(ηk)+Bg(ηk)F̄g(η̂k),

(4, 4) = −He{Xg(η̂k)}+ I, (5, 5) = −He{Yg(η̂k)}+ Q1,g,

(6, 6) = −He{Zg(η̂k)}+ Q2,g, (6, 1) = Zg(η̂k)Ag(η̃k) + L̄g(η̂k)(Θ0Cg(ηk)−Cg(η̂k)),

(6, 2) = Zg(η̂k)Ag(η̂k)− L̄g(η̂k)Cg(η̂k), (6, 3) = Zg(η̂k)Eg(ηk)− L̄g(η̂k)Θ0Dg(ηk).

Then, the closed-loop system (6) is stochastically stable and has β disturbance attenuation. The
feedback gains of the controller and observer are given by

Fg(η̂k) = S−1
g (η̂k)F̄g(η̂k), Lg(η̂k) = Z−1

g (η̂k)L̄g(η̂k). (21)

Proof of Theorem 1. It can be obtained by (18) that

E
{

∆Vk − β2dT
k dk + zT

k zk

}
= ξ̄T

k Ψk ξ̄k, (22)

where ξ̄k =
[
ξT

k , dT
k
]T

=
[
xT

k , eT
k , dT

k
]T , and

Ψk =

[
AT

g (ηk, η̂k)

ET
g (ηk, η̂k)

]
Pg(η̂k+1)

[
Ag(ηk, η̂k) Eg(ηk, η̂k)

]
+

[
GT

g (ηk, η̂k)

JT
g (ηk)

][
Gg(ηk, η̂k) Jg(ηk)

]
+

[
−Pg(η̂k) 0

0 −β2 Inz

]
.

(23)

Further, with the help of (22), ∑T
k=0 ξ̄T

k Ψk ξ̄k = ∑T
k=0 E{∆Vk} − CT = E{VT+1 −V0} −

CT , where CT = ∑T
k=0 E

{
zT

k zk − β2dT
k dT

k
}

, that makes Ψk < 0 become aH∞-stability condi-
tion of (6). To be specific,

• With dk ≡ 0, Ψk < 0 is reduced to 0 > AT
g (ηk, η̂k)Pg(η̂

+
k )Ag(ηk, η̂k)− Pg(η̂k), which

guarantees ∆Vk < 0, i.e., ∆Vk ≤ −ε‖ξk‖2 for a small enough ε > 0; therefore,
E
{

∑∞
k=0 ‖ξk‖2

∣∣ ξ0, ρ0
}
≤ 1

ε E{V0} < ∞;
• With x0 ≡ 0, Ψk < 0 leads to E{VT+1} − CT < 0, which implies CT > E{VT+1} ≥ 0.

Accordingly, if condition Ψk < 0 holds, then (6) is stochastically stable (see Definition 1)
and obtains H∞ performance with β disturbance attenuation by Definitions 2. With the
help of Schur’s complement, Ψk < 0 is equivalent to

0 >

 −Pg(η̂k) 0 (∗)
0 −β2 Inw (∗)

Gg(ηk, η̂k) Jg(ηk) −Inz

+
AT

g (ηk, η̂k)

ET
g (ηk, η̂k)

0

Pg(η̂k+1)
[
Ag(ηk, η̂k) Eg(ηk, η̂k) 0

]
. (24)
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Next, from (20), Qg > Pg(η̂k+1) = ∑s
h=1 πgh,kPh(η̂k+1). Thus, (24) is ensured by

0 >


−Pg(η̂k) 0 (∗) (∗)

0 −β2 Inz (∗) (∗)
Gg(ηk, η̂k) Jg(ηk) −Inw 0

Ag(ηk, η̂k) Eg(ηk, η̂k) 0 −Q−1
g

, (25)

From (19), we have He{Xg(η̂k)}, He{Yg(η̂k)}, He{Zg(η̂k)} > 0 by which Xg(η̂k),
Yg(η̂k), and Zg(η̂k) are invertible matrices. Then, by left- and right-multiplying (25) by
invertible matrix diag

(
I2nx , Inz , Xg(η̂k), Yg(η̂k), Zg(η̂k)

)
and its transpose, (25) is equivalent

to

0 >



−Pg(η̂k) 0 (∗) (∗) (∗)
0 −β2 Inz (∗) (∗) (∗)

Ξ1 Ξ2 Xg(η̂k)Jg(ηk) −Xg(η̂k)XT
g (η̂k) 0 0

Ξ3 Ξ4 Yg(η̂k)Eg(ηk) 0 −Yg(η̂k)Q−1
1,gYT

g (η̂k) 0
Ξ5 Ξ6 Ξ7 0 0 −Zg(η̂k)Q−1

2,g ZT
g (η̂k)


, (26)

where L̄g(η̂k) = Zg(η̂k)Lg(η̂k) and

Ξ1 = Xg(η̂k)Gg(ηk)+Xg(η̂k)Hg(ηk)Fg(η̂k), Ξ2 =−Xg(η̂k)Hg(ηk)Fg(η̂k)

Ξ3 = Yg(η̂k)Ag(ηk)+Yg(η̂k)Bg(ηk)Fg(η̂k), Ξ4 = −Yg(η̂k)Bg(ηk)Fg(η̂k),

Ξ5 = Ξ
′
5+Zg(η̂k)Bg(η̃k)Fg(η̂k), Ξ

′
5 = Zg(η̂k)Ag(η̃k)+L̄g(η̂k)(ΘkCg(ηk)−Cg(η̂k)),

Ξ6 = Ξ
′
6−Zg(η̂k)Bg(η̃k)Fg(η̂k), Ξ

′
6 = Zg(η̂k)Ag(η̂k)−L̄g(η̂k)Cg(η̂k),

Ξ7 = Zg(η̂k)Eg(ηk)− L̄g(η̂k)ΘkDg(ηk).

Then, by applying−Yg(η̂k)Q−1
1,gYT

g (η̂k) ≤ −He{YT
g (η̂k)}+Q1,g,−Zg(η̂k)Q−1

2,g ZT
g (η̂k) ≤

−He{ZT
g (η̂k)}+ Q2,g, and −Xg(η̂k)XT

g (η̂k) ≤ −He{Xg(η̂k)}+ Inz , (26) is ensured by

0 >



−Pg(η̂k) 0 (∗) (∗) (∗)
0 −β2 Inz (∗) (∗) (∗)

Xg(η̂k)Gg(ηk) 0 Xg(η̂k)Jg(ηk) 0 0 0

Yg(η̂k)Ag(ηk) 0 Yg(η̂k)Eg(ηk) 0 0 0
Ξ
′
5 Ξ

′
6 Ξ7 0 0 0

+ diag


0,
0,

−He{Xg(η̂k)}+ Inz ,
−He{YT

g (η̂k)}+Q1,g,
−He{ZT

g (η̂k)}+Q2,g



+ He




0
0

Xg(η̂k)Hg(ηk)−Hg(η̂k)Sg(η̂k)

Yg(η̂k)Bg(ηk)−Bg(ηk)Sg(η̂k)
Zg(η̂k)Bg(η̃k)




FT

g (η̂k)

−FT
g (η̂k)

0
...
0



T
.

(27)

Recalling sensor failure model (4), as a result of Lemma 2 and F̄g(η̂k) = Sg(η̂k)Fg(η̂k),
Equation (27) is inferred by

0 >

Γ(1)
g (ηk, η̂k) (∗)

Γ(2)
g (ηk, η̂k) −αHe{Sg(η̂k)}

+He
{

Γ(3)T
g (ηk)B∆T

k B
[
0 . . . 0 L̄T

g (η̂k) 0
]}

. (28)

By Lemma 3, (28) is ensured by (19).

The above proof takes advantage of Lemmas 2 and 3, where the scalars α and ε
should be predefined. Thus, the feasibility of Theorem 1 considerably depends on the
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choices of α and ε, which will be shown in numerical examples afterward. Further, the
cone complementarity linearization method [20] and sequence linear programming matrix
method [21] can be applied to deal with the non-convex term Q−1

g in (25) to avoid the
use of Lemmas 2 and 3. The obtained conditions possibly are less conservative; however,
the methods faces solving sequentially series of LMIs with an ultra-high computational
burden.

Intuitively, the inequalities (19) and (20) are not tractable due to the coexistence of
time-varying parameters ηk, η̂k, η̂k+1, and πgh,k. A simple way to deal with the problem is
reorganizing the right-hand sides of these conditions as convex combinations corresponding
to the parameters, i.e., 0 > ∑i,j ηi,kη̂j,k(•) and 0 > ∑h,i πgh,kη̂i,k+1(•), where (•) is the linear
time-independent form of the decision variable. However, the simple solution has become
very conservative since the constraints (1) and (10) are not taken into account. The following
theorem presents an LMI-basedH∞-stabilization condition for the closed-loop system (6).

Theorem 2. For a given scalar α 6= 0 and ε > 0, suppose that there exist symmetric matrices
0 < P(1)

gij , P(2)
gij ∈ Rnx×nx , 0 < Q1,g, Q2,g ∈ Rnx×nx , and Ugij ∈ R(2nx+nz+nu)×(2nx+nz+nu) and

matrices Xgi ∈ Rnz×nz , P(3)
gij , Ygi, Zgi ∈ Rnx×nx , Sgi ∈ Rnu×nu , W(1)

gi ∈ R(2nx+nz)×(2nx+nw),

W(2)
gi ∈ Rnu×(2nx+nz), Tgh ∈ R2nx×2nx , F̄gi ∈ Rnu×nx , and L̄gi ∈ Rnx×ny , such that: for all

g ∈ SΠ, (i, j) ∈ Sη × Sη\{i}

0 > Γgii, 0 >
1

r− 1
Γgii +

1
2
(
Γgij + Γgji

)
, (29)

0 > Φgii, 0 >
1

r− 1
Φgii +

1
2
(
Φgij + Φgji

)
, (30)

where

Γgij =

 Γ(1)
g + He

{
ΩT

1 Γ(3)
gij Ω2

}
+ Γ(2)

gi + Γ(4)
gij −

v

∑
`=1

µ2
`ΩT

1 Ug`iΩ1(∗)[
(Γ(3)

g`i + Wgi)Ω2
]
`∈Sη

[
Ug`i

]d
`∈Sη

,

Φgij =


−Qg + Pgij + ∑h∈Gg\{g} πgh(Phij−Pgij)

+∑h∈G̃g\{g}
π̄ghπghHe{Tgh}

(∗)[
Phij − Pgij − (π̄gh+πgh)Tgh

]
h∈G̃g\{g}

[
He{Tgh}

]d
h∈G̃g\{g}

,

Qg = diag
(
Q1,g, Q2,g

)
, Pgij =

P(1)
gij (∗)

P(3)
gij P(2)

gij

, Wgi =

W(1)
gi 0

0 W(2)
gi

,

Ω1 =
[

0 0 0 I2nx+nz+nu

]
∈ R(2nx+nz+nu)×nN ,

Ω2 =
[

I4nx+nz+nw 0
]
∈ R(4nx+nz+nw)×nN , nN = 4nx + nz + nw + nu + ny,

Γ(1)
g = diag

(
0, 0, − β2 Inz , Inw , Q1,g, Q2,g, 0,−εIny

)
,

Γ(2)
gi =



0 0 0 0 0 0 0 (∗)
0 0 0 0 0 0 0 (∗)
0 0 0 0 0 0 0 0
0 0 0 −He{Xgi} 0 0 0 0
0 0 0 0 −He{Ygi} 0 0 0
0 0 0 0 0 −He{Zgi} 0 0

F̄gi −F̄gi 0 0 0 0 0 0
0 0 0 0 0 0 B L̄T

gi 0


,
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Γ(3)
gij =


XgjGgi+Hgi F̄gj −Hgi F̄gj Xgj Jgi 0
Ygj Agi+Bgi F̄gj −Bgi F̄gj YgjEgi 0

Zgj Agi+L̄gjΘ0Cgi 0 ZgjEgi−L̄gjΘ0Dgi 0
0 0 0 (•)

,

(•) = α
[

HT
giX

T
gj−ST

gj H
T
gi BT

giY
T
gj−ST

gjB
T
gi BT

giZ
T
gj

]
,

Γ(4)
gij =



−P(1)
gij +εCT

giB2Cgj (∗) 0 0 0 (∗) 0 0

−P(3)
gij −P(2)

gij 0 0 0 (∗) 0 0
0 0 εDT

giB2Dgj 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−Zgj Agi−L̄gjCgi Zgj Agi−L̄gjCgi 0 0 0 0 0 0
0 0 0 0 0 −αBT

giZ
T
gj −αHe{Sgj} 0

0 0 0 0 0 0 0 0


.

Then, the closed-loop system (6) is stochastically stable and achieves β disturbance attenuation.
The feedback gains of the non-PDC fuzzy controller and observer are given by

Fg(η̂k) =

(
v

∑
i=1

η̂i,kSgi

)−1 v

∑
i=1

η̂i,k F̄gi, Lg(η̂k) =

(
v

∑
i=1

η̂i,kZ̄gi

)−1 v

∑
i=1

η̂i,k L̄gi. (31)

Proof of Theorem 2. At the beginning, recall Theorem 1 with

Pg(η̂k) =
v

∑
i=1

v

∑
j=1

η̂i,kη̂j,k

P(1)
gij (∗),

P(3)
gij P(2)

gij

, Sg(η̂k) =
v

∑
i=1

η̂i,kSgi, F̄g(η̂k) =
v

∑
i=1

η̂i,k F̄gi,

Xg(η̂k) =
v

∑
i=1

η̂i,kXgi,
[
Yg(η̂k), Zg(η̂k), L̄g(η̂k)

]
=

v

∑
i=1

η̂i,k
[
Ygi, Zgi, L̄gi

]
.

In light of Lemma 1, the condition (19) can be rewritten in the following form:

Γg(ηk, η̂k) = Γ(1)
g +

v

∑
i=1

η̂i,kΓ(2)
gi +

v

∑
i=1

v

∑
j=1

ηi,kη̂j,kHe
{

ΩT
1 Γ(3)

gij Ω2

}
+

v

∑
i=1

v

∑
j=1

η̂i,kη̂j,kΓ(4)
gij . (32)

Since ∑v
`=1 η̃`,k = 0, ∑v

`=1 ∑v
i=1 η̃`,kη̂i,kHe

{
ΩT

1 WgiΩ2
}
= 0. Thus, this zero equality

can be combined with (32). Besides, by η`,k = η̃`,k + η̂`, the condition 0 > Γg(ηk, η̂k) can be
rewritten as:

0 > Γ(1)
g + Tg(η̂k) + He

{
v

∑
`=1

η̃`,kΩT
1 Tg`(η̂k)Ω2

}
, (33)

where Tg`(η̂k) = ∑v
i=1 η̂i,kΓ(3)

g`i + ∑v
i=1 η̂i,kWgi and

Tg(η̂k) =
v

∑
i=1

η̂i,kΓ(2)
gi +

v

∑
i=1

v

∑
j=1

η̂i,kη̂j,k

(
He
{

ΩT
1 Γ(3)

gij Ω2

}
+Γ(4)

gij

)
.

Accordingly, noting that

He

{
v

∑
`=1

η̃`,kΩT
1 Tg`(η̂k)Ω2

}
= He

{
(η̃k ⊗Ω1)

T
[
Tg`(η̂k)Ω2

]
`∈Sη

}
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Condition (33) is rearranged as

0 >

[
InN

η̃k ⊗Ω1

]T
 Γ(1)

g + Tg(η̂k) (∗)[
Tg`(η̂k)Ω2

]
`∈Sη

0

[ InN

η̃k ⊗Ω1

]
. (34)

Meanwhile, since (29) implies Ug`i = UT
g`i < 0, it follows from (10) that

0 ≤
v

∑
i=1

η̂i,k

v

∑
`=1

(
η̃2
`,k − µ2

`

)
ΩT

1 Ug`iΩ1

=

[
InN

η̃k ⊗Ω1

]T


Ξ 0

0

[
v

∑
i=1

η̂i,kUg`i

]d

`∈Sη

[ InN

η̃k ⊗Ω1

]
. (35)

where Ξ = ∑v
i=1 η̂i,k

(
−∑v

`=1 µ2
`ΩT

1 Ug`iΩ1

)
. Hence, by the S-procedure, combining (34)

with (35) leads to

0 >


Γ(1)

g +Tg(η̂k)+Ξ (∗)[
Tg`(η̂k)Ω2

]
`∈Sη

[
v

∑
i=1

η̂i,kUg`i

]d

`∈Sη

 =
v

∑
i=1

v

∑
j=1

η̂i,kη̂j,kΓgij, (36)

and by Lemma 1, Condition (29) implies (36). On the other hand, by Lemmas 4 and 1, (30)
guarantees (20).

Remark 1. Theorem 1 has shown that theH∞-stabilization conditions (19) and (20) have linear
forms, that is the first relaxation technique has been performed. Different from the existing studies
in [23,25,38], Theorem 1 takes advantage of a mode-dependent congruence transformation in (25) to
open the possibility of applying the inequalities −YT

g Q−1
1,gYg ≤ −Yg −YT

g + Q1,g, −ZT
g Q−1

2,g Zg ≤
−Zg − ZT

g + Q2,g to (26) and Lemma 2 to (27). As a result, Theorem 1 can overcome the non-
convexity of the output-feedback scheme and shows advantages in formulating the controller and
observer gains in non-PDC terms of (21) to obtain less conservative results.

Remark 2. The proof of Theorem 2 has provided a relaxation technique to formulate the double-
PLMI (32) in terms of tractable conditions (29) and (30). The double-PLMI is in a different form
compared to [38,45] (i.e., 0 > Γg(ηk, η̂k)), which includes a constant matrix Ω2 in the third term of

(32). Accordingly, the column size of matrices Γ(3)
gij related to multiple ηi,kη̂j,k are reduced, then the

row size of slack variable Wgi decreases from 4nx + nz + nw + nu + ny to 4nx + nz + nw.

The following corollary presents an H∞ performance condition for the closed-loop
systems (6) without sensor failures.

Corollary 1. For a given scalar α 6= 0, suppose that there exist symmetric matrices
0 < P(1)

gij , P(2)
gij ∈ Rnx×nx , 0 < Q1,g, Q2,g ∈ Rnx×nx , and Ugij ∈ R(2nx+nz+nu)×(2nx+nz+nu)

and matrices Xgi ∈ Rnz×nz , P(3)
gij , Ygi, Zgi ∈ Rnx×nx , Sgi ∈ Rnu×nu , W(1)

gi ∈ R(2nx+nz)×(2nx+nw),

W(2)
gi ∈ Rnu×(2nx+nz), Tgh ∈ R2nx×2nx , F̄gi ∈ Rnu×nx , and L̄gi ∈ Rnx×ny , such that (29) and (30)

hold for all g ∈ SΠ, (i, j) ∈ Sη × Sη\{i}, where
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Ω1 =
[

0 0 0 I2nx+nz+nu

]
∈ R(2nx+nz+nu)×nN ,

Ω2 =
[

I4nx+nz+nw 0
]
∈ R(4nx+nz+nw)×nN , nN = 4nx + nz + nw + nu,

Γ(1)
g = diag

(
0, 0, − β2 Inz , Inw , Q1,g, Q2,g, 0

)
,

Γ(2)
gi =



0 0 0 0 0 0 (∗)
0 0 0 0 0 0 (∗)
0 0 0 0 0 0 0
0 0 0 −He{Xgi} 0 0 0
0 0 0 0 −He{Ygi} 0 0
0 0 0 0 0 −He{Zgi} 0

F̄gi −F̄gi 0 0 0 0 0


,

Γ(3)
gij =


XgjGgi+Hgi F̄gj −Hgi F̄gj Xgj Jgi 0
Ygj Agi+Bgi F̄gj −Bgi F̄gj YgjEgi 0
Zgj Agi+L̄gjCgi 0 ZgjEgi−L̄gjDgi 0

0 0 0 (•)

,

(•) = α
[

HT
giX

T
gj−ST

gj H
T
gi BT

giY
T
gj−ST

gjB
T
gi BT

giZ
T
gj

]
,

Γ(4)
gij =



−P(1)
gij (∗) 0 0 0 (∗) 0

−P(3)
gij −P(2)

gij 0 0 0 (∗) 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−Zgj Agi−L̄gjCgi Zgj Agi−L̄gjCgi 0 0 0 0 0
0 0 0 0 0 −αBT

giZ
T
gj −αHe{Sgj}


.

Then, closed-loop system (6) without sensor failures (Θk = Θ0 ≡ I, B = 0) is stochastically
stable with β disturbance attenuation. The feedback gains of the controller and observer are given
by (31).

Proof of Corollary 1. This is obtained by Θ0 = Iny and B = 0 in Theorem 2.

Remark 3. In the case where transition rates are constant and can be determined, the condition
(20) in Theorem 1 can be rewritten into 0 > −Qg + ∑s

i=1 πghPh(η̂k+1), which, in turn, simplifies
Condition (30) in Theorem 2 as 0 > −Qg + Pgij + ∑h∈SΠ\{g} πgh(Phij−Pgij). As a result, there
is no need for the slack variable matrix Tgh in Theorem 2.

4. Illustrative Examples

MinimalH∞-indices in the following numerical examples are obtained by the semi-
definite programming (SPD) problem: min β2 by Algorithm 1. To solve the SDP prob-
lem, this paper uses the LMI solver in Robust Control Toolbox (Version 6.11), MATLAB,
MathWorks, Inc., Seoul, Korea. Numerical simulations were implemented on a personal
computer with the configuration: CPU Intel Core i7-8700 3.0 GHz, 16 Gb RAM DDR4, and
GPU GTX 1660Ti.
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Algorithm 1 Design of the observer-based controller (5).

1: Initialize a nonzero scalar α
2: if exist sensor failures then
3: Take a positive scalar ε > 0.
4: Establish matrices Φ0 and B in the failure model (4).
5: Solve LMI conditions (29) and (30) to obtain Sgi, Z̄gi and L̄gi.
6: Calculate control and observer gain matrices by (31).
7: else
8: Solve LMI conditions in Corollary 1 to obtain Sgi, Z̄gi and L̄gi.
9: Calculate control and observer gain matrices by (31).

10: end if

Example 1 (Relaxed results). This example outperformed the results of Corollary 1 compared to
other studies [22,25,38], where sensor failures are not concerned in the design process. To begin
with, let us consider the following fuzzy system without Markov process (s = 1) and without sensor
failures (Φ0 = Iny ,B = 0), used in [25]:

A1 =

[
1+a −0.5

1 0

]
, A2 =

[
−1 −0.5
1 0

]
, B1 =

[
1

1−b

]
,

B2 =

[
−2
1

]
, E1 =

[
0.2
0.3

]
, E2 =

[
0.5
−0.1

]
, C1 = [0.1,−0.4],

C2 = [−0.2,−0.6], D1 = −0.1, D2 = −0.2, G1 = [1, 0.5],

G2 = [0.5, 1], H1 = 1, H2 = 0.5, J1 = 0.4, J2 = 0.2, (37)

where a and b are scalars. The fuzzy basic functions are given by η1(x1,k) =
1−sin(x1,k)

2 and

η2,k = 1 − η1(x1,k), and those in the controller side are η1(x̂1,k) =
1−sin(x̂1,k)

2 and
η2(x̂1,k) = 1− η1(x̂1,k). Accordingly, we considered three levels of the mismatched phenomenon:
without and weak and strong level corresponding to µi = 0, µi = 0.2, and µi = 0.4, respectively.
Moreover, Corollary 1 provides solutions with different α = 0.1, 0.2, 0.4 to illustrate the sensitivity
of our method with α.

As was shown in [25] that the two-step design procedure [22] failed to obtain the
observer-based controller when b = 0 and a ∈ [−2, − 1.5], while Corollary 1 could
provide solutions at three different mismatched levels. Additionally, [25], Theorem 1, also
induced minimal H∞ performance βmin = 4.185 for b = 0 and a = −1.6. In comparison
to this, Corollary 1 has the betterH∞ performance (βmin ≈ 1.1 < 4.185 corresponding to
α = 0.1, 0.2, 0.4) than that of [25]. Although [22,25] were not concerned with the mismatched
phenomenon (µi = 0), their results are much more conservative than ours. The superiority
comes from the relaxation techniques in Theorem 1 to obtain non-PDC controllers compared
to the PDC controllers of [22,25]. Moreover, our single-step method obtained promising
results in comparison with the two-step method [38], as shown in Table 1. Intuitively, our
approach is less dependent on the mismatched phenomenon than [38]; meanwhile, we
established better H∞-indices, even when the two-step approach [38] is unsolvable. It is
worth noting that the two-step approach highly depends on the initial setups at the first
step; thus, this paper collected the best results of [38] in comparison with our results.

Apart from this, the following solutions are obtained by Corollary 1 (α = 0.2 and
µi = 0.4):

[
L̄1 L̄2

]
=

[
2.774 1.483
4.694 1.961

]
,
[

F̄1
F̄2

]
=

[
−0.448 −0.163
−0.378 −0.193

]
,

Z1 =

[
3.773 1.492
2.228 2.265

]
, Z2 =

[
3.243 2.393
2.225 2.036

]
,
[

S1
S2

]
=

[
3.316
2.675

]
.
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With the following setups: x0 = [0.4, − 0.3]T , x̂0 = [0, 0]T and dk = e−0.5k sin(0.5k),
the simulation was carried out. Figure 1. shows the behavior of the actual xk and ob-
served x̂k state obtained by the observer-based controller (5) with the above solutions. The
observed state asymptotically tracked the actual state, and both converge to the origin.

Table 1. Comparisons of H∞-indices of Example 1 (a = −1.6 and b = 0) with different
mismatched levels.

Mismatched Corollary 1 [38] [25] [22]
Level α = 0.1 α = 0.2 α = 0.4

No (µi = 0) 1.1 1.101 1.103 1.432 4.185 Infeas.

Weak
(µi = 0.2) 1.551 1.556 1.583 1.919 - -

Strong
(µi = 0.4) 2.291 2.402 2.903 Infeas. - -

0 5 10 15 20 25

-0.4

-0.2

0

0.2

0.4

(a)

0 5 10 15 20 25

-0.1

0

0.1

0.2

0.3

0.4

(b)

Figure 1. Time evolution of (37): actual and observed of (a) x2,k and (b) x1,k.

Example 2 (Sensor failures). Based on Example 1, let us consider a Markov jump fuzzy model
with SΠ = {1, 2, 3} corrected from (37) as follows:

Ag1 =

[
1 + ag −0.5

1 0

]
, Ag2 = A2, Bg1 =

[
1

1− bg

]
,

Bg2 = B2, Eg1 = E1, Eg2 = E2, Cg1 = C1, (38)

Cg2 = C2, Dg1 = D1, Dg2 = D2, Gg1 = G1,

Gg2 = G2, Hg1 = H1, Hg2 = H2, Jg1 = J1, Jg2 = J2,

with Markov chain Πk such that a(Πk = g) = ag = {−2,−1.5,−1} and b(Πk = g) = bg =
{−1, 0, 1}, and the transition probabilities:

[πgh,k]g,h∈SΠ =

 0.4 0.4 0.2
0.3 + ∆1(k) 0.6− ∆1(k) 0.1
0.5 + ∆2(k) 0.2 + ∆2(k) 0.3


where |∆1(k)| ≤ 0.2 and |∆2(k)| ≤ 0.15. From (1), the above TPs turn out to be
G1 = {1, 2, 3}, G̃1 = ∅, G2 = G3 = {3}, G̃2 = G̃3 = {1, 2}, 0.1 = π21 ≤ π21(k) ≤
π̄21 = 0.5, 0.4 = π22 ≤ π22(k) ≤ π̄22 = 0.8, 0.35 = π31 ≤ π31(k) ≤ π̄31 = 0.65, and
0.05 = π32 ≤ π32(k) ≤ π̄32 = 0.35.

The sensor admissible failures θ1 = 0.9 and θ̄1 = 1.0; thus, Θ0 = 0.95 and B = 0.223.
The bounded output gain θ1,k is selected as θ1,k = Θ0 +

θ̄1−θ1
2 sin( kπ

2 ).
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Based on such a setup with α = 0.1 and ε = 1, Theorem 2 offers a minimalH∞-index
βmin = 1.952 in the weak mismatched case (µi = 0.2) with the following solution:

[
L̄11 L̄21 L̄31
L̄12 L̄22 L̄32

]
=


2.895 4.757 3.449
2.930 4.029 6.360
4.751 3.219 2.638
4.578 4.121 3.918

,

 F11 F12
F21 F22
F31 F32

 =

−0.713 −0.263 −0.230 −0.154
−0.795 −0.212 −0.302 −0.122
−1.365 −0.071 −0.538 −0.175

.

If initial states x0 = [0.7, 0.5]T and Π0 = 2 are chosen, the simulation results of
Example 2 are as illustrated in Figure 2. Accordingly, Figure 2a,b present asymptotic
convergence to the origin of the states of (38) and their observations, while Figure 2c,d
shows the time evolution of the system mode and control input, respectively. The simulation
results verified Theorem 2 applied to design observer-basedH∞-controllers for (38) with
sensor failures.
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Figure 2. Simulation results of Example 2: (a,b) actual and observed states of (38), (c) system mode,
and (d) control input.

Example 3 (Comparative practical example). This example aims at giving a comparison of the
H∞ performance between our method and [38] in the presence of the mismatched phenomenon when
sensor failures are absent. Consider a single-link robot arm model adopted in [37,38,46], in which
plant modes are defined in g ∈ SΠ = {1, 2, 3}

ϕ̈(t) =−
Mgga`

Ig
sin(ϕ(t))− cv

Ig
ϕ̇(t)+

u(t)
Ig

+ w(t), (39)

where ϕ(t), ϕ̇(t), and w(t) denote the angular position, the angular velocity, and the load torque of
the arm, respectively. In addition, Mg = M(Πk = g) ∈ {0.75, 1.5, 2}(kg) and Ig = I(Πk = g)
∈ {1, 2, 2.5} (kg·m/s2) represent the payload mass and the inertia moment, respectively. Moreover,
` = 0.5 (m) is the arm length, ga = 9.81 (m/s2) denotes the gravity acceleration, and cv =
2 (N ·s/m) stands for the viscous friction coefficient. Besides, denote x(t) = [x1(t), x2(t)]T =
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[ϕ(t), ϕ̇(t)]T as a vector state variable, and we can only measure directly ϕ(t). We can put the
continuous time model (39) in the discrete form (3) with sampling time Ts as follows:

Ag1 =

[
1 Ts

− Ts Mgga`
Ig

1− Tscv
Ig

]
, Ag2 =

[
1 Ts

− δTs Mgga`
Ig

1− Tscv
Ig

]
,

Bg1 = Bg2 =

[
0
Ts
Ig

]
, Eg1 = Eg2 =

[
0
Ts

]
, Cg1 = Cg2 =

[
1, 0

]
,

Dg1 = Dg2 = 0.1, Gg1 = Gg2 =
[
1, 0

]
, Hg1 = Hg2 = 0.1, (40)

where δ = 0.01/π and Ts = 0.5. In addition, the fuzzy basic functions are given by

η1(x1,k) =


sin(x1,k)− δx1,k

(1− δ)x1,k
, x1,k 6= 0,

1, x1,k = 0,
η2(x1,k) = 1− η1(x1,k).

Furthermore, transition probabilities are selected analogously from [38], which are known by

[
πgh
]

g,h∈SΠ
=

 0.8 0.1 0.1
0.2 0.7 0.1
0.5 0.2 0.3

, (41)

in which G1 = G2 = G3 = SΠ = {1, 2, 3} and G̃1 = G̃2 = G̃3 = ∅.

Table 2. Comparisons ofH∞ performance of Example 3 with different mismatched levels.

Mismatched Corollary 1
[38]

Level α = 0.1 α = 0.2 α = 0.4

No (µi = 0) 1.713 1.743 1.813 1.854

Weak (µi = 0.1) 3.644 3.718 3.845 5.131

Strong (µi = 0.2) 5.785 6.234 6.768 Infeas.

Based on such setups, the comparison of H∞ performance between our results and
those of [38] is presented in Table 2. It should be noted that the results of the two-step
LMI method in [38] are much sensitive with the initialization of the first steps. We
collected here the best results of [38] provided by its author. Overall, Corollary 1 pro-
vided significantly smaller H∞-indices than the results in [38], that is, for three differ-
ent levels of the mismatched phenomenon, Corollary 1 released better H∞ performance
(1.713, 1.743, 1.813 < 1.854 in µi = 0; 3.644, 3.718, 3.845 < 5.131 in µi = 0.1, especially
feasible in µi = 0.2). The outperformed results demonstrated that our method has the capa-
bilities of relaxing theH∞ conditions in preceding works and providing promising results.

By choosing initial condition x0 = [0.2π,−0.1]T , Π0 = 1, and disturbance
dk = 0.4e−0.1k sin(0.3k), a numerical simulation of the closed-loop systems (40) is shown
in Figure 3 when α = 0.2 and µi = 0.1. As can be seen from Figure 3, the observed
state x̂k asymptotically tracked the real state xk, and they both converged to zero as time
increased under the evolution of the system mode Πk. The observation again validated the
effectiveness of the controller (31) obtained in Corollary 1.
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Figure 3. Simulation results of Example 3: (a,b) actual and observed states of (40), (c) system mode,
and (d) control input.

5. Conclusions

By considering the mismatched phenomenon in fuzzy basic functions, this papers
addressed the problem of observer-based H∞-controller design for Markov jump fuzzy
systems with incomplete transition probabilities and sensor failures. The key successes of
the paper are two relaxation processes in Theorem 1 and 2 that allow the design problem
to be solved effectively by a single-step LMI approach. In addition, the obtained H∞-
stabilization conditions provided promising results compared to existing studies. Through
two illustrative examples, the validation of the proposed observer-based H∞-controller
was verified in the sense of both feasibility andH∞ performance. In future works, random
models of sensor failure governed by single or multiple Markov processes also will be
taken into account to formulate several control problems of robotics in terms of the MJFSs.
Moreover, for the theoretical aspects, we plan to further address sensor failure detection
and fault-tolerant control problems of discrete-time nonlinear Markov jump systems.

Author Contributions: Conceptualization, T.B.N.; Formal analysis, T.B.N.; Funding acquisition,
H.-K.S.; Methodology, T.B.N.; Project administration, H.-K.S.; Software, T.B.N.; Validation, T.B.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Ministry of Science and ICT (MSIT), Korea, under
the Information Technology Research Center (ITRC) support program (IITP-2022-2018-0-01423)
supervised by the Institute for Information & communications Technology Promotion (IITP) and was
supported by Basic Science Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (2020R1A6A1A03038540).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Sung Hyun Kim of the School of Electrical
Engineering, University of Ulsan, South Korea, for his valuable comments and programming support.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 2055 18 of 19

References
1. Sánchez-Herguedas, A.; Mena-Nieto, A.; Rodrigo-Muñoz, F.; Villalba-Díez, J.; Ordieres-Meré, J. Optimisation of Maintenance

Policies Based on Right-Censored Failure Data Using a Semi-Markovian Approach. Sensors 2022, 22, 1432. [CrossRef] [PubMed]
2. Pang, J.; Liu, D.; Peng, Y.; Peng, X. Collective anomalies detection for sensing series of spacecraft telemetry with the fusion of

probability prediction and Markov chain model. Sensors 2019, 19, 722. [CrossRef] [PubMed]
3. Arrifano, N.; Oliveira, V.; Ramos, R.A.; Bretas, N.G.; Oliveira, R. Fuzzy stabilization of power systems in a co-generation scheme

subject to random abrupt variations of operating conditions. IEEE Trans. Control Syst. Technol. 2007, 15, 384–393. [CrossRef]
4. Dong, H.; Wang, Z.; Gao, H. Distributed H∞ filtering for a class of Markovian jump nonlinear time-delay systems over lossy

sensor networks. IEEE Trans. Ind. Electron. 2013, 60, 4665–4672. [CrossRef]
5. Luan, X.; Zhao, S.; Liu, F. H∞ control for discrete-time Markov jump systems with uncertain transition probabilities. IEEE Trans.

Autom. Control 2012, 58, 1566–1572. [CrossRef]
6. Todorov, M.G.; Fragoso, M.D.; do Valle Costa, O.L. Detector-basedH∞ results for discrete-time Markov jump linear systems with

partial observations. Automatica 2018, 91, 159–172. [CrossRef]
7. Wang, H.O.; Tanaka, K.; Griffin, M.F. An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans.

Fuzzy Syst. 1996, 4, 14–23. [CrossRef]
8. Dong, H.; Li, X.; Shen, P.; Gao, L.; Zhong, H. Interval type-2 fuzzy logic PID controller based on differential evolution with better

and nearest option for hydraulic serial elastic actuator. Int. J. Control. Autom. Syst. 2021, 19, 1113–1132. [CrossRef]
9. Liu, X.; Zhang, Q. New approaches toH∞ controller designs based on fuzzy observers for TS fuzzy systems via LMI. Automatica

2003, 39, 1571–1582.
10. Dong, J.; Wang, Y.; Yang, G.H. Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time

nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2010, 40, 1447–1459. [CrossRef]
11. Tanaka, K.; Wang, H.O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach; John Wiley & Sons:

Hoboken, NJ, USA, 2004.
12. Guerra, T.M.; Vermeiren, L. LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s

form. Automatica 2004, 40, 823–829. [CrossRef]
13. Ding, B.; Huang, B. Reformulation of LMI-based stabilisation conditions for nonlinear systems in Takagi–Sugeno’s form. Int. J.

Syst. Sci. 2008, 39, 487–496. [CrossRef]
14. Lee, D.H.; Park, J.B.; Joo, Y.H. Approaches to extended non-quadratic stability and stabilization conditions for discrete-time

Takagi–Sugeno fuzzy systems. Automatica 2011, 47, 534–538. [CrossRef]
15. Li, H.; Wu, C.; Yin, S.; Lam, H.K. Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise

variables. IEEE Trans. Fuzzy Syst. 2015, 24, 1233–1245. [CrossRef]
16. Peng, C.; Ma, S.; Xie, X. Observer-based non-PDC control for networked T–S fuzzy systems with an event-triggered communica-

tion. IEEE Trans. Cybern. 2017, 47, 2279–2287. [CrossRef]
17. Kim, S.H. Nonquadratic H∞ Stabilization Conditions for Observer-Based T–S Fuzzy Control Systems. IEEE Trans. Fuzzy Syst.

2013, 22, 699–706. [CrossRef]
18. Kanev, S.; Scherer, C.; Verhaegen, M.; De Schutter, B. Robust output-feedback controller design via local BMI optimization.

Automatica 2004, 40, 1115–1127. [CrossRef]
19. Cao, Y.Y.; Lam, J.; Sun, Y.X. Static output feedback stabilization: An ILMI approach. Automatica 1998, 34, 1641–1645. [CrossRef]
20. El Ghaoui, L.; Oustry, F.; AitRami, M. A cone complementarity linearization algorithm for static output-feedback and related

problems. IEEE Trans. Autom. Control 1997, 42, 1171–1176. [CrossRef]
21. Leibfritz, F. An LMI-Based Algorithm for Designing Suboptimal StaticH2/H∞ Output Feedback Controllers. SIAM J. Control

Optim. 2001, 39, 1711–1735. [CrossRef]
22. Lo, J.C.; Lin, M.L. Observer-based robustH∞ control for fuzzy systems using two-step procedure. IEEE Trans. Fuzzy Syst. 2004,

12, 350–359. [CrossRef]
23. Lin, C.; Wang, Q.G.; Lee, T.H. Improvement on observer-basedH∞ control for T–S fuzzy systems. Automatica 2005, 41, 1651–1656.

[CrossRef]
24. Zhang, J.; Shi, P.; Qiu, J.; Nguang, S.K. A novel observer-based output feedback controller design for discrete-time fuzzy systems.

IEEE Trans. Fuzzy Syst. 2014, 23, 223–229. [CrossRef]
25. Chang, X.H.; Yang, G.H. A descriptor representation approach to observer-basedH∞ control synthesis for discrete-time fuzzy

systems. Fuzzy Sets Syst. 2011, 185, 38–51. [CrossRef]
26. Liu, Q.; Wang, Z.; He, X.; Zhou, D. On Kalman-consensus filtering with random link failures over sensor networks. IEEE Trans.

Autom. Control. 2017, 63, 2701–2708. [CrossRef]
27. Zhai, D.; An, L.; Dong, J.; Zhang, Q. Output feedback adaptive sensor failure compensation for a class of parametric strict

feedback systems. Automatica 2018, 97, 48–57. [CrossRef]
28. Abboush, M.; Bamal, D.; Knieke, C.; Rausch, A. Hardware-in-the-Loop-Based Real-Time Fault Injection Framework for Dynamic

Behavior Analysis of Automotive Software Systems. Sensors 2022, 22, 1360. [CrossRef]
29. Acho, L.; Pujol-Vázquez, G. Data Fusion Based on an Iterative Learning Algorithm for Fault Detection in Wind Turbine Pitch

Control Systems. Sensors 2021, 21, 8437. [CrossRef]

http://doi.org/10.3390/s22041432
http://www.ncbi.nlm.nih.gov/pubmed/35214334
http://dx.doi.org/10.3390/s19030722
http://www.ncbi.nlm.nih.gov/pubmed/30754619
http://dx.doi.org/10.1109/TCST.2006.886443
http://dx.doi.org/10.1109/TIE.2012.2213553
http://dx.doi.org/10.1109/TAC.2012.2229839
http://dx.doi.org/10.1016/j.automatica.2018.01.034
http://dx.doi.org/10.1109/91.481841
http://dx.doi.org/10.1007/s12555-020-0141-2
http://dx.doi.org/10.1109/TSMCB.2009.2039642
http://dx.doi.org/10.1016/j.automatica.2003.12.014
http://dx.doi.org/10.1080/00207720701832671
http://dx.doi.org/10.1016/j.automatica.2010.10.029
http://dx.doi.org/10.1109/TFUZZ.2015.2505331
http://dx.doi.org/10.1109/TCYB.2017.2659698
http://dx.doi.org/10.1109/TFUZZ.2013.2272646
http://dx.doi.org/10.1016/j.automatica.2004.01.028
http://dx.doi.org/10.1016/S0005-1098(98)80021-6
http://dx.doi.org/10.1109/9.618250
http://dx.doi.org/10.1137/S0363012999349553
http://dx.doi.org/10.1109/TFUZZ.2004.825992
http://dx.doi.org/10.1016/j.automatica.2005.04.004
http://dx.doi.org/10.1109/TFUZZ.2014.2306953
http://dx.doi.org/10.1016/j.fss.2011.06.010
http://dx.doi.org/10.1109/TAC.2017.2774601
http://dx.doi.org/10.1016/j.automatica.2018.07.014
http://dx.doi.org/10.3390/s22041360
http://dx.doi.org/10.3390/s21248437


Mathematics 2022, 10, 2055 19 of 19

30. Tian, E.; Yue, D.; Yang, T.C.; Gu, Z.; Lu, G. T–S fuzzy model-based robust stabilization for networked control systems with
probabilistic sensor and actuator failure. IEEE Trans. Fuzzy Syst. 2011, 19, 553–561. [CrossRef]

31. Peng, C.; Fei, M.R.; Tian, E. Networked control for a class of T–S fuzzy systems with stochastic sensor faults. Fuzzy Sets Syst.
2013, 212, 62–77. [CrossRef]

32. Dong, J.; Wu, Y.; Yang, G.H. A new sensor fault isolation method for T–S fuzzy systems. IEEE Trans. Cybern. 2017, 47, 2437–2447.
[CrossRef] [PubMed]

33. Wang, H.; Xie, S.; Zhou, B.; Wang, W. Non-fragile robustH∞ filtering of takagi-sugeno fuzzy networked control systems with
sensor failures. Sensors 2019, 20, 27. [CrossRef] [PubMed]

34. He, S.; Liu, F. Finite-TimeH∞ Fuzzy Control of Nonlinear Jump Systems With Time Delays Via Dynamic Observer-Based State
Feedback. IEEE Trans. Fuzzy Syst. 2011, 20, 605–614. [CrossRef]

35. Jiang, B.; Karimi, H.R.; Yang, S.; Gao, C.; Kao, Y. Observer-based adaptive sliding mode control for nonlinear stochastic Markov
jump systems via T–S fuzzy modeling: Applications to robot arm model. IEEE Trans. Ind. Electron. 2020, 68, 466–477. [CrossRef]

36. Lam, H.K.; Tsai, S.H. Stability analysis of polynomial-fuzzy-model-based control systems with mismatched premise membership
functions. IEEE Trans. Fuzzy Syst. 2013, 22, 223–229. [CrossRef]

37. Jiang, B.; Karimi, H.R.; Kao, Y.; Gao, C. Adaptive control of nonlinear semi-Markovian jump T–S fuzzy systems with immeasurable
premise variables via sliding mode observer. IEEE Trans. Cybern. 2018, 50, 810–820. [CrossRef]

38. Kim, S.H. Observer-Based Control for Markovian Jump Fuzzy Systems Under Mismatched Fuzzy Basis Functions. IEEE Access
2021, 9, 122971–122982. [CrossRef]

39. Shen, H.; Li, F.; Wu, Z.G.; Park, J.H. Finite-time asynchronous filtering for discrete-time Markov jump systems over a lossy
network. Int. J. Robust Nonlinear Control 2016, 26, 3831–3848. [CrossRef]

40. Zhang, X.M.; Han, Q.L.; Ge, X. A novel approach to H∞ performance analysis of discrete-time networked systems subject to
network-induced delays and malicious packet dropouts. Automatica 2022, 136, 110010. [CrossRef]

41. Tuan, H.D.; Apkarian, P.; Narikiyo, T.; Yamamoto, Y. Parameterized linear matrix inequality techniques in fuzzy control system
design. IEEE Trans. Fuzzy Syst. 2001, 9, 324–332. [CrossRef]

42. Chang, X.H.; Zhang, L.; Park, J.H. Robust static output feedbackH∞ control for uncertain fuzzy systems. Fuzzy Sets Syst. 2015,
273, 87–104. [CrossRef]

43. Wang, Y.; Xie, L.; De Souza, C.E. Robust control of a class of uncertain nonlinear systems. Syst. Control. Lett. 1992, 19, 139–149.
[CrossRef]

44. Nguyen, T.B.; Kim, S.H. Relaxed dissipative control of nonhomogeneous Markovian jump fuzzy systems via stochastic
nonquadratic stabilization approach. Nonlinear Anal. Hybrid Syst. 2020, 38, 100915. [CrossRef]

45. Nguyen, T.B.; Kim, S.H. Dissipative control of interval type-2 nonhomogeneous Markovian jump fuzzy systems with incomplete
transition descriptions. Nonlinear Dyn. 2020, 100, 1289–1308 . [CrossRef]

46. Jiang, B.; Karimi, H.R.; Kao, Y.; Gao, C. Takagi–Sugeno model-based sliding mode observer design for finite-time synthesis of
semi-Markovian jump systems. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 1505–1515. [CrossRef]

http://dx.doi.org/10.1109/TFUZZ.2011.2121069
http://dx.doi.org/10.1016/j.fss.2012.09.015
http://dx.doi.org/10.1109/TCYB.2017.2707422
http://www.ncbi.nlm.nih.gov/pubmed/28600271
http://dx.doi.org/10.3390/s20010027
http://www.ncbi.nlm.nih.gov/pubmed/31861515
http://dx.doi.org/10.1109/TFUZZ.2011.2177842
http://dx.doi.org/10.1109/TIE.2020.2965501
http://dx.doi.org/10.1109/TFUZZ.2013.2243735
http://dx.doi.org/10.1109/TCYB.2018.2874166
http://dx.doi.org/10.1109/ACCESS.2021.3110278
http://dx.doi.org/10.1002/rnc.3537
http://dx.doi.org/10.1016/j.automatica.2021.110010
http://dx.doi.org/10.1109/91.919253
http://dx.doi.org/10.1016/j.fss.2014.10.023
http://dx.doi.org/10.1016/0167-6911(92)90097-C
http://dx.doi.org/10.1016/j.nahs.2020.100915
http://dx.doi.org/10.1007/s11071-020-05564-z
http://dx.doi.org/10.1109/TSMC.2018.2846656

	Introduction
	Preliminaries
	Control Synthesis
	Illustrative Examples
	Conclusions
	References

