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Abstract: We consider an optimal control problem with the discounted and average payoff. The
reward rate (or cost rate) can be unbounded from above and below, and a Markovian switching
stochastic differential equation gives the state variable dynamic. Markovian switching is represented
by a hidden continuous-time Markov chain that can only be observed in Gaussian white noise. Our
general aim is to give conditions for the existence of optimal Markov stationary controls. This fact
generalizes the conditions that ensure the existence of optimal control policies for optimal control
problems completely observed. We use standard dynamic programming techniques and the method
of hidden Markov model filtering to achieve our goals. As applications of our results, we study the
discounted linear quadratic regulator (LQR) problem, the ergodic LQR problem for the modeled
quarter-car suspension, the average LQR problem for the modeled quarter-car suspension with damp,
and an explicit application for an optimal pollution control.
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1. Introduction

In recent years, there has been more attention to a class of optimal control problems
where the dynamic systems are governed means switching diffusions in which the switch-
ing is modeled by a continuous-time Markov chain (ψ) with unobservable hidden states
(also known as partially observed optimal control problems). In these problems, an observ-
able process y whose outcomes are “influenced” by the outcomes of ψ in a known way is
assumed. Since ψ cannot be observed directly, the goal is to learn about ψ by observing y.
Following the last mentioned, this article concerns with an optimal control problem with
discounted and ergodic payoff in which the dynamic system x(t) evolves according to
a Markovian regime-switching diffusion dx(t) = f (x(t), ψ(t))dt + σ(x(t), ψ(t))dW(t) for
given continuous functions f and σ. The reward rate is allowed to be unbounded from
above and from below. In this paper, the Wonham filter to estimate the states of the Markov
chain from the observable evolution of a given process (y) is used. As a result, the original
system x(t) is converted to a completely observable one x(t).

Our main results extend the dynamic programming technique to this family of stochas-
tic optimal control problems with reward (or cost) rate per unit of time unbounded and
Markovian regime-switching diffusions. The regime switching is modeled by a continuous-
time Markov chain (ψ) with unobservable states. Early works include research on an
optimal control problem with an ergodic payoff, considering that the dynamic system
evolves according to Markovian switching diffusions. However, this diffusion does not
depend on a hidden Markov chain [1]. Research on deriving the dynamic programming
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principle for a partially observed optimal control problem in which the dynamic system is
governed by a discrete-time Markov control process taking values in a finite-dimensional
space has also been proposed [2]. Finally, one paper studied the optimal control with
Markovian switching that is completely observable and rewards rate unbounded [3]. As
an application of our results, we study the discounted linear quadratic regulator (LQR)
problem, the ergodic LQR problem for the modeled quarter-car suspension, the average
(ergodic) LQR problem for the modeled quarter-car suspension with damp, and an explicit
application for an optimal pollution control. Other applications with bounded payoff
different from those studied in this work are found in [4–6].

The objective of the theory of controlled regime-switching diffusions is to model
controlled diffusion systems whose dynamics are affected by discrete phenomena. In these
systems, the discrete phenomena are modeled by a Markov chain in continuous time,
whose states represent the discrete phenomenon involved. There is an extensive list of
references dealing with the case of completely observable stochastic optimal control in
which a switching diffusion governs the stochastic systems. A literature review includes
the textbooks [7,8] and the papers [9–14], with several applications, including optimization
portfolios, wireless communication systems, and wind turbines, among others.

Generally, to solve unobserved optimal control problems, where the dynamic systems
are governed by a hidden Markovian switching diffusion, it is necessary to transform them
into completely observed ones, which in our case is done using a Wonham filter.

This Wonham filter estimates the hidden state of the Markov chain from the observable
evolution of the process y. When these estimates are replaced in the original system, this
becomes a completely observable system [15,16] and ([17], Section 22.3). The numerical
results for Wonham’s filter are given in [18].

The paper is organized as follows: in Section 1, an introduction is given. In Section 2,
the main assumptions are given. In this section, the partially observable system is converted
into an observable system. The conditions to ensure the existence of optimal solutions for
the optimal control problem with discounted payoff are given in Section 3. In Section 4,
the conditions to ensure the existence of optimal solutions for the optimal control problem
with average payoff are deduced. To illustrate our results, four applications are developed:
an application on a linear quadratic regulator (LQR) with discounted payoff (Section 5);
the development of a model of a quarter-car suspension LQR with an average payoff
(Section 6); the study of an optimal control of a vehicle active suspension system with damp
(Section 7); and an explicit application for an optimal pollution control (Section 8).

2. Formulation of the Problem

This work focuses on controlled hybrid stochastic differential Equations (HSDE) under
partial observation. To explain this, first, we consider the stochastic differential equations
of the form:

dx(t) = b(x(t), ψ(t), u(t))dt + σ(x(t), ψ(t))dW(t), x(0) = x0, ψ(0) = i, (1)

where b : Rn× E×U → Rn and σ : Rn× E→ Rn×d in (1) depend on a finite state and time-
continuous irreducible and aperiodic Markov chain ψ(·) taking values in E = {1, . . . , N}.
For all i, j ∈ E the transition probabilities are given by:

P(ψ(s + t)) = j | ψ(s) = i =

{
qijt + o(t), if i 6= j,
1 + qiit + o(t),

where the constants qij ≥ 0 are the transition rates from i to j and satisfy that qii(x) =
−∑i 6=j qij(x), the transition matrix is denoted by Q = {qij}i,j=1,2,...,N . The control compo-
nent is u(t) ∈ U with U a compact set of Rm, and W is a d-dimensional standard Brownian
motion independent of ψ(·). Throughout the work, it is considered that both the Markov
chain ψ(·) and the Brownian motion W are defined on a complete filtered probability space
(Ω,F ,P, {Ft}) that satisfies the usual conditions.
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Until now, the switching diffusion (1) seems to be formulated as a classical switching
diffusion, as in [11–14,19], among others. However, we propose that the process ψ is a
hidden Markov chain, i.e., at any given instant of time, the exact state of the Markov chain
ψ(·) cannot be observed directly. Instead, we can only observe the process y given by:

dy(t) = h(ψ(t))dt + σ0dB(t), y(0) = 0, (2)

whose dynamics depends on the value of ψ(·). In Equation (2), h : E → R is a bounded
function, whereas B is a one-dimensional Brownian motion independent of W and ψ, and
σ0 is a positive constant.

Under partial observation, the best way to work is through nonlinear filtering. This
technique studies the conditional distribution of ψ(t) given the observed data accumulated
up to time t, namely:

Ψi(t) = P(ψ(t) = i | σ1(y(s), 0 ≤ s ≤ t)), ∀i ∈ E, (3)

where σ1(y(s), 0 ≤ s ≤ t)) is the σ1-algebra generated by the process y(t) and ∑N
i=1 Ψi(t) = 1.

Taking into account the following notation:

hT(Ψ) = (h(1), h(2), . . . , h(N)),

ΨT(t) = (Ψ1(t), . . . , ΨN(t)),

diag(h) = diag(h(1), . . . , h(N)),

and using the Wonham filtering techniques, we know that the process Ψ in (3) satisfies the
following Equation (see for instance [15] or ([17], Section 22.3)):

dΨ(t) =
[

QΨ(t)− σ−2
0 hT(Ψ(t))

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)

]
dt (4)

+σ−2
0

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)dy(t),

where IN is the N × N identity matrix. If we introduce the process:

dw0(t) = σ−1
0 (dy(t)− hT(Ψ(t))dt),

then Equation (4) can be rewritten as:

dΨ(t) = QΨ(t)dt + σ−1
0

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)dw0(t). (5)

Remark 1. Note that the unique solution of (5) exists up to an explosion time τ (see, for in-
stance [20]). However, τ = ∞ a.s. since Ψi(t) ≤ 1 for all t < τ and ∀i ∈ E.

At this point, we have defined the controlled HSDE with partial observation. To fulfill
the objective of this work, that is, to solve an optimal control problem with the discounted
and average payoff with partial observation, we will transform this problem into one
with complete observation (see for instance [5,6,16]). First, we will establish the following
notational convention.

For the coefficients b : Rn × E×U → Rn and σ : Rn × E→ Rn×d

b(x(t), ψ(t), u(t)) = (b1(x(t), ψ(t), u(t)), . . . , bn(x(t), ψ(t), u(t))),

σ(x(t), ψ(t)) = {σkl(x(t), ψ(t))}k=1,...,n;l=1,...,d,
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we have their filtered estimates:

bk(x(t), Ψ(t), u(t)) =
N

∑
i=1

Ψi(t)bk(x(t), i, u(t)), (6)

σkl(x(t), Ψ(t)) =
N

∑
i=1

Ψi(t)σkl(x(t), i), (7)

and with equalities (6)–(7), we establish the new coefficients:

b(x(t), Ψ(t), u(t)) = (b1(x(t), Ψ(t), u(t)), . . . , bn(x(t), Ψ(t), u(t))),

σ(x(t), Ψ(t)) = {σkl(x(t), Ψ(t))}k=1,...,n;l=1,...,d

With the use of above functions and Equation (1), we introduce the components of a
new diffusion process as:

dxk(t) = bk(x(t), Ψ(t), u(t))dt +
d

∑
l=1

σkl(xk(t), Ψ(t))dWl(t), x(0) = x0, (8)

and therefore, we obtain from (5) and (8) the following controlled system with complete
observation:{

dx(t) = b(x(t), Ψ(t), u(t))dt + σ(x(t), Ψ(t))dW(t),
dΨ(t) = QΨ(t)dt + σ−1

0
(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)dw0(t),

(9)

where (x(t), Ψ(t)) ∈ Rn × SN with:

SN = {Ψ = (Ψ1, . . . , ΨN) ∈ RN | Ψi(t) > 0,
N

∑
i=1

Ψi(t) = 1}.

Throughout this work, we will use the following Assumption 1.

Assumption 1.

(a) The control set U is compact.
(b) b : Rn × E × U → Rn is a continuous function that satisfies the Lipschitz continuous

property on x uniformly in (i, u) ∈ E×U , that is, there exists a constant C1 > 0 such that:

max
(i,u)∈E×U

‖b(x, i, u)− b(y, i, u)‖ ≤ C1‖x− y‖.

(c) There exists constants C2, C3 > 0 such that, σ : Rn × E→ Rn×d satisfies:

‖σ(x, i)− σ(y, i)‖ ≤ C2‖x− y‖ and xTσ(x, i)σT(x, i)x ≥ C3‖x‖2

for all x, y ∈ Rn and for all i ∈ E.
(d) There exists C4, C5 > 0 with:

‖σ(x, i)‖ ≤ C4(1 + ‖x‖) and ‖b(x, i, u)‖ ≤ C5(1 + ‖x‖)

for i ∈ E and u ∈ U .

Under Assumption 1 and taking into account Remark 1, we know that the system (9)
has a unique solution.
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For x ∈ Rn, we denote by ∇νx and Hx the gradient and the Hessian matrix of x,
respectively, and 〈·, ·〉 the scalar product. For a sufficiently smooth real-valued function
ν : Rn ×RN → R. Let:

Lu,Ψν(x, Ψ) :=
〈
∇νx, b(x, Ψ, u)

〉
+

1
2

Tr
[
(Hxν)a(x, Ψ)

]
+〈∇νΨ, QΨ(t)〉+ 1

2σ2
0

Tr
[
(HΨν((x, Ψ)))A2(Ψ(t))

]
with

a(x, Ψ) = σ(x, Ψ)σ(x, Ψ)T ,

A2(Ψ(t)) = [
(

diag(h)− hT(Ψ(t))IN

)
Ψ(t)][

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)]T ,

the operator associated with Equation (9). In order to carry out the aim of this work, we
define the control policies.

Definition 1. A function of the form u(t) := f (t, x(t), Ψ(t)) for some measurable function
f : [0, ∞)×Rn × SN → U , is called a Markov policy, whereas u(t) := f (x(t), Ψ(t)) for some
measurable function f : Rn × SN → U is said to be a stationary Markov policy. The stationary
Markov policies set is denote by F.

The following assumption represents a Lyapunov-like condition.

Assumption 2. There exists a function (w ≥ 1) ∈ C2(Rn × SN), and constants p ≥ q > 0, such
that:

(i) lim|x|→∞ w(x, Ψ) = +∞, and
(ii) Lu,Ψw(x, Ψ) ≤ −qw(x, Ψ) + p for each u ∈ U and (x, Ψ) ∈ Rn × SN .

It is important to point out that since the ψ(·) is irreducible and aperiodic, we can en-
sure the existence of a unique invariant measure for the Markov–Feller process (x f (·), Ψ(·))
(see [21,22]). Moreover, the Assumption 2 allows us to conclude that the Markov pro-
cess (x f (·), Ψ(·)), where f ∈ F is positive recurrent and there exists a unique invariant
probability measure µ f (dx, Ψ) for which is satisfied:

µ f (w) :=
∫
Rn×SN

w(x, Ψ)µ f (dx, dΨ) < ∞. (10)

Note that for every f ∈ F, the measure µ f belongs to the space defined as follows.

Definition 2. The w-norm is defined as:

‖ ν ‖w := sup
(x,Ψ)∈Rn×SN

| ν(x, Ψ) |
w(x, Ψ)

,

where ν is the real-valued measurable function on Rn × SN and w is the Lyapunov function given
in Assumption 2. The normed linear space of real-valued measurable functions ν with finite w-norm
is denoted by Bw(Rn × SN). Moreover, the normed linear space of finite signed measures µ on
Rn × SN such that:

‖ µ ‖w :=
∫
Rn

w(x, Ψ) | µ | (dx, dΨ) < ∞,

where | µ | is the total variation of µ is denoted by Mw(Rn × SN).

Remark 2. For each ν ∈ Bw(Rn × SN) and µ ∈Mw(Rn × SN), we get:∣∣∣ ∫ ν(x, Ψ)µ(dx, dΨ)
∣∣∣ ≤‖ ν ‖w

∫
w(x, Ψ) | µ | (dx, dΨ) =‖ ν ‖w‖ µ ‖w< ∞,
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that is, the integral
∫

ν(x, Ψ)µ(dx, Ψ) is finite.

The next result will be useful later.

Lemma 1. The condition (ii) in Assumption 2 implies that:

(a) Ex,Ψ, f [w(x(t), Ψ(t))] ≤ e−qtw(x, Ψ) + p
q (1− e−qt);

(b) limt→∞
1
t E

x,Ψ, f [w(x(t), Ψ(t))] = 0 for all f ∈ F, (x, Ψ) ∈ Rn × SN , and t ≥ 0;
(c) µ f (w) ≤ p

q for all h ∈ F.

Proof. (a) After applying Dynkin’s formula to the function eqtw, we use case (ii) of
Assumption 2 to get:

Ex,Ψ, f [eqtw(x(t), Ψ(t)] = w(x, Ψ0) +Ex,Ψ, f
[ ∫ t

0
eqs[Lu,Ψw(x(s), Ψ(s)) + qw(x(s), Ψ(s))]ds

]
≤ w(x, Ψ0) +Ex,Ψ, f

[ ∫ t

0
eqs pds

]
(11)

≤ w(x, Ψ0) +
p
q
(eqt − 1).

Finally, if we multiply the inequality (12) by e−qt, we obtain the result. To prove (b),
it is enough take the limit from the inequality (12). Integrating both sides of (12) with
respect to the invariant probability µ f , we obtain µ f (w) ≤ e−qtµ f (w) + p

q (1− e−qt), i.e.,
µ f (w) ≤ p/q; thus, the result (c) follows.

In this work, the reward rate is a measurable function r : Rn × E×U → R that satisfies
the following conditions:

Assumption 3.

(a) The function r(x, i, u) is continuous on Rn × E×U ; moreover, for each R > 0, there exists a
constant K(R) > 0 such that:

sup
(i,u)∈E×U

|r(x, i, u)− r(y, i, u)| ≤ K(R)|x− y| for all |x|, |y| ≤ R,

i.e., r is locally Lipschitz in x uniformly with respect to i ∈ E and u ∈ U.
(b) r(·, ·, u) is in the normed linear space of real-valued functions Bw(Rn × E) uniformly in u;

that is, there exists M > 0 such that for all (x, i) ∈ Rn × E:

sup
u∈U
|r(x, i, u)| ≤ Mw(x, i).

Notation. The rate reward r : Rn × E×U → R is vector form is given by:

rT(x, Ψ, u) = (r(x, 1, u), r(x, 2, u), . . . , r(x, N, u)),

and its estimation is:

r(x, Ψ(t), u) = ΨT(t)r(x, Ψ, u) =
N

∑
i=1

Ψi(t)r(x, i, u). (12)

Henceforth, for each stationary Markov policy f ∈ F, we write:

r(x, Ψ, f ) := r(x, Ψ, f (x, i)).
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3. The Discounted Case

The objective of this section is to give conditions that guarantee the existence of
discounted optimal policies for the α-discounted payoff criterion we are concerned with.

Definition 3. Let r be as in Assumption 3 and α a positive constant. Given a stationary Markov
policy f ∈ F and an initial state x(0) = x, Ψ(0) = Ψ, the total expected discount payoff (or
discounted payoff, for short) is defined as:

Vα(x, Ψ, f ) := Ex,Ψ, f
[ ∫ ∞

0
e−αtr(x(t), Ψ(t), f )dt

]
.

Observe that the value function does not depend on the time at which the optimal
control problem is studied to get the stationarity of the problem.

The following result shows a bound of the total expected discount payoff given in
Definition 3. We will omit its proof because it is a direct consequence of Assumption 3 and
inequality in Lemma 1a.

Proposition 1. Suppose that Assumptions 2 and 3b hold. Then, for each x in Rn, Ψ ∈ SN and
f ∈ F we have:

sup
f∈F
|Vα(x, Ψ, f )| ≤ M(α)w(x, Ψ) with M(α) := M

α + d
αc

.

implying that α-discounted payoff Vα(·, ·, f ), belongs to the space Bw(Rn × SN). Here, q and p are
as in Assumption 2 and M is the constant in Assumption 3b.

α-discounted optimal problem. The optimal control problem with discounted payoff
consists of finding a policy f ∗ ∈ F such that:

V∗α (x, Ψ) = Vα(x, Ψ, f ∗) = sup
f∈F

Vα(x, Ψ, f ). (13)

The function V∗α (x, Ψ) is referred to as the optimal discount payoff, whereas the policy
f ∗ ∈ F is called the discounted optimal.

Definition 4. We say that a function v ∈ C2(Rn × SN) ∩ Bw(Rn × SN), and a policy f ∗ ∈ F
verify (are a solution of) the α-discounted payoff optimality equations (or Hamilton–Jacobi–
Bellman (HJB) equation) if, for every x ∈ Rn and Ψ ∈ SN :

αv(x, Ψ) = r(x, Ψ, f ∗) +L f ∗ ,Ψv(x, Ψ) (14)

= sup
f∈F

{
r(x, Ψ, f ) +L f ,Ψv(x, Ψ)

}
. (15)

Proposition 2. If Assumptions 1, 2, and 3 hold, then:

(a) There exists a function v in C2(Rn × SN) ∩ Bw(Rn × SN) and a policy f ∗ ∈ F, such that
(14) and (15) hold.

(b) The function v coincides with V∗α (x, Ψ) in (13).
(c) A policy f ∗ ∈ F is an α-discount optimal if and only if (14) and (15) are satisfied.
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Proof.

(a) Theorem 3.2 in [23] ensures that the value function Vα(x, Ψ) defined in (13) considering
Ψ ≡ 0 is the unique solution of the HJB Equation (14) in C2(Rn) ∩ Bw(Rn). The
existence of a function v in C2(Rn × SN) ∩ Bw(Rn × SN) and a policy f ∗ ∈ F, such
that (14) and (15) hold, follows from Theorem 3.1 and 3.2 in [23] for each Ψ ∈ SN
fixed.

(b) By Dynkin’s formula for all (x, Ψ) ∈ Rn × SN , f ∈ F and t ≥ 0:

Ex,Ψ, f [e−αtv(x(t), Ψ(t))] = v(x, Ψ) +Ex,Ψ, f
[ ∫ T

0
L f ,Ψ

[
e−αtv(x(t), Ψ(t))dt

]
(16)

Observe that:

L f ,Ψ
[
e−αtv(x(t), Ψ(t))

]
= −αe−αtv(x, Ψ)

+ e−αtb(x, Ψ, f )vx(x, Ψ)

+ e−αt 1
2

Tr(a(x, Ψ))vxx(x, Ψ)

= e−αt[−αv(x(t), Ψ(t)) +L f ,Ψv(x(t), Ψ(t))].

Therefore, the right-hand member of (16) equals:

Ex,Ψ, f [e−αtv(x(t), Ψ(t))] = v(x, Ψ) +Ex,Ψ, f
[
e−αt(L f ,Ψv(x(t), Ψ(t))− αv(x(t), Ψ(t)))dt

]
and from (15):

Ex,Ψ, f [e−αtv(x(t), Ψ(t))] ≤ v(x, Ψ)−Ex,Ψ, f
[∫ T

0
e−αtr(x(t), Ψ(t), f )dt

]
.

This yields:

v(x, Ψ) ≥ Ex,Ψ, f
[∫ t

0
[e−αtr(x(t), Ψ(t), f )dt

]
+Ex,Ψ, f [e−αtv(x(t), Ψ(t))].

Now, as a consequence of v is in Bw(Rn × SN) and Lemma 1 (a),(b), we have that:

|Ex,Ψ, f [e−αtv(x(t), Ψ(t))]| ≤ Ex,Ψ, f [[e−αt‖v‖ww(x(t), Ψ(t))]

≤ e−αt‖v‖wEx,Ψ, f w(x(t), Ψ(t))

≤ e−αt‖v‖w

[
e−qTw(x, Ψ) +

p
q
(1− e−qT)

]
(by Lemma 1(a))

→ 0 as t→ ∞.

Therefore:

v(x, Ψ) ≥ Ex,Ψ, f
[∫ ∞

0
[e−αsr(x(s), Ψ(s), f )ds

]
= Vα(x, Ψ, f ) for all f ∈ F.

Thus, v(x, Ψ) ≥ Vα(x, Ψ, f ). In particular, if we take f ∗ ∈ F satisfying (14) and proceed
as above, we get:

v(x, Ψ) = V∗α (x, Ψ, f ∗).

(c) The if part. Suppose that f ∗ ∈ F satisfies Equations (14) and (15). Then, proceeding as
in part (b), we obtain that f ∗ ∈ F is an optimal policy.
The only if part. By mimic the same procedure of part (b), we can obtain that for any
f ∈ F fixed:

αVα(x, Ψ, f ) = r(x, Ψ, f ) +L f ,ΨVα(x, Ψ, f ); for all x ∈ Rn, Ψ ∈ SN . (17)
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On the other hand, by part (b) we can assert that:

αv(x, Ψ) = sup
f∈F
{r(x, Ψ, f ) +L f ,Ψv(x, Ψ)}; for all x ∈ Rn, Ψ ∈ SN . (18)

Now let f ∗ ∈ F be an optimal policy, so that Vα(x, Ψ, f ∗) = v(x, Ψ). Then, we get the
result from (17) and (18).

Remark 3. Briefly, Proposition 2 says that if the HJB-Equations (14) and (15) admit a solution
v ∈ C2(Rn × SN) ∩ Bw(Rn × SN), then v is the optimal discount payoff (13) to the switching
Markovian stochastic control problem with a discounted payoff completely observed, and f ∗ ∈ F is
an optimal stationary policy.

4. Average Optimality Criteria

As in (10), let µ f (ν) :=
∫
Rn ν(x, Ψ)µ f (dx, Ψ) for every ν ∈ Bw(Rn × SN).

Assumption 4. Let (x(t), Ψ(t)) be the solution of the hidden Markovian-switching diffusion (1)–(4).
Then, we suppose that there exist positive constants C and δ such that:

sup
f∈F
|Ex,Ψ, f [ν(x(t), Ψ(t))]− µ f (ν)| ≤ Ce−δt ‖ ν ‖w w(x, Ψ) (19)

for all (x, Ψ) ∈ Rn × SN , ν ∈ Bw(Rn × SN), and t ≥ 0. That is, we assume that the process
(x(t), Ψ(t)) is uniformly w-exponentially ergodic.

Next, we define the long-run average optimality criterion.

Definition 5. For each f ∈M, (x, Ψ) ∈ Rn × SN , and T ≥ 0, let:

JT(x, Ψ, f ) := Ex,Ψ, f
[ ∫ T

0
r(t, x(t), Ψ(t), f )dt

]
. (20)

The long-run expected average reward given the initial state (x, Ψ) is:

J(x, Ψ, f ) := lim inf
T→∞

1
T

JT(x, Ψ, f ). (21)

The function:

J∗(x, Ψ) := sup
f∈F

J(x, Ψ, f ) for all (x, Ψ) ∈ Rn × SN

is referred to as the optimal gain or the optimal average reward. If there is a policy f ∗ ∈ F for which
J(x, Ψ, f ∗) = J∗(x, Ψ) for all (x, Ψ) ∈ Rn × SN , then f ∗ is called average optimal.

Remark 4. In some optimal control problems, the limit of JT(x, Φ, f )/T as T → ∞ might not
exist. To avoid this difficulty, in optimal control problems, it defines the average payoff as a liminf as
in (21), which be interpreted as the worst average payoff that is to be maximized.

For each f ∈ F, let:

J( f ) := µ f (r(·, Ψ, f )) =
∫
Rn

r(x, Ψ, f )µ f (dx, dΨ). (22)

with µ f as in (10). Now, observe that JT defined in (20) can be expressed as:

JT(x, Ψ, f ) = TJ( f ) +
∫ T

0
[Ex,Ψ, f r(x(t), Ψ(t), f )− J( f )]dt, (23)
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therefore, multiplying (23) by 1
T and letting T → ∞ we obtain, by (19):

J(x, Ψ, f ) = lim
T→∞

1
T

JT(x, Ψ, f ) = J( f ) for all (x, Ψ) ∈ Rn × SN . (24)

Moreover, by the definition (22) of J( f ), the Assumption 3b, and (10):

|J( f )| ≤
∫
Rn
| r(x(t), Ψ(t), f ) | µ f (dx, dΨ) ≤ M · µ f (w) < ∞ for all f ∈ F.

Therefore, by Lemma 1c:

sup
f∈F
|J( f )| ≤ M · µ f (w) ≤ M · p

q
, (25)

thus, the reward J( f ) is uniformly bounded on F. From (24) and (25) we obtain that the
following:

J∗ := sup
f∈F

J( f ) = sup
f∈F

J(x, Φ, f ) = J∗(x, Φ) for all (x, Φ) ∈ Rn × SN (26)

has a finite value.
Thus, under the Assumptions 1, 2, and 4, it follows from (19) (w-exponential ergodicity)

and (22) that the long-run expected average reward (21) coincides with the constant J( f )
for every f ∈ F. Indeed, note that JT defined in (20) can be expressed as:

JT(x, Ψ, f ) = TJ( f ) +
∫ T

0
[Ex,Ψ, f r(x(t), Ψ(t), f )− J( f )]dt.

Definition 6. (a) A pair (J, v) consisting of a constant J ∈ R and a function v ∈ C2(Rn × SN) ∩
Bw(Rn × SN) is said to be a solution of the average reward HJB-equation if:

J = max
u∈U

[r(x, Ψ, u) +Lu,Ψv(x, Ψ)] for all (x, Ψ) ∈ Rn × SN . (27)

(b) If a stationary policy f ∈ F attains the maximum in (27), that is:

J = r(x, Ψ, f ) +L f ,Ψv(x, Ψ)] for all (x, Ψ) ∈ Rn × SN , (28)

then f is called a canonical policy.

The following theorem shows that if a policy satisfies the average reward HJB-equation,
then it is an optimal average policy.

Theorem 1. If Assumptions 1, 2, and 3 hold, then:

(i) The average reward HJB Equation (27) admits a unique solution (J, v), with v ∈ C2(Rn ×
SN) ∩ Bw(Rn × SN) satisfying v(0, Ψ0) = 0 for some Ψ0 ∈ SN fixed.

(ii) There exists a canonical policy.
(iii) The constant J in (27) equals J∗ in (26).
(iv) There exists a stationary average optimal policy.

Proof. (i) The steps for the proof of this incise are essentially the same given in proof of
Theorem 6.4 in [24]; thus, we omit the proof.

(ii) Since u → r(·, ·, u) and u → b(·, ·, u) are continuous functions on the compact
set U , we obtain that u → r(·, ·, u) + Lu,Ψv(·, ·) is a continuous function on U ; thus, the
existence of a canonical policy f ∈ F follows from standard measurable selection theorems;
see [25] (Theorem 12.2).
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(iii) Observe that, by (27):

J ≥ r(x, Ψ, u) +Lu,Ψv(x, Ψ) for all (x, Ψ) ∈ Rn × SN and u ∈ U. (29)

Therefore, for any f ∈ F, using Dynkin’s formula and (29) we obtain:

Ex,Ψ, f v(x(t), Ψ(t)) = v(x, Ψ) +Ex,Ψ, f
( ∫ t

0
L f ,Ψh(x(s), Ψ(s))ds

)
≤ v(x, Ψ) + Jt−Ex,Ψ, f

( ∫ t

0
r(x(s), Ψ(s))ds

)
. (30)

Thus, multiplying by t−1 in (30) we have:

t−1 Jt(x, Ψ, f ) ≤ J + t−1v(x, Ψ)− t−1Ex,Ψ, f v(x(t), Ψ(t)). (31)

Consequently, letting t→ ∞ in (31), and using Lemma 1b and (24), we obtain:

J ≥ J( f ) for all f ∈ F.

To obtain the reverse inequality, similar arguments show that if:

J ≤ r(x, Ψ, u) +Lu,Ψv(x, Ψ) for all (x, Ψ) ∈ Rn × SN and u ∈ U,

then J ≤ J( f ) for all f ∈ F. This last inequality together with (29) yields that if f ∈ F is a
canonical policy, which satisfies (28), then we obtain that J( f ) = J, and by (26):

J = J( f ) = J∗ = J∗(x, Ψ) for all (x, Ψ) ∈ Rn × SN . (32)

(iv) Similar arguments to those given in (iii) lead us to that if f ∈ F is a canonical
policy, then it is an average optimal.

Theorem 1 indicates that if a policy satisfies the HJB Equation (27), then this policy is
an optimal policy for the optimal control problem associated with the HJB equation. The
difficulty with this approach is how to get a solution (J∗, v, f ) of the HJB equation. The
most common form of the solve the HJB equation is based on variants on the vanishing
discount approach (see [11,24,26] for details).

Remark 5 ([1]). In the optimality criteria known as bias optimality, overtaking optimality, sensitive
discount optimality, and Blackwell optimality, the early returns and the asymptotic returns are both
relevant; thus, to study them, we need first to analyze the discounted and average optimality criteria.
These optimality criteria will be studied in future work.

Remark 6.

• On Assumption 1, ([7], Theorems 3.17 and 3.18). The uniform Lipschitz and linear growth
conditions of b and σ ensure the existence and uniqueness of the global solution of the SDE
with Markovian switching (1). The uniform Lipschitz condition (max(i,u)∈E×U ‖b(x, i, u)−
b(y, i, u)‖ ≤ C1‖x− y‖, ‖σ(x, i)− σ(y, i)‖ ≤ C2‖x− y‖ ) imply that the change rates of
the functions b(x, i, u) and σ(x, i) are minor or equal to the change rate of a linear function of
x. This gives, in particular, the continuity of b and σ in x for all [t0, ∞). Thus, the uniform
Lipschitz condition excludes the functions b and σ that are discontinuous concerning x. It is
important to note that although a function let continuous, it does not guarantee that it satisfies
the uniform Lipschitz condition; for example, the continuous function sin(x2) does not satisfy
this condition. Uniform Lipschitz condition can be replaced by the local Lipschitz condition.
In fact, the local Lipschitz condition allows us to include a great variety of functions, such as
functions v ∈ C2(Rn × E). However, the linear growth condition (Assumption 1 (d)) also
excludes some important functions, such as b(x, i) = −|x|2x + i . Assumption 1 (d) is quite
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standard but may be restrictive for some applications. As far as the results of this paper are
concerned, the uniform Lipschitz condition may be replaced by the weaker condition:

xTb(x, i, u) +
1
2
||σ(x, i)||2 ≤ K(1 + ||x||2), for all (x, i) ∈ Rn × E, (33)

where K is a positive constant. This last condition allows us to include many functions as the
coefficients b and σ. For example:

b(x, i, u) = a(i)[x(t)− x3(t)] + xg(u) σ(x, i) = b(i)x2(t)

with a(i), b(i) > 0 such that b2(i) ≤ 2a(i) and for some continuous function g : U → R
given. It is possible to check that a diffusion process with the parameters given above satisfies
the local Lipschitz condition but the linear growth condition is not satisfied. On the other hand,
note that:

a(i)x[x− x3] + x2g(u) +
1
2

b2(i)x4 ≤ a(i)x2 + x2g(u) ≤ K(1 + x2)

with K = max(i,u)∈E×U{a(i)+ g(u)} and a compact control set U. That is, the condition (33)
is fulfilled. Thus, ([7], Theorem 3.18) guarantees that the SDE with Markovian switching
with these coefficients has a unique global solution on [t0, ∞).

• On Assumption 2, ([7], Theorem 5.2). This assumption guarantees the positive recur-
rence and the existence of an invariant measure µ f (dx, Ψ) for the Markov–Feller process
(x(t), Ψ(t)). Moreover, if this assumption holds together with the inequality k(|x|p) ≤ w(x, i)
for positive numbers k, p, H, then, the diffusion process (1) satisfies:

limsupt→∞E|x(t)|p ≤ H,

that is, x(t) is asymptotically bounded in pth moment. Some Lyapunov functions are, for
example:

w(x, i) = k(i)|x|p, k(i) > 0, p ≥ 2, ∀ (x, i) ∈ Rn × E, (34)

considering that the coefficients b and σ in (1) satisfy the Lipschitz condition and:

xTb(x, i, u) +
p− 1

2
||σ(x, i)||2 ≤ B(i)||x||2 + a, (35)

with a > 0, and B(i) be constants. In fact, using the inequality acb1−c ≤ ac + b(1 −
c) ∀ a, b ≥ 0, c ∈ [0, 1] and (35), we get:
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Lu,ψw(x, i) = k(i)p||x||p−1b(x, i, u) +
1
2

k(i)p(p− 1)||σ(x, i)||2|x|p−2 +
N

∑
j=i

qijk(j)||x||p

= pk(i)||x||p−2
{

xTb(x, i, u) +
p− 1

2
||σ(x, i)||2

}
+

N

∑
j=i

qijk(j)||x||p

≤ pk(i)||x||p−2{B(i)||x||2 + a}+
N

∑
j=i

qijk(j)||x||p

≤ (pB(i)k(i) +
N

∑
j=i

qijk(j))||x||p + apk(i)||x||p−2

= (pB(i)k(i) +
N

∑
j=i

qijk(j))||x||p (36)

+
[
(apk(i))p/2

( 2
λ(i)

)(p−2)/2]2/p[λ(i)
2
||x||p

](p−2)/p

≤ (pB(i)k(i) +
N

∑
j=i

qijk(j))||x||p + 2
p
(apk(i))p/2

( 2
λ(i)

)(p−2)/2

+
λ(i)(p− 2)

2p
||x||p

≤ −λ(i)(p + 2)
2p

||x||p + 2
p
(apk(i))p/2

( 2
λ(i)

)(p−2)/2

where λ(i) = (pB(i)k(i) + ∑N
j=i qijk(j)).

If we set:

q := min
i∈E

[λ(i)(p + 2)
2p

]
p := max

i∈E

[ 2
p
(apk(i))p/2

( 2
λ(i)

)(p−2)/2]
,

then

Lu,ψw(x, i) ≤ −q||x||p + p ≤ −qw(x, i) + p.

Now, taking the Lyapunov function (34) we define:

w(x, Ψ) =
N

∑
i=1

Ψiw(x, i) =
N

∑
i=1

Ψik(i)||x||p.

Considering that wx(x, Ψ) = ∑N
i=1 Ψik(i)p||x||p−1, wxx(x, i) = ∑N

i=1 Ψik(i)p(p − 1)
||x||p−2, ∇wΨ(x, i) = [k(i), k(2), . . . , k(n)]||x||p and wΨΨ(x, Ψ) = 0; a similar procedure
to that given in (37) allows us to obtain that W is also a Lyapunov function. That is:

Lu,Ψw(x, Ψ) ≤ −q||x||p + p ≤ −qw(x, Ψ) + p.

• On Assumption 3. This assumption allows us that the reward rate (or cost rate) can be
unbounded from above and below. For the Lyapunov function w(x, i) = k(i)|x|p, a reward
rate of the form:

r(x, i, u) = k(i)|x|p + h(u)

for some continuous function h : U → R satisfies the Assumption 3. In fact:

|r(x, i, u)| ≤ k(i)|x|p + max
u∈U

h(u) ≤ (k(i) + max
u∈U

h(u))|x|p = Mw(x, i)
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with M = maxi∈E{k(i) + maxu∈U} and U a compact set.
• On Assumption 4. This assumption indicates asymptotic behavior of x(t) when t goes to

infinite. Sufficient conditions for the w-exponentially ergodicity of the process (x(t), ψ(t))
can be seen in ([1], Theorem 2.8). In fact, in the proof of this theorem, Assumptions 1 and 2 are
required. Note that, for the optimal control problem with discounted optimality criterion, the
w-exponentially ergodicity of the process (x(t), ψ(t)) is not required. This assumption is only
necessary to study the average reward optimality criterion.

Remark 7. In the following sections, our theoretical results are implemented in three applications.
The dynamic system in the three applications evolves according to linear stochastic differential equa-
tions dx(t) = (A(i)x(t) + Bu(t))dt + σdW(t), namely, Assumption 1. The state numbers of the
Markov chain is 2, that is, E = {1, 2}. The payoff rate is of the form r(x, i, u) = xT R(i)x + uTSu
with x ∈ R2 and u ∈ U := [0, a1]× [0, a2], a1, a2 > 0. Taking w(x, i) = xT R(i)x + 1 we get:

|r(x, i, u)| = |xT R(i)x|+ |uTSu|
≤ |xT R(i)x|+ |uTSu||xT R(i)x + 1|
= maxu∈U (|uTSu|+ 1)|xT R(i)x + 1|
= M2w(x, i)

with M2 = maxu∈U (|uTSu|+ 1); thus, Assumption 3 also holds. A few calculations allow us to
obtain the Assumption 2 with w(x, Ψ) = ∑2

i=1 Ψi(t)w(x, ψ(t)) = ∑2
i=1 Ψi(t)(xT R(ψ(t))x + 1).

In fact:

Lu,Ψw(x, Ψ) = x2[2A(i)[Ψ1R(1) + Ψ2R(2)] + R(1)
2

∑
i=1

qi1Ψi + R(2)
2

∑
i=1

qi2Ψi]

+ x[R(1)
2

∑
i=1

qi1Ψi + R(2)
2

∑
i=1

qi2Ψi] (37)

+ σ2[Ψ1R(1) + Ψ2R(2)].

Let 0 < q < −[2A(i)[Ψ1R(1) + Ψ2R(2)] + R(1)∑2
i=1 qi1Ψi + R(2)∑2

i=1 qi2Ψi], and
rewrite Lu,Ψw(x, Ψ) as:

Lu,Ψw(x, Ψ) = −qw(x, Ψ) + l(x, i, u).

where

l(x, i, u) := qw(x, Ψ) + x2[2A(i)[Ψ1R(1) + Ψ2R(2)] + R(1)
2

∑
i=1

qi1Ψi + R(2)
2

∑
i=1

qi2Ψi]

+ x[R(1)
2

∑
i=1

qi1Ψi + R(2)
2

∑
i=1

qi2Ψi] (38)

+ σ2[Ψ1R(1) + Ψ2R(2)]

≤ p,

where the last inequality is obtained from fact that the function l(x.i.u) is continuous on the
compact set U for all x ∈ R and that the term q+ [2A(i)[Ψ1R(1) +Ψ2R(2)] + R(1)∑2

i=1 qi1Ψi +
R(2)∑2

i=1 qi2Ψi] is negative. Thus, Lu,Ψw(x, Ψ) = −qw(x, Ψ) + p and Assumption 2b follows.
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5. Application 1: Discounted Linear Quadratic Regulator (LQR)

In this subsection, we consider the α-discounted linear quadratic regulator. To this end,
we suppose that the dynamic system evolves according to the linear stochastic differential
equations:

dx(t) = (A(Ψ(t))x(t) + Bu(t))dt + σdW(t). (39)

with A(Ψ(t)) := ∑N
i=1 A(i)Ψi(t), A : E → Rn×n, B ∈ Rn×m, W(·) is a m-dimensional

Brownian motion, and σ is a positive constant. The expected cost is:

Vα(x, Ψ, u) := Eu
x,Ψ

[∫ ∞

0
e−αs{xT(s)D(Ψ(s))x(s) + uT R(Ψ(s))u(s)}ds

]
.

where D(Ψ(t)) := ∑N
i=1 D(i)Ψi(t), D : E → Rn×n, R(Ψ(t)) := ∑N

i=1 R(i)Ψi(t) and
R : E→ Rn×n. The optimality equation or HJB-equation for the α-discounted partially
observed LQR-optimal control problem is:

αv(x, Ψ) = min
u∈U
{xD(Ψ(t))xT + uT R(Ψ(t))u + Luvs.(x, Ψ)}, (40)

where the infinitesimal generator for the process (x(t), Ψ(t)) applied to v(x, Ψ) ∈ C2,2

(Rn × SN) is:

Luvs.(x, Ψ) = (A(Ψ)x + Bu)vx(x, Ψ) +
1
2
[Tr(σσT)]vxx(x, ψ)

+QTΨvΨ(x, Ψ, ) +
1
2

vΨΨ(x, Ψ, )Tr[A2] (41)

where

A2 = [σ−1
0

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)][σ−1

0

(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)]T . (42)

Note that, by minimizing (40) with respect to u, we find that the optimal control is the
form:

f ∗(x, Ψ) = −R−1
(Ψ)

2
BTvx. (43)

By Proposition 2, if there exist a function v ∈ C2,2(Rn × SN) ∪ Bw(Rn × SN) and
a policy f ∗ ∈ F such that (14) and (15) hold, then v coincides with the value function
v∗(x, Ψ) := minu∈U Vα(x, Ψ, u) and u(t) = f ∗(x) is the α-discount optimal policy. Thus,
we propose that the function v ∈ C2,2(Rn × SN) ∪ Bw(Rn × SN) that solves the HJB-
Equation (40) has the form:

v(x, Ψ) = xTKx + n(Ψ) + c, (44)

where n : SN → R is a twice differentiable continuous function, c is a constant, and K is
a positive definite matrix. Inserting the derivative of v(x, Ψ) in (43) we get the optimal
control:

f ∗(x, Ψ) = −R−1
(Ψ)BTKTx, (45)

where the equality (40) holds if the matrix K satisfies the algebraic Riccati equation:

AT
(Ψ(t))K + KA(Ψ(t))− KBR(Ψ(t))−1BTK

+D(Ψ(t))− αK = 0,

c = Tr[b(w(t))bT(w(t))K]/α

and n(·) ∈ C2(SN) satisfies the partial differential equation:
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QTΨ(t)n′(Ψ(t)) +
1
2

Tr[A2]n′′(Ψ(t))− αn(Ψ(t)))In = 0, ∀ Ψ(t) ∈ SN ,

where A2 is as in (42), IN is the identity matrix of N × N, and n
′

and n
′′

are the gradient
and the Hessian of the n, respectively.

Simulation results. In the following figures, we assume that the Markov chain ψ(t)
has two states, namely, E = {1, 2} and the dynamic system x(t) ∈ R2. We have computed
the Wonham filter, the states of the dynamic system (39) x(t) = [x1(t), x2(t)]T with initial
condition x(0) = [10, 15]T , the value function (44), and the optimal control (45) for the
following data: σ = 1, σ0 = 1, α = 0.01, h(1) = 1, h(2) = 2, Ψ1(0) = 0.5, Ψ2(0) = 0.5,
R1 = 1, R2 = 2:

A(1) =
[
−5 1
0 −10

]
, A(2) =

[
−10 1

0 −10

]
,

D(1) =
[

1 0
0 1

]
, D(2) =

[
2 0
0 3

]
,

and the transition matrix:

Q =

[
−0.2 0.2
0.7 −0.7

]
.

To solve the Wonhan filter, we use the numerical method given in ([18], Section 8.4),
considering that the Markov chain can only be observed through dy(t) = h(ψ(t))+ σ0dB(t).

Figure 1 shows the solution of the filter Wonham equation and the states of the
hidden Markov chain ψ(t). As can be noted, in t = 0.05 s Ψ2(0.05) = P(ψ(t) = 2 | y(s),
0 ≤ s ≤ 0.05) ≥ Ψ1(0.05), implying that the Markov chain with a higher probability to
0.5 is in state 2 in t = 0.3 (ψ(0.3) = 2). The evolution of the dynamic system (39) is given
in Figure 2 (top); in this figure, we can note that the optimal control (45) moves the initial
point x(0) = [10, 15]T to the point [0, 0]T in t = 0.8 s, indicating the good performance of
the optimal control (45). The asymptotic behavior of the optimal control (45) is given in
Figure 2 (bottom); this control stabilizes at zero around t = 0.8 s, since x(t) also stabilizes
at zero around t = 0.8 s.
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Figure 1. Wonham filter for the α-discounted LQR.
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Figure 2. Asymptotic behavior of the state of dynamic system (top) and optimal control α-discount
LQR (bottom).

6. Application 2: Average LQR: Modeling of a Quarter-Car Suspension

In this section, the basic quarter-car suspension model analyzed in [27] is considered,
see Figure 3. The parameters are: the sprung mass (ms), the unsprung mass (mu), the
suspension spring constant (ks), and the tire spring constant (k). Let zs, zu, and zr be
the vertical displacements of the sprung mass, the unsprung mass, and the road profile,
respectively. The equations of motion for this model are given by:

msz
′′
s (t) = −ks(zs(t)− zu(t))− u(t), (46)

muz
′′
u(t) = ks(zs(t)− zu(t))− k(zu(t)− zr(t)) + u(t). (47)
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ms

mu

ks

u

kt

zs

zu

zr

Figure 3. Schematic of a quarter-car suspension.

Now, defining x1(t) = z
′
s(t), x2(t) = z

′
u(t), x3(t) = zs(t)− zu(t), and x4(t) = zu(t)− zr,

the equations of motion (46) and (47) can be expressed in matrix form as:

dx(t) = (Ax(t) + Bu(t))dt + C1dzr(t) (48)

where dx(t) =


dx1(t)
dx2(t)
dx3(t)
dx4(t)

, A =


0 0 ks

ms
0

0 0 ks
mu

k
mu

1 −1 0 0
0 1 0 0

, B =


1

ms
1

ms
0
0

, C1 =


0
0
0
−1

, and in the

time domain, the road profile, zr(t), can be represented as the output of a linear first-order
filter to white noise as follows:

dzr(t) = −a(ψ(t))Vzr(t)dt + σ2dW1(t),

where V is the vehicle speed (assumed constant), σ2 is a positive constant, and a is the road
roughness coefficient depending on the type of road. Here, we assume that a depends on a
hidden Markov chain, that is, a(ψ(t)) with ψ(t) ∈ {1, 2}. In our case, we consider that the
dynamic system (48) evolves with additional white noise, that is:

dx(t) = (Ax(t) + Bu(t))dt + σ1dW(t) + C1dzr(t) (49)

The experts introduced the following performance index in order to trade off be-
tween the ride comfort and the handling while maintaining the constraint on suspension
deflection:

J(x, Ψ, u) = lim
T→∞

1
T
Ex,Ψ,u

[ ∫ T

0

[
c1

d2zs

d2t

2

+ c2[z1(t)− zu(t)]2

+ c3[zu(t)− zr(t)]2 + c4u(t)2
]
dt
]

(50)

Defining y :=
[

d2zs
d2t

2
, [z1(t) − zu(t)]2, [zu(t) − zr(t)]2

]
, C := diag(c1, c2, c3), and

R := [c4], we can rewrite (50) as:

J(x, Ψ, u) = lim
T→∞

1
T
Ex,Ψ,u

[ ∫ T

0
yCyT + uT(t)Ru(t)dt

]
(51)
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Now, from the equations of motion in (46) and (47), note that y = Mx + Nu with

M =

0 0 ks
ms

0
0 0 1 0
0 0 0 1

, and N =

− 1
ms
0
0

. Thus, replacing this matrix form of y in (51) we

can rewrite (50) again as:

J(x, Ψ, u) = lim
T→∞

1
T
Ex,Ψ,u

[ ∫ T

0
(xTQ1x + 2xTQ2u + uT R1u)dt

]
(52)

where Q1 = MTCM, Q2 = MTCN, R1 = NTCN + R.
The optimal control problem (OCP). The OCP in this application consists of finding

u∗ ∈ U such that it minimizes the performance index (52) considering that the dynamic
system evolves according to the stochastic differential Equation (49).

In the dynamic programming technique, we need the infinitesimal generator Lu of
the process (x(t), Ψ(t)) applied to v(x, Ψ, zr) ∈ C2,2,2(Rn × SN × R); in this case, this
generator is:

Luvs.(x, Ψ, zr) = −a(Ψ(t))vzr (x, Ψ, zr)

+(Ax + Bu)vx(x, Ψ, zr)

+QTΨvΨ(x, Ψ, zr)

+
1
2

Tr[σ1σT
1 ]vxx(x, Ψ, zr).

+
1
2

Tr[σ2σT
2 ]vzrzr (x, Ψ, zr)

+
1
2

vΨΨ(x, Ψ, zr)Tr[A2] (53)

where A2(Ψ(t)) = [σ−1
0
(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)][σ−1

0
(
diag(h)− hT(Ψ(t))IN

)
Ψ(t)]T ,

whereas the Hamilton–Jacobi–Bellman Equation (or dynamic programming equation)
associated with this problem is:

J = max
u∈U

[xTQ1x + 2xTQ2u + uT R1u + Luvs.(x, Ψ, zr)] for all (x, Ψ) ∈ Rn × SN , (54)

see [28] for more details.

Proposition 3. Assume that (x(t), zr(t), Ψ(t)) evolves according to (49). Then, the control that
minimizes the long-run cost (52) is:

f ∗(x, Ψ, zr) = −R−1
1 (QT

2 + BTK)Tx(t), (55)

whereas the corresponding function v that solves the HJB Equation (54) is given by:

v(x, Ψ, zr) = xTKx + g(zr) + n(Ψ)

where K is a positive semi-definite matrix that satisfies the Ricatti differential equation

K(A− BR−1
1 QT

2 ) + (A− BR−1
1 QT

2 )K− KBR1BT P

(Q1 −Q2R−1
1 QT

2 ) = 0, (56)

and g(·) ∈ C2(R) satisfies the differential equation:

a(Ψ)g′(zr) +
1
2

σ2
2 g′′(zr) = 0, (57)
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and n(·) ∈ C2(SN) satisfies the partial differential equation:

QTΨn′(Ψ(t)) +
1
2

Tr[A2]n′′(Ψ) = 0, (58)

where A2 is as in (41) and n′ and n′′ denote the gradient and the Hessian of the n, respectively. The
optimal cost is given by:

J = Tr[σ1σT
1 ]K = J∗(x, Ψ) = min

u∈U
J(x, Ψ, u).

Proof. The HJB-equation for the partially observed LQR optimal control problem with
(x(t), Ψ(t)) evolves according to (49) and finite cost (52) is (54), where Luv(t, x, w, Ψ)
is the infinitesimal generator given in (53). We are looking for a candidate solution
h ∈ C2,2,2(Rn × SN ×R) to (54) in the form:

v(x, Ψ, zr) = xTKx + g(zr) + n(Ψ), (59)

for some continuous functions g(·) ∈ C2(R), h(·) ∈ C2(SN) and K a positive semi-definite
matrix. We assume that g′′(zr) > 0 for all zr ∈ R and n′′(Ψ) is positive definite, so that the
function (x, Ψ, zr)→ v(x, Ψ, zr) is convex.

Now, the function u ∈ U → 2xTQ2u+ uT R1u+ Buvx is strictly convex on the compact
set U, and thus, attains its minimum at:

f ∗(x, Ψ, zr) = −
1
2

R−1[−2xTQ2 − Bhx] = −R−1
1 (QT

2 + BTK)Tx(t). (60)

Inserting f ∗(x, Ψ, zr) and the partial derivatives of v with respect to x, zr, and Ψ in the
HJB-Equation (54), we obtain:

J = xTQ1x + 2xTQ2(−R−1
1 (QT

2 + BTK)Tx)

+ (−R−1
1 (QT

2 + BTK)Tx)T R1(−R−1
1 (QT

2 + BTK)Tx)

− a(Ψ(t))g′(zr) + (Ax + B(−R−1
1 (QT

2 + BTK)Tx))2Kx +QTΨh
′
(Ψ) + +Tr[σ1σT

1 ]K

+
1
2

Tr[σ2σT
2 ]g

′′
(zr) +

1
2

h
′′
(Ψ)Tr[A2]. (61)

For equality (61) to hold, it is necessary that the functions g and h satisfy (57) and
(58), respectively, and the matrix K satisfies the Ricatti differential Equation (56), whereas
the constant J = Tr[σ1σT

1 ]K. Finally, from the Theorem 1, it follows that f ∗ is an optimal
Markovian control and the value function J∗T(t, x, w, Ψ) is equal to (59). That is:

J∗(x, Ψ) = min
u∈U

J(x, Ψ, u) = J = Tr[σ1σT
1 ]K.

Simulation results. To solve the Wonhan filter, we use the numerical method given
in ([18], Section 8.4), considering that the Markov chain ψ(t) has two states that can only be
observed through dy(t) = h(ψ(t)) + σ0dB(t). The following data were used: σ1 = 1, σ2 = 1,
σ0 = 1, α = 0.01, a(1) = 0.03, a(2) = 0.015, Ψ1(0) = 0.5, Ψ2(0) = 0.5, R = 1.0239 × 10−5,
h(1) = −1, h(2) = 0.5, ms = 329 kg, mu = 51 kg, ks = 4300 N/m, k = 210, 000 N/m,
V = 20 m/s, c1 = 1, c2 = c3 = 1× 105, c4 = 1× 10−6 and:

Q =

[
−0.3 0.3
0.5 −0.5

]
.

The solution of the Wonham filter equation and the states of the hidden Markov chain
ψ(t) are shown in Figure 4. As can be noted, in t = 1 s, Ψ1(1) = P(ψ(t) = 1 | y(s),



Mathematics 2022, 10, 2073 21 of 28

0 ≤ s ≤ 1) ≥ Ψ2(1), implying that the Markov Chain with a probability greater than 0.5 is
in state 1 at t = 1.

0 1 2 3 4 5 6 7 8 9 10

time (s)

0.5

1

0 1 2 3 4 5 6 7 8 9 10

time (s)

0

0.5

0 1 2 3 4 5 6 7 8 9 10

time (s)

1

1.5

2

Figure 4. Wonham filter and hidden Markov chain (in t = 1 s).

The asymptotic behavior of the optimal control (55) is given in Figure 5 (bottom).
It is interesting to note that this control minimizes the magnitude of the sprung mass
velocity, x1 = z

′
s and unsprung mass velocity, x2 = z

′
u after t = 9 s, see Figure 5 (top).

This behavior implies that the magnitude of the sprung mass acceleration, x1 = z
′′
s and

unsprung mass acceleration x2 = z
′
u are also minimized, considering that the stochastic

differential equation that models the road profile depends on a hidden Markov chain.
These results agree with the obtained by authors in [27]. These authors mentioned that two
important objectives of a suspension system are ride comfort and handling performance.
The ride comfort requires that the car body be isolated from road disturbances as much as
possible to provide a good feeling for passengers. In practice, we are looking to minimize
the acceleration of the sprung mass.
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Figure 5. Asymptotic behavior of the state of dynamic system (top) and optimal control (bottom).

7. Application 3: Optimal Control of a Vehicle Active Suspension System with Damp

The model analyzed in this subsection is given in [29]. In this application, a damp bs
is added to the quarter-car suspension given in Section 6, see Figure 6. The parameters in
Figure 6 are: the sprung mass (ms ), the unsprung mass (mu), the suspension spring constant
(ks ), and the tire spring constant (k). Let zs, zu, and r be the vertical displacements of the
sprung mass, the unsprung mass, and the road disturbance, respectively. The equations of
motion are given by:

msz
′′
s (t) = −ks(zs(t)− zu(t)) + bs(z′u − z′s) + u(t), (62)

muz
′′
u(t) = ks(zs(t)− zu(t))− k(r(t)− zu(t))− bs(z′u − z′s)− u(t). (63)
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Figure 6. Quarter vehicle model of active suspension system.

Now, defining x1(t) = zs(t), x2(t) = zu(t), x3(t) = z′s(t), and x4(t) = z′u(t), the
equations of motion in (62) and (63) can be expressed in matrix form as:

dx(t) = (Ax(t) + Bu(t))dt + Fr(t) (64)

where dx(t) =


dx1(t)
dx2(t)
dx3(t)
dx4(t)

, A =


0 0 1 0
0 0 0 1
− ks

ms
ks
ms

− ks
ms

ks
ms

ks
mu

− (ks+k)
mu

bs
mu

− bs
mu

, B =


0
0
1

ms
− 1

mu

, F =


0
0
0
k

mu

,

and we assume that the road profile r(t) is represented by a function with hidden Marko-
vian switchings:

r(t) =
{

a(ψ(t)){1− cos(8πt)}, τp ≤ t ≤ τp+1
0 otherwise

(65)

where a(1) = 0.05 (road bump height is 10 cm), a(2) = 0.025 (road bump height is 16 cm),
and τp, p = 1, 2, . . . are the random jump times of ψ(t). In our case, we consider that the
dynamic system (64) evolves with additional white noise, that is:

dx(t) = (Ax(t) + Bu(t) + Fr(t))dt + σdW(t) (66)

and we wish to minimize the discounted expected cost:

Vα(x, Ψ, u) := Eu
x,Ψ

[∫ ∞

0
e−αs{xT(s)Dx(s) + uT(s)Ru(s)}ds

]
,

subject to (66) and (65). Considering the infinitesimal generator given in (53) with
zr(t) ≡ r(t) and the Hamilton–Jacobi–Bellman equation associated as the following prob-
lem:

αv(x, Ψ) = max
u∈U

[xT Dx + uT R1u + Luvs.(x, Ψ, r)] for all (x, Ψ) ∈ Rn × SN ,

similar arguments to these given in Sections 5 and 6 allow us to find the optimal control f ∗

and the value function v∗ for this setting. In fact:

v∗(x, Ψ) = xTKx + n(Ψ) + g(r) + c,
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where n : SN → R is a twice differentiable continuous function, c is a constant, g : R→ R
is a twice differentiable continuous function, and K is a positive definite matrix. Inserting
the derivative of v(x, Ψ) in (43), we get the optimal control:

f ∗(x, Ψ) = −R−1
(Ψ)BTKTx, (67)

where the matrix K satisfies the algebraic Riccati equation:

ATK + KA− KBR−1BTK + D− αK = 0,

c = Tr[σσTK]/α,

the function g ∈ C2(R) satisfies the differential equation:

a(Ψ(t))g′(r) + αg(r) = 0,

and n(·) ∈ C2(SN) satisfies the partial differential equation:

QTΨ(t)n′(Ψ(t)) +
1
2

Tr[A2]n′′(Ψ(t))− αn(Ψ(t)))I4 = 0, ∀ Ψ(t) ∈ SN ,

where A2 is as in (42), I4 is the identity matrix of 4× 4, and n
′

and n
′′

are the gradient and
the Hessian of the n, respectively.

Simulation results. To solve the Wonhan filter, we use the numerical method given
in ([18], Section 8.4) considering that the Markov chain ψ(t) has two states and that can be
only observed through dy(t) = h(ψ(t)) + σ0dB(t). The following data were used: σ = 1,
σ0 = 1, α = 0.01, a(1) = 0.05, a(2) = 0.08, Ψ1(0) = 0.4, Ψ2(0) = 0.6, h(1) = 1, h(2) = 2,
R = 1.0239× 10−5, ms = 300 kg, mu = 60 kg, ks = 1600 N/m, k = 190, 000 N/m,
bs = 1000 N/m, and:

Q =

[
−0.2 0.2
0.4 −0.4

]
.

Figure 7 shows the solution of the Wonham filter equation and the states of the hidden
Markov chain ψ(t). As can be seen, in the time interval [2, 4], Ψ1(1) = P(ψ(t) = 1 | y(s), 0 ≤
s ≤ 1) ≥ Ψ2(1), implying that the Markov chain with a probability greater than 0.5 is in
state 1.
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0 2 4 6 8 10 12
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0
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0 2 4 6 8 10 12
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1.5
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Figure 7. Wonham filter and hidden Markov chain (time interval [2, 4]).
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The asymptotic behavior of the optimal control (67) is given in Figure 8 (bottom). It is
interesting to note that this control minimizes the magnitude of the sprung mass, x1 = zs,
and unsprung mass, x2 = zu, al well as their velocities, x3 = z

′
s and x4 = z

′
u, after t = 12 s,

see Figure 8 (top).
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Figure 8. Asymptotic behavior of the state of the dynamic system (top) and optimal control (bottom).

8. Application 4: Optimal Pollution Control with Average Payoff

The application studies the pollution accumulation incurred by the consumption of a
certain product, such as gas or petroleum, see [30]. The stock of pollution x(·) is governed
by the controlled diffusion process:

dx(t) = [u(t)− η(ψ(t))x(t)]dt + kdW(t), x(0) = x > 0, (68)

where u(t) represents the pollution flow generated by an entity due to the consumption of
the product, η(ψ(t)) represents the decay rate of pollution, chosen at each time by nature,
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and k is a positive constant. We shall assume that u(t) ∈ U = [0, γ] is bounded and the
parameter γ represents the consumption/production restriction. Let ψ(t) be a Markov
chain with two states E = {1, 2} and a generator Q given by:(

q11 q12
q21 q22

)
=

(
−λ0 λ0
λ1 −λ1

)
.

The reward rate r : [0, ∞)× E×U → R in this example represents the social welfare
and is defined as:

r(x, i, u) := F(u)− a(i)x, ∀ (x, i, u) ∈ [0, ∞)× E×U, (69)

where F ∈ C2(0, ∞) ∩ C(0, ∞) and D = a(i)x ∈ C([0, ∞)× E) is the social utility of the
consumption u and the social disutility of the pollution (x, i), respectively. We assume that
the function F in (69) satisfies:{

F′(u) > 0, F′′(u) < 0,
F′(∞) = F(0) = 0, F′(0+) = F(∞) = ∞,

Clearly, (68) is a liner stochastic differential equation, and satisfies Assumption 1.
Now, we define the Banach space Bw(R× E) and use w(x, i) := x + i, w(x, Ψ) =

∑2
i=1 Ψiw(x.i) = Ψ1(x + 1) + Ψ2(x + 2) = x + (1− Ψ1). Hence, limx→+∞ w(x, Ψ) = +∞

and Assumption 2i holds. On the other hand, since the utility function F(·) is continuous
on the compact interval U = [0, γ], then:

|r(x, i, u)| = |F(u)− a(i)x| ≤ ( max
u∈[0,γ]

F(u) + max
i∈{1,2}

a(i))(x + i) = Mw(x, i)

where M := maxu∈[0,γ] F(u) + maxi∈{1,2} a(i); thus, Assumption 3 holds. Note that:

Lu,Ψw(x, Ψ) = u− η(i)x− λ0Ψ1 + λ1(1−Ψ1), for all x > 0.

Thus, taking q := maxi∈E η(i) and p := maxu∈[0,γ] u− (λ0 − λ1)Ψ1 we obtain:

Luw(x, Ψ) ≤ −pw(x, Ψ) + q for all x > 0.

Therefore, Assumption 2(ii) holds. It can be proven that the process (68) satisfies
Assumption 2.6 in [1]; thus, by ([1], Theorem 2.8), x(t) is exponentially ergodic (Assump-
tion 4). In this application, we seek a policy u that maximizes the long-run average welfare
J(x, i, f ):

J(x, i, u) := lim inf
T→∞

1
T
Eu

x,i

[∫ T

0
[F(u)− a(i)x]dt

]
.

We propose v(x, Ψ) = v(x) + h(Ψ), where v ∈ C2(R × E) ∩ Bw(R × E) and
h ∈ C2(SN) as a solution that verify the HJB Equation (27) associated with this pollution
control problem. Simple calculations allow us to conclude that the policy on consump-
tion/pollution takes the form:

u := f (x, Ψ) =

{
I(−v′(x)) if F′(γ) < −v′(x),

γ if F′(γ) ≥ −v′(x).

where I(−v′(x)) is the inverse function of derivative F′, f ∈ F.



Mathematics 2022, 10, 2073 27 of 28

9. Concluding Remarks

Under hypotheses such as uniform ellipticity in Assumption 1c, the Lyapunov-like
conditions in Assumption 2, and the w-exponential ergodicity in (4) for the average criterion,
this work shows the existence of optimal controls for the control problems with discounted
and average payoffs, where the dynamic system evolves according to switching diffusion
with hidden states. To conclude, we conjecture that the results obtained in this work
still hold (with obvious changes) if the hidden Markov chain (ψ) in (1) is replaced with
any other diffusion process. Furthermore, these results can be extended to constrained
and unconstrained nonzero-sum stochastic differential games with additive structures,
which will allow us to model a larger class of practical systems. This will be a topic in
future works.
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