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Žigman, A. Is Jump Robust Two

Times Scaled Estimator Superior

among Realized Volatility

Competitors? Mathematics 2022, 10,

2124. https://doi.org/10.3390/

math10122124

Academic Editors: Camelia

Oprean-Stan and Radu Voichita

Adriana

Received: 28 May 2022

Accepted: 17 June 2022

Published: 18 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Is Jump Robust Two Times Scaled Estimator Superior among
Realized Volatility Competitors?
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maria.culjak@hanfa.hr (M.Č.); ante.zigman@hanfa.hr (A.Ž.)

2 Faculty of Economics and Business, University of Zagreb, Trg J. F. Kennedyja 6, 10 000 Zagreb, Croatia
* Correspondence: jarneric@efzg.hr; Tel.: +385-1-238-3361
† These authors contributed equally to this work.
‡ The content of this research does not reflect the official opinion of the Croatian Financial Services

Supervisory Agency.

Abstract: This paper compares the empirical performance of the realized volatility estimators on an
extensive high-frequency dataset of stock indices from four developed European markets with thick
trading and intensive intraday activity. Even though the proposed estimators have distinctive proper-
ties, it is not clear which one has a better performance in terms of unbiasedness and consistency. Some
of them are robust to microstructure noise only, and others are robust solely to price jumps, whereas a
few of them are robust to both. Therefore, the main purpose is finding a benchmark estimator among
alternative competitors, as the best proxy of integrated variance, and empirical demonstration of its
superiority. The vast majority of the existing studies largely rely on developed US data or simulation
data, but inferences obtained on such data might deviate from European developed markets. This
study aims to fill in that niche. In particular, the optimal sampling frequency of proposed benchmark
estimator is determined with respect to the trade-off between its bias and the variance of each stock
index individually. Afterwards, probability integral transformation, Mincer–Zarnowitz regression
and upper tail correlation from appropriate copula function are considered as an adequate pairwise
comparison methods. Notable contributions of this paper include unambiguously proven superiority
of robust two times scaled estimator for selected European developed markets within the range of
optimal slow time frequency from 10 to 30 s. Finally, recommendations for research and practitioners
regarding the usage of jump robust two times scaled estimator are given. In fact, asset managers,
institutional investors as well as market regulators could benefit from proposed realized volatility
benchmark in making long-term investment decisions, leading to sustainable finance.

Keywords: high-frequency observations; realized volatility benchmark; microstructure noise; price
jumps; sampling frequency selection

MSC: 62P05; 62P20; 91B02; 91B05; 91B84

1. Introduction

Over the past few decades, trading algorithms have been improved in line with tech-
nological advancements and increasing accessibility of high-frequency data, i.e., transaction
data recorded in very small successive intervals of time. Usage of such data is extremely
beneficial to practitioners in establishing trading strategies and consequently achieving
higher possible returns. For the same reason, new statistical and econometric tools for
high-frequency data analysis have been developed, taking into account a number of dis-
tinct characteristic of these data, such as discreetness, unevenly spaced time intervals,
long memory, market microstructure noise and price jumps. These properties have been
comprehensively studied in the literature for better understanding the mechanism of the
price formation as well as the variance of price returns [1–3].
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Estimation and forecasting of the variance of a financial time-series is still, and will
remain for a long time, one of the major challenges for researchers and practitioners alike.
Despite the enormous existing studies and various proposed approaches [4–6], most of
them do not deal with empirical high-frequency or intraday data for estimation of a true
but unknown variance of returns, so-called integrated variance (IV), but use simulation
data or just ignore some of their distinguishing properties. However, integrated variance
can be efficiently estimated by the realized variance (RV) as the sum of equidistant intraday
squared returns [7]. It has been documented that realized variance converges in probability
to integrated variance [8]. Moreover, RV is a perfect measure of IV when intraday prices
are observed continuously [9]. On the contrary, when prices are exposed to a substantial
amount of microstructure noise, the realized variance may not obtain consistency and
asymptotic unbiasedness [10,11]. Common sources of market microstructure noise are
discreteness of price observations, non-synchronous trading, bid–ask bounces, differences
in trade sizes, etc. In real life, stock prices are only observed at discrete time points and
high-frequency data are not available for all stocks and markets when trading is thin. RV
is more contaminated with microstructure noise as sampling frequency increases, or in
other words, when the time interval between successive observations declines [12]. On the
contrary, when sampling at a lower frequency, RV becomes less biased due to reduction
of the noise [13]. The widespread opinion is to sample sparsely from 5 min to 30 min, as
suggested in the literature [14]. On the other side, sparsely sampling reduces a significant
amount of information, leading to inefficient RV estimation. For example, one might sample
every 10 min from transactions data observed every second, which means that every 600th
observation is selected. In that context, it is crucial to find an optimal sampling frequency
for which the balance between efficiency and potential biasedness of the RV estimator is
achieved [14,15]. The trade-off between sampling too frequently and sampling too rarely
can be formalized by minimizing the root mean squared error of the estimator. A less
formal approach of finding appropriate sampling frequency, but very popular in empirical
work, is volatility signature plot [16]. Nonetheless, the first consistent estimator of the IV
proposed in the literature is a Two Times Scaled Realized Variance (TSRV). Estimator TSRV
exhibits a nice asymptotic properties in the presence of the noise, while keeping all the data
at the highest possible frequency. This is accomplished by taking a linear combination of
the pre-averaged RV sampled at the two scales: fast time scale and low time scale [15,17].
However, when jumps occur, a two times scaled estimator becomes biased. Many jump
robust estimators were established in the literature, but most of them are not robust to
microstructure noise [18,19].

Additionally, a jump robust version of TSRV was proposed (RTSRV) [20]. Both esti-
mators, TSRV and RTSRV, respectively, are constructed to deal with highly liquid assets,
e.g., observations sampled every few seconds. Otherwise, if sampling frequency is low
to begin with, e.g., every minute, the bias of the estimator might be over-corrected. This
is the main reason why this paper considers high-frequency data obtained exclusively
from developed European stock exchanges. Therefore, the key objective of the paper is to
provide empirical evidence of RTSRV superiority among realized volatility competitors,
as the best approximation of IV. For the same reason, the jump robust two times scaled
estimator is used as a benchmark in this research. Although, this research does not cover
the most recent period of the historical data, obtained findings contribute to academics
as well as market participants by indicating an optimal slow time scale frequency that
should be used when RTSRV is applied for each analyzed market individually. There is no
consensus in the literature on which estimator is better for which market. This research
provides an answer to that question. Along with comparison of RTSRV as a benchmark
realized volatility against other RV estimators, the purpose is to conclude which markets
are more contaminated with the microstructure noise, and in which markets price jumps
are more present. Thus, concrete findings offer valuable suggestions to users when em-
ploying high-frequency data in financial management. Once again, it should be noted that
performance of RV estimators which are robust to microstructure noise, price jumps or
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both have been documented in previous studies based on simulation data or data from
the US markets [21–23], while there is no research that analyzes the developed European
stock markets, as in this paper. Less developed markets are not considered due to the poor
quality of high-frequency data which cannot be observed every second, while observations
sampled at lower frequency are not welcome as the bias of the benchmark estimator might
be over corrected. Moreover, the novelty of the paper is that it empirically demonstrates
RTSRV robustness to both microstructure noise and price jumps, i.e., for each market under
consideration of an optimal slow (low) sampling, frequency is determined to mitigate
the sensitivity to microstructure noise without losing a significant part of intraday ob-
servations, while a threshold parameter is attentively selected for truncation purposes to
mitigate the price jumps. In total, seven competing estimators are considered for compari-
son against benchmark volatility proxy of the IV. Pairwise comparison methods incorporate
the Kolmogorov–Smirnov test on probability integral transformations, Mincer–Zarnowitz
regression, and upper tail correlation from the Gumbel copula.

The rest of the manuscript is outlined as follows: Section 2 presents the employed
data and methods. Section 3 provides empirical findings. Section 4 offers discussion with
respect to current results, while conclusions are provided in Section 5.

2. Data and Methods

This study utilizes in total more than 195 million observations, over a 7-year period.
Data of developed stock markets from 4 January 2010 to 28 April 2017 for Germany, Italy,
France and UK were provided by Thomson Reuters Tick History (TRTH) service. Indices
MIB, DAX, CAC and FTSE represent benchmarks from Italian, German, French and British
stock exchanges. Despite the fact that historical data do not cover the most recent period,
due to limited funding from the project which is completed four years ago, an extensive
dataset exhibit representativeness with respect to the long period of time and the most
liquid European stock markets which is strongly required for computation of proposed
benchmark estimator RTSRV.

In Table 1, the number of trading days and the number of 1-second observations are
given. These numbers differ across observed European markets. The intraday data taken
into consideration were during official trading hours from 9:00 a.m. until 5:30 p.m., five
days a week.

Table 1. Summary of high-frequency data observed from 4 January 2010 to 28 April 2017.

European Market Stock Index Trading Days One Second
Observations

Italy MIB 1862 42773317
Germany DAX 1863 56650069
France CAC 1878 46659800
UK FTSE 1850 48920222

Eight estimators of integrated variance, including a benchmark RTSRV, are presented
in Table 2. Each of them depends on sampling frequency ∆, i.e., the increment between two
successive and equally spaced price observations ∆ = ti − ti−1. The number of intraday
returns rti for every trading day is nt. Since nt = 1/∆, the lesser information is used when
∆ increases. Moreover, realized variance RV∆

t becomes unbiased when sampling frequency
increases due to reduction of microstructure noise as a consequence of sparse sampling [16].
However, the cost of sparse sampling is a high variance of an estimator (inconsistency)
as a small number of observations is left for computational reasons. Not only does the
microstructure noise contaminate realized variance, but also price jumps [23–25]. Thus,
a second estimator BPV∆

t is proposed in the literature as jumps robust estimator. The
idea of [7] who introduced a bipower variation, is that multiplication of |rti | with the
adjacent |rti−1 | will dampen the jump impact if it occurs even for sufficiently small ∆.
Similar to bipower variation, two estimators also emerged in the literature, i.e., minimized
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and medianized realized variance MinRV∆
t and MedRV∆

t , respectively [26]. According
to [21], both estimators follow a concept of the nearest neighbor truncation by the use of
the minimum operator on blocks of two returns or median operator on blocks of three
returns. They have better performance in the finite samples compared to bipower variation
although MinRV∆

t suffers from a similar exposure to zero returns as BPV∆
t .

Table 2. Competing realized estimators of integrated variance.

Estimator Formulation

Realized variance RV∆
t =

nt

∑
i=1

r2
ti

Bipower variation BPV∆
t =

π

2

nt

∑
i=2
|rti−1 ||rti |

Minimized RV MinRV∆
t =

π

π − 2
nt

nt − 1

nt

∑
i=2

min(|rti−1 |, |rti |)2

Medianized RV MedRV∆
t =

π

6− 4
√

3 + π

nt
nt − 2

nt−1

∑
i=2

med(|rti−1 |, |rti |, |rti+1 |)2

Average subsampled RV ARV∆,k
t =

nt
nt − k + 1

1
k

k

∑
j=1

nt

∑
i=1

r2
tij

Two times scaled RV TSRV∆,k
t =

1

1− nt − k + 1
ntk

(
1
k

k

∑
j=1

nt

∑
i=1

r2
tij
− nt − k + 1

ntk

nt

∑
i=1

r2
ti

)

Robust two times scaled RV RTSRV∆,k,θ
t =

cθ

1− nt − k + 1
ntk

(
1
k

k

∑
j=1

nt

∑
i=1

r2
tij

Ii(θ)−
nt − k + 1

ntk

nt

∑
i=1

r2
ti

Ii(θ)

)

Hayashi–Yoshida RV HYRV∆,θ
t =

nt

∑
i=1

r2
ti

Ii(θ)

A serious drawback of the aforementioned estimators is the lack of data when sampling
sparsely. Opposite to that, Ref. [27] proposed how to keep all the data but still have an
unbiased and asymptotically consistent estimator of integrated variance. Thus, a two time
scaled estimator TSRV∆,k

t was introduced, which combines average subsampled realized
variance at slow time scale ARV∆,k

t and realized variance RV∆
t at fast time scale. In other

words, when utilizing the two times scaled estimator, parameter ∆ is the fast time scale, i.e.,
the highest possible sampling frequency available to the user, while the parameter k is the
slow time scale frequency which defines the number of subgrids. For practical reasons, it is
common to keep the fast time scale fixed, while the slow time scale should be determined
optimally by minimizing RMSE (root mean square error) of the estimator.

As previously highlighted, RV∆
t is robust to microstructure noise as well as ARV∆,k

t and
TSRV∆,k

t , depending on the parameters ∆ and k, while BPV∆
t , MinRV∆

t and MedRV∆
t are

robust to price jumps only. Robust versions of IV have also been designed in the presence
of both jumps and noise. In particular, robust version of two times scaled realized variance
RTSRV∆,k,θ

t was designed by [20]. This estimator requires one additional parameter θ
which is employed as a threshold with respect to indicator function Ii(θ). The threshold θ is
usually set to 9 indicating if returns are larger than three standard deviations from the mean.
If returns are larger than three standard deviations from the mean, the indicator function
has value 0 and 1 otherwise. The last estimator which is considered in this paper for
comparison is HYRV∆,θ

t designed by [28]. This estimator can be understood as a threshold
realized variance which uses jump detection rule Ii(θ) to truncate the effect of jumps. It has
to be mentioned that all estimators are sensitive to the selection of sampling frequency, and
criteria for optimal frequency should be considered. Comprehensive study with respect to
these criteria can be found in [13,15].
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For better visual inspection of the differences between realized volatility measures,
their performances are compared in Figure 1, considering DAX index (Frankfurt Stock
Exchange) within the selected range of data from 1 March 2017 until 31 March 2017.

Aug 02 2016 Oct 04 2016 Dec 01 2016 Jan 02 2017 Feb 01 2017 Apr 03 2017

2016−08−02 17:30:00 / 2017−04−28 17:30:00

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

RTSRV
RV
BPV
MedRV
MinRV
TSRV
ARV
HYRV

Figure 1. Realized volatility measures within a selected range of data for the DAX index.

After the computation of realized volatility measures with respect to optimal sampling
frequency, three comparison methods are conducted in order to determine which volatility
estimator fits the most to RTSRV∆,k,θ

t as a benchmark. These three comparison methods
are Mincer–Zarnowitz regression, probability integral transformation (PIT) test, and Gum-
bel copula upper tail dependence. Mincer–Zarnowitz regression is based on the overall
performance of the realized volatility estimators. The PIT test was performed as a density
goodness of fit procedure in order to test how the examined realized volatility estimators
preform in comparison to RTSRV∆,k,θ

t . The upper tail dependence was used because it
examines what happens in the extreme values or tails. The RTSRV∆,k,θ

t is defined as a
benchmark because it is robust to market microstructure noise as well as price jumps and
non-synchronous trading in the intraday stock price series, while other estimators do not
possess these features. These advantages were found in a simulation study only [20], but
there is no strong empirical evidence of superiority of RTSRV∆,k,θ

t considering developed
European stock markets.

3. Empirical Results

Each comparison method is comprised of fitting seven realized volatility estimators
to the benchmark RTSRV∆,k,θ

t . Before pairwise comparison, fixed parameters ∆ and θ are
set in advance, as previously argued ∆ = 1 and θ = 9, while the optimal slow time scale
sampling frequency k was selected for each European market based on minimizing the
RMSE of the benchmark.

3.1. Sampling Frequency Selection

The fast time scale sampling frequency ∆ = 1 second is determined in front, according
to data availability of the observed financial markets within the shortest, nonempty and
equidistant intervals. In order to define the optimal slow time scale sampling frequency
k, the root mean square error (RMSE) of the benchmark RTSRV∆,k,θ

t is used. The RMSE
of the benchmark for each stock index was calculated as the sum of its squared bias and
its variance, and afterwards the RMSE was minimized with respect to slow time scale
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frequency k, which corresponds to the optimal number of non-overlapping subsamples or
subgrids, over which the slow time scales sum of squared returns is averaged [29].

Namely, it is suggested to use returns that are sampled as often as possible because
one can get the maximum amount of information from data. However, if the sampling
frequency is as high as it can be, it leads to a bias problem due to microstructure noise.
There is a trade-off between the bias and efficiency while determining an optimal sampling
frequency. One must establish the optimal sampling frequency for an observed financial
market in order to reduce the bias but still keep the efficiency of the benchmark estimator.
In the presence of jumps, there will also be bias in practical applications. Thus, it will have
an effect on sampling frequency, which is also influenced by market structure, liquidity
and microstructure noise. The way to increase the efficiency of estimators is to sub-sample
(taking the average of an estimator across all possible sub-samples).

Even the robustness of the RTSRV∆,k,θ
t to the choice of k has been theoretically demon-

strated by [30], it is found at which optimal slow frequency a benchmark should be
computed for each of four developed European markets (Table 3).

Table 3. Selection of sampling frequencies on both scales for every market individually.

European Market Fast Time Scale
Frequency ∆

Optimal Slow Time
Scale Frequency k RMSE

(
RTSRV∆,k,θ

t
)

Italy 1 s 13 s 0.00038
Germany 1 s 20 s 0.00019
France 1 s 10 s 0.00041
UK 1 s 30 s 0.00016

As can be seen in Figure 2, the optimal sampling frequency for Germany is 20 s; for
the UK, it is 30 s; for Italy, it is 13 s; and, for France, it is 10 s. Figure 2 shows the root mean
squared error (RMSE) of the robust two times scaled estimator for each stock market index
against the number of subsamples.

Figure 2. Root mean square error of the benchmark estimator RTSRV∆,k,θ
t with respect to the number

of subsamples (slow time scale frequencies).

3.2. Mincer–Zarnowitz Regression

After finding an optimal slow frequency, RTSRV∆,k,θ
t can be easily computed for

each developed market, so that the effect of microstructure noise becomes attenuated.
Consecutively, the Mincer–Zarnowitz regression was estimated using GLS rather than OLS
to improve the power and the size of the test on how well the realized volatility competitor
σ̂2

t fits to the benchmark:
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RTSRV∆,k,θ
t = β0 + β1σ̂2

t + εt (1)

The Minzer–Zarnowitz regression approach is of great benefit for discriminating
between competing estimators because it examines the bias [31,32]. In particular, it was
jointly tested two restrictions on the parameters within a single null hypothesis H0 : β0 = 0
and β1 = 1. The results, including χ2 statistics and estimated parameters, are presented in
Table 4.

Table 4. Results of Mincer–Zarnowitz regression.

Statistic RV∆
t BPV∆

t MinRV∆
t MedRV∆

t ARV∆,k
t TSRV∆,k

t HYRV∆,θ
t

MIB 8375.1 *** 5442.6 *** 2298.0 *** 3449.3 *** 7530.1 *** 8841.3 *** 8274.6 ***
β̂0 0.000008 0.000001 0.000002 0.000003 0.000007 0.000006 0.000008
β̂1 0.508353 0.739918 0.799547 0.779631 0.518399 0.504905 0.508959

DAX 6517.3 *** 3404.7 *** 1853.3 *** 2281.7 *** 6732.8 *** 8001.1 *** 6517.1 ***
β̂0 −0.000008 −0.000003 −0.000001 −0.000002 −0.000009 −0.000008 −0.000008
β̂1 0.766997 0.820539 0.856405 0.850240 0.782201 0.763453 0.766998

CAC 4611.3 *** 2776.1 *** 3739.2 *** 2359.3 *** 6792.5 *** 1853.2 *** 470.67 ***
β̂0 0.000004 0.000008 0.000011 0.000010 0.000005 0.000002 0.000005
β̂1 1.006286 1.355853 1.426721 1.275828 1.012190 0.792073 1.006807

FTSE 7845.9 *** 5365.1 *** 4039.8 *** 4296.5 *** 8446.9 *** 9819.5 *** 7845.7 ***
β̂0 −0.000002 −0.000001 0.000001 0.000001 −0.000002 −0.000002 −0.000003
β̂1 0.724623 0.769927 0.777687 0.782853 0.730009 0.713995 0.724622

*** Indicates the significance at 1% level.

For all four European markets under consideration and seven volatility estimators, the
null hypothesis was rejected at a significance level of 1%. This showed how seven observed
volatility estimators do not fit well to the benchmark. For illustration purposes, Figure 3a,b
are scatter plots indicating that both bipower variation BPV∆

t , which is jump robust only,
and average subsampled realized variance ARV∆,k

t , which is only robust to microstructure
noise, underestimate the benchmark.

(a) (b)
Figure 3. Jump robust two times scaled realized variance against other realized volatility estimators.
(a) benchmark versus bipower variation; (b) benchmark versus average subsampled RV.

3.3. Probability Integral Transformation and Kolmogorov–Smirnov Test

The probability integral transformation (PIT) was used to check whether the difference
between RTSRV∆,k,θ

t and other competing volatility estimators is uniformly distributed.
Namely, uniform transformed volatility estimates are obtained by empirical distribution
function of the same estimates from the given estimator. The pairwise differences between
two uniform transformed estimates are used as an input in testing the null hypothesis
about uniform distribution of these differences by the Kolmogorov–Smirnov test.

The results, including Kolmogorov–Smirnov test statistics, are presented in Table 5. For
all European markets, the null hypothesis was rejected at a significance level of 1%, indicat-
ing a significant divergent performance of each competing estimator towards a benchmark.
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Table 5. Kolmogorov–Smirnov tests using probability integral transformations.

Statistic RV∆
t BPV∆

t MinRV∆
t MedRV∆

t ARV∆,k
t TSRV∆,k

t HYRV∆,θ
t

MIB 9577 *** 14,373 *** 16,639 *** 14,399 *** 10,161 *** 8801 *** 9554 ***
DAX 12,953 *** 16,349 *** 15,272 *** 15,123 *** 11,598 *** 10,790 *** 12,955 ***
CAC 11,580 *** 10,692 *** 10,152 *** 10,636 *** 11,624 *** 17,964 *** 11,579 ***
FTSE 13,824 *** 18,095 *** 12,495 *** 20,727 *** 13,099 *** 14,016 *** 13,824 ***

*** Indicates the significance at 1% level.

3.4. Upper Tail Dependence

This research utilizes the upper tail dependence coefficient, a result of the Gumbel cop-
ula function, which is found useful for measuring extreme dependence, i.e., a dependence
above a high quartile. While the Mincer–Zarnowitz regression and Kolmogorov–Smirnov
test have not demonstrated the preference of a specific estimator, the copula-based approach
can be a powerful and suitable for comparison [29]. The paper focuses on a Gumbel copula
as an extreme value copula that is not elliptical, due to the similar behavior of volatility
estimator over time, and sometimes takes on extremely large values. The Gumbel copula
function is given by:

C(u, v) = exp
(
− [−ln(u)2 − ln(v)δ

]1
δ

)
(2)

where u, v ∈ [0, 1] are in fact PIT transformations computed as an empirical cumulative
distribution function, with parameter 1 ≤ δ < ∞ that controls the upper tail dependence

accordingly λu = 2− 2
1
δ . A Gumbel copula is fitted to each pair of volatility estimators

of which one is always RTSRV∆,k,θ
t , and Gumbel parameter is estimated using the pseudo

likelihood method (PLM).
The results given in Table 6 present the upper tail dependence coefficient λu based on

estimated δ from the Gumbel copula function. The results indicate that, for Italy, Germany,
and the UK, RTSRV∆,k,θ

t has the highest upper tail dependence with BPV∆
t , MinRV∆

t , and
MedRV∆

t volatility estimators.

Table 6. Upper tail dependence coefficients from the Gumbel copulas.

λu RV∆
t BPV∆

t MinRV∆
t MedRV∆

t ARV∆,k
t TSRV∆,k

t HYRV∆,θ
t

MIB 0.813 *** 0.851 *** 0.853 *** 0.859 *** 0.819 *** 0.809 *** 0.814 ***
DAX 0.846 *** 0.868 *** 0.869 *** 0.874 *** 0.850 *** 0.849 *** 0.846 ***
CAC 0.826 *** 0.831 *** 0.825 *** 0.829 *** 0.829 *** 0.856 *** 0.826 ***
FTSE 0.824 *** 0.858 *** 0.858 *** 0.864 *** 0.828 *** 0.828 *** 0.824 ***

*** Indicates the significance at 1% level.

4. Discussion

Each competing volatility estimator was tested against benchmark RTSRV∆,k,θ
t using

Mincer–Zarnowitz regression, PIT test, and upper tail dependence measurements within
the Gumbel copula. The results of the first two methods for comparison of the realized
volatility estimators indicate that RV∆

t , ARV∆,k
t , TSRV∆,k

t , and HYRV∆,θ
t underestimate the

performance of estimates during severe stress and price jumps. Therefore, the results do
not give a clear answer regarding which estimator fits the best to the benchmark. In that
case, the upper tail dependence is a favorable method to use because it takes into account
extreme values.

Among all the competing estimators, only jump robust ones have produced almost
similar volatility estimates as RTSRV∆,k,θ

t . In the case of France, RTSRV∆,k,θ
t is best fitted
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with RTSRV∆,k
t , BPV∆

t , ARV∆,k
t , and MedRV∆

t volatility estimators. As TSRV∆,k
t is robust

to microstructure noise, it is of no surprise that estimates are as good as RTSRV∆,k,θ
t .

While estimating the integrated variance in a simulation study, looking at the asymp-
totic properties, the two times scaled estimator was shown to be consistent and unbiased to
microstructure noise [33].

The results are important to financial analysts and investors because they offer a
recommendation which realized the volatility estimator to use for the observed stock indices.
This research contributes to the previous studies with an empirical dataset consisting
of high-frequency price observations comprising four main European market indices
(DAX, CAC, FTSE and MIB) because there are very few studies that take into account the
calculations of realized volatility estimators on developed European markets.

5. Conclusions

The popularity of high-frequency data is enlarging, even if it is still hard to obtain such
data. However, the scientific focus on research of volatility estimators has increased and
expanded the knowledge from the already existing literature. This increase is mainly due to
the availability of high-frequency data. Even though realized variance RV∆

t is the most used
high-frequency estimator, it is biased due to microstructure noise. The benchmark robust
two times scaled realized variance RTSRV∆,k,β

t is microstructure noise and jump robust.
In this research, the data observed are intraday 1 s observations. It is determined that the
optimal sampling frequency for the robust two times scaled realized variance RTSRV∆,k,β

t is
from 10 to 30 s. There is no consensus in the previous studies regarding the “best” realized
volatility estimator. The objective of this research paper is to determine whether the robust
two times scaled realized variance RTSRV∆,k,β

t is a superior volatility estimator for each
of the four considered European markets by performance comparison of two groups of
estimators, i.e., estimators which are robust to microstructure noise as well as jump-robust
estimators. Due to inconclusive results from Mincer–Zarnowitz and PIT test, the upper
tail dependence was introduced because it examines the events in tails i.e., extreme values.
The results indicated that the medianized block of three returns MedRV∆

t performed most
similar to RTSRV∆,k,β

t for Italy, Germany and UK. For France, the two times scaled realized
variance TSRV∆,k

t realized volatility estimator was the most similar (approximately equal)
to the benchmark. Since the medianized block of three returns MedRV∆

t is robust only
to price jumps, we conclude that the Italian, German and UK financial markets are more
contaminated by price jumps than by microstructure noise. The French financial market is
more contaminated by microstructure noise than by price jumps. This contributes to the
existing literature in several ways. The main finding considers the selection of optimal slow
time scale frequency in favor of two times scaled estimator in each market individually,
at the same time ensuring robustness to price jumps. Another novelty is the usage of a
combination of three tests for benchmarking: Mincer–Zarnowitz regression, PIT test and
upper tail dependence test within the Gumbel copula where the results are given for each
of the observed developed European markets. The direction of further research would be
to investigate the realized covariance of different assets [34,35] using high–frequency data,
which is a great challenge due to non–synchronization issue, presence of co–jumps and
sampling frequency selection.
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Abbreviations

The following abbreviations are used in this manuscript:

ARV Average subsampled realized variance
BPV Bipower variation
CAC Cotation Assiste en Continu—a benchmark French stock market index
DAX Deutscher Aktien IndeX—a benchmark German stock market index
FTSE Financial Times Stock Exchange—a benchmark British stock market index
GLS Generalized least squares
HYRV Hayashi–Yoshida realized variance
IV Integrated variance
MedRV Medianized block of three returns
MIB Milano Indice di Borsa—a benchmark Italian stock market index
MinRV Minimized block of two returns
OLS Ordinary least squares
PLM Pseudo likelihood method
PIT Probability integral transformation
RMSE Root mean squared error
RTSRV Jump robust two times scaled realized variance
RV Realized variance
TRTH Thomson Reuters Tick History data base
TSRV Two times scaled realized variance
UK United Kingdom
US United States
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