
Citation: Li, M.; Zhao, M.; Luo, T.;

Yang, Y.; Peng, S.-L. A Compact

Parallel Pruning Scheme for Deep

Learning Model and Its Mobile

Instrument Deployment. Mathematics

2022, 10, 2126. https://doi.org/

10.3390/math10122126

Academic Editors: Yu Xue,

Chunlin He and Ferrante Neri

Received: 28 May 2022

Accepted: 15 June 2022

Published: 18 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Compact Parallel Pruning Scheme for Deep Learning Model
and Its Mobile Instrument Deployment
Meng Li 1, Ming Zhao 1,* , Tie Luo 1, Yimin Yang 1 and Sheng-Lung Peng 2

1 School of Computer Science, Yangtze University, Jingzhou 434025, China; limengdashi@163.com (M.L.);
it013097302@gmail.com (T.L.); yang_start1234@163.com (Y.Y.)

2 Department of Creative Technologies and Product Design, National Taipei University of Business,
Taipei 10051, Taiwan; slpeng@ntub.edu.tw

* Correspondence: hitmzhao@gmail.com

Abstract: In the single pruning algorithm, channel pruning or filter pruning is used to compress the
deep convolution neural network, and there are still many redundant parameters in the compressed
model. Directly pruning the filter will largely cause the loss of key information and affect the accuracy
of model classification. To solve these problems, a parallel pruning algorithm combined with image
enhancement is proposed. Firstly, in order to improve the generalization ability of the model, a
data enhancement method of random erasure is introduced. Secondly, according to the trained
batch normalization layer scaling factor, the channels with small contribution are cut off, the model
is initially thinned, and then the filters are pruned. By calculating the geometric median of the
filters, redundant filters similar to them are found and pruned, and their similarity is measured by
calculating the distance between filters. Pruning was done using VGG19 and DenseNet40 on cifar10
and cifar100 data sets. The experimental results show that this algorithm can improve the accuracy of
the model, and at the same time, it can compress the calculation and parameters of the model to a
certain extent. Finally, this method is applied in practice, and combined with transfer learning, traffic
objects are classified and detected on the mobile phone.

Keywords: image preprocessing; deep convolution neural network; pruning; model compression;
channel; filter; transfer learning

MSC: 68T99

1. Introduction

Because of the remarkable achievements of deep neural network in computer vision,
it has been widely studied and applied. However, with the increase of depth, its memory
occupation and hardware requirements also increase, so its application is limited. To solve
these problems, the concept of model compression is put forward. The methods of model
compression include low-rank decomposition, quantization, pruning and lightweight
network structure, etc. Pruning, as one of the effective methods of model compression,
has been widely studied and used. It can reduce the memory consumption of the network
model and the amount of calculation under the condition that the accuracy of the model is
not significantly reduced or even slightly improved.

It is found that the earlier pruning is to simplify the network by pruning the weight,
remove the unimportant neurons, and retrain the network until it converges. The com-
pression model proposed by Han et al. [1] achieved a compression ratio of 35 times on
AlexNet. In China, there is also much research on weight pruning. Gong Kaiqiang et al. [2]
proposed a neural network compression method based on network pruning combined
with tensor decomposition based on statistics, selecting mean and variance as the basis
for evaluating the contribution of weight value, which is conducive to the deployment of
model in resource-constrained embedded devices. Wang Zhongfeng et al. [3] took gradient

Mathematics 2022, 10, 2126. https://doi.org/10.3390/math10122126 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10122126
https://doi.org/10.3390/math10122126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1647-1769
https://orcid.org/0000-0002-9484-6677
https://doi.org/10.3390/math10122126
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10122126?type=check_update&version=2

Mathematics 2022, 10, 2126 2 of 17

as the basis for evaluating the importance of weights, removed the corresponding weights
of gradients less than the threshold value in the model, and recovered the loss of model
capacity through retraining. However, the pruning of weights will lead to a large number
of irregular zeros in the network, the convolution kernel becomes a sparse tensor, and the
model tends to be unstructured. Li et al. [4] designed the channel-pruning algorithm. As a
structured pruning algorithm, channel pruning measures the importance of convolution
kernels by designing standards, and completely cuts off unimportant convolution kernels
and their corresponding feature graphs, so that most of the decentralization values will not
be cut off and sparse tensors will be left. Liu et al. [5] proposed network slimming, focusing
on the scaling factors in the batch normalization layer, and imposing regular constraints on
them during training, so that the model can be continuously adjusted to the sparse channel
structure in the training. The same point is that the pruned parameters will be permanently
removed from the model and will no longer participate in reasoning and training. Although
most parameters in the network are redundant, unstructured pruning algorithm will still
permanently remove some key parameters. No matter what evaluation criteria are adopted,
it is difficult to avoid false pruning, which will inevitably lead to the loss of information.
Compared with unstructured pruning algorithms, the purpose of structured pruning is to
retain the ability of the pruned part and avoid the reduction of model capacity caused by
permanent pruning. The soft filter pruning proposed by He et al. [6] is a typical structured
soft pruning algorithm, which allows the truncated convolution kernel to participate in the
subsequent iteration update.

However, the uniqueness of the structured pruning algorithm also restricts its ability
to compress the network. Because the structured pruning algorithm selects the activated
convolution kernel according to the characteristics of the input image, considering that
the input image is unknown and the activated convolution kernel is also unknown, the
convolution kernel is difficult to permanently remove, which also leads to the network
compression ratio being significantly lower than that of the unstructured pruning algorithm.
Based on a series of problems existing in structured filter pruning, this paper proposes a
parallel pruning algorithm based on image preprocessing, which can effectively further
compress and optimize the model. The main work of this paper is as follows:

(1) In this paper, the random-erasure algorithm in the image preprocessing method is
used to preprocess the data set to obtain images with different occlusion degrees,
which further increases the number of training samples, which greatly improves the
generalization ability of the network and reduces the risk of over fitting.

(2) A parallel pruning algorithm combining channel pruning and filter pruning is pro-
posed. Firstly, according to the restriction of compression capacity in structured
pruning, the channel pruning method is adopted to permanently remove some pa-
rameters in the depth neural network, so as to reduce the amount of calculation
and maintain the accuracy of model classification as much as possible. Secondly,
in order to obtain a better compression effect, the filter pruning method is used for
further compression optimization, and the network is pruned without removing the
model parameters.

(3) Combining the characteristics of channel pruning and filter pruning, the two are
organically combined to maintain the balance between the accuracy and complexity
of the model. The network compressed by this pruning method is applied to the
mobile terminal to realize the classification and real-time target detection of the
mobile terminal.

2. Related Work
2.1. Introduction of Deep Convolutional Neural Network

The related research of CNN first started in the 1980s, and the time delay network
(TDNN) was the first CNN proposed by researchers. Later, translation-invariant artificial
neural network, LeNet, LeNet-5 and so on were successively proposed. The object to be
studied in this paper is deep convolutional neural networks (CNNs), which is the deep

Mathematics 2022, 10, 2126 3 of 17

structure of CNN. Typical deep convolution neural networks include ZFNet, proposed
in 2013, VGGNet and GoogLeNet, proposed in 2014, and ResNet, proposed in 2015; then
ResNeXt and DenseNet were proposed, and these networks have achieved good results in
computer vision tasks. According to the research content of this paper, this paper selects
different depths of VGGNet, ResNet and DenseNet for experiments. This paper mainly
introduces the related structures of these three networks.

The VGG model is a deep convolutional neural network developed by the Visual
Geometry Group of Oxford and Google Company in 2014 [7], which mainly proves that
increasing the depth of the network can affect the final performance of the model to a
certain extent. There are six different hierarchical structures of VGGNet, but, on the whole,
these structures have one thing in common: they all contain five groups of convolution
operations, all of which use 3 × 3 convolution kernels, and each group of convolution
operations will be followed by a 2 × 2 Maxpool layer and finally three FC (fully connected)
layers [8].

VGGNet can be said to be a network developed from AlexNet, and now VGG16 and
VGG19 are the most widely used ones. Generally speaking, compared with other networks,
the structure of VGGNet is very simple and clear. The whole network uses the same size of
convolution kernel (3 × 3) and maximum pool layer (2 × 2). However, there is a problem
that VGG will consume more computing resources in the process of using it, and it needs a
lot of parameters to learn, which will lead to excessive memory occupation. For example,
VGG16 contains 138,340,000 parameters, consumes more than 500 MB of storage space, and
just classifying a single picture requires 30.94 billion floating-point operations [9]. In the
VGGNet model, most of the parameters are from the first FC layer. However, VGG has
three fully connected layers.

Then, in order to solve the problem of network degradation, researchers put forward
the deep residual network ResNet in 2015, which solved the problem that the deep network
is difficult to train by using the method of cross-level connection to fit the residual term,
and increased the number of layers of the network to an unprecedented scale. In PyTorch,
five structures of ResNet network are provided. Among them, the residual network
with 152 layers needs to update its parameters, which is eight times that of the VGGNet
model [10], but the complexity of the network is lower than that of ResNet-152. Moreover,
in the image classification competition, ResNet achieved good results.

In ResNet, according to the types of Blocks, these five ResNets with different depths
are divided into two categories: one is the residual network based on BasicBlock, that is, the
shallow network resnet-18,34, which is composed of BasicBlock; the other is the residual
network based on Bottleneck, that is, deep networks Resnet-50,101,152 and even deeper
networks, all of which are composed of Bottleneck. Blocks are like building blocks. Several
blocks can form each layer in the network, and these layers form the whole network. No
matter how deep the ResNet network is, it is composed of four layers [11] (not counting
the initial 7 × 7 layers in the network).

DenseNet was proposed in 2017. Instead of improving the network performance
from the perspective of increasing the network depth and width, DenseNet looks for a
breakthrough from the perspective of features. Using the idea of feature reuse and Bypass
setting, DenseNet not only reduces the amount of network parameters and strengthens
feature transmission, but also alleviates the gradient decline to a certain extent. When the
structure of DenseNet network was first proposed, it was very similar to ResNet. At the
beginning, it was a large-scale convolution, followed by a maximum pool, followed by
several dense blocks and transition layers, and finally a pool layer and FC layer.

2.2. Image Preprocessing

In the process of image classification and recognition, image preprocessing is the
operation before feature extraction, segmentation and matching of input images. The reason
why, during training, the image should be preprocessed first is to remove the information
in the image that has nothing to do with the extracted features, then repair the real and

Mathematics 2022, 10, 2126 4 of 17

effective information in the image, enhance the verifiability of the associated information
and greatly simplify the data, thus improving the reliability of feature extraction, image
segmentation, matching and recognition [12]. In the process of deep network model
classification training, on the one hand, with the deepening of the model layers, the model
over-learns the details in the training data [13]. On the other hand, although it performs
well in the training data set, when a new data set is used to test the network, the effect may
be very poor, which leads to poor generalization performance of the model and over-fitting.
In order to solve the above problems in the training process, image preprocessing method
is used to expand the dataset, and random transformation method is used to increase the
number of training samples and improve the generalization ability of the model.

During this period, many image enhancement methods and regularization methods
have been proposed, such as random flipping, random cropping, dropout, batchnormal
and so on. However, a new problem has arisen. In the uncovered data set, that is, all the
targets are clearly visible, and the learned network may obtain higher accuracy; but, the
adaptability of the network is limited, and there may be no way to identify those covered
objects [14]. Therefore, in order to solve the problem of poor generalization ability of
network caused by occlusion, a new image enhancement technology—random-erasure
algorithm, referred to as RE—is proposed.

In the process of image preprocessing, the RE algorithm will randomly select the
rectangular area to be occluded from the image, and use the random number to erase the
pixel value of the selected rectangular area, so as to generate a training set with masking
effect, and then train and test it. This method will reduce the risk of good performance in
the model training process and poor performance in the test, and make the model stable
for masking.

2.3. Network Pruning

As one of the methods of model compression, network pruning is both fast and effec-
tive. Generally speaking, pruning can be divided into two categories. One is unstructured
pruning. The other is structured pruning, that is, pruning of filters, channels and layers.
One of the most important shortcomings of unstructured pruning methods (that is, directly
pruning the weights) is that the obtained weight matrix is sparse, and if there is no ded-
icated hardware or library, it cannot achieve the effect of compression and acceleration.
On the contrary, structured pruning is pruning at the level of filters, channels or layers.
Because the original convolution structure remains after pruning, it does not need special
hardware or library to realize it. Therefore, generally speaking, structured pruning is the
most popular pruning method among researchers at present.

According to the way of structured pruning, it can be roughly divided into channel
pruning, filter pruning and layer pruning, and channel pruning is the most popular struc-
tured pruning, because it runs at the finest level and is still suitable for the traditional
deep learning framework. Filter pruning is a higher level of pruning than channel pruning,
which will not destroy the structure of the network and can effectively reduce the size of
the network.

However, the uniqueness of the structured pruning algorithm just limits its effect of
compressing the network. Because the structured pruning algorithm selects the activated
convolution kernel according to the characteristics of the input image, considering that
the input image is unknown and the activated convolution kernel is also unknown, it is
difficult to permanently remove the convolution kernel, which also leads to the obvious
lower network compression ratio than the unstructured pruning algorithm. Therefore,
relatively speaking, directly pruning the model at the filter level may increase the loss of
information and the possibility of false pruning. Based on a series of problems existing
in structured filter pruning, this paper proposes a parallel pruning algorithm based on
image preprocessing, which organically combines channel pruning with filter pruning, and
performs parallel pruning operation on the model from both vertical and horizontal angles
to maximize the optimization of model parameters.

Mathematics 2022, 10, 2126 5 of 17

2.4. Transfer Learning

In deep learning, it is a very common method to use pre-training model as the be-
ginning of model training. As we all know, the pre-training model is a model that has
been trained with large data sets. Usually, these trained models have already consumed
huge time cost and calculation cost at the beginning of training, so in the following specific
computer vision tasks and natural language processing tasks, there is no need to spend a lot
of time and resources to train the models, which brings great convenience to the completion
of the tasks. However, the pre-training model also has shortcomings in the use process.
The disadvantages are that the model is large, the corresponding calculation amount and
parameters are too large, and the structure of the model is fixed. It is difficult to change
the network structure, and then there are scenarios that will limit the application of the
model. Therefore, in most cases, we usually train the model from scratch. However, due to
the limitation of hardware resources, some small data sets are usually used when training
models, and the trained models often fail to achieve the expected results. To solve this
problem, the concept of transfer learning has been put forward. Learning can transfer the
knowledge learned from large data sets to related problem research.

Transfer technology is a deep learning method put forward in 2005. Its purpose is to
take the model developed for task A as the starting point and re-apply it in the process of
developing the model for task B. According to the way of learning, migration methods can
be divided into the following categories: sample-based migration, feature-based migration,
network-based migration and relationship-based migration [15]. At present, the most
commonly used transfer learning method is the pre-training model method.

3. Parallel Pruning Algorithm Based on Image Preprocessing
3.1. The Random-Erasure Algorithm in Image Preprocessing Is Introduced to Preprocess the
Data Set

In deep learning, in order to reduce the over-fitting problem of deep neural networks,
it is necessary to increase the amount of data. Then, it is very important to enhance the data
of the input image, and the enhanced data is of great significance to the classification of the
model. In the process of data enhancement, commonly used methods mainly include con-
trast transformation, scale transformation, flip transformation and noise disturbance [16].

When there is no occlusion in the image, the model can better learn the convolution
features, and can achieve good results when testing the image. However, due to the
limited generalization ability of the model, the model may not recognize the objects in
the image for a large number of pictures. At this time, it is necessary to partially occlude
the image. This paper introduces the data enhancement algorithm of random erasure in
image preprocessing to preprocess large-scale image data, hoping to reduce the risk of
model over fitting and finally improve the generalization ability of the model [17]. This
is conducive to model training and feature extraction. The specific process of the random
erasure algorithm is as follows.

In the training of the model, the random erase (RE) data enhancement algorithm will
erase the pixels of the selected area in the picture with a certain probability. For a small
batch of images, it is assumed that the probability that the images M are randomly erased
is q, and the probability that they remain unchanged is 1− q. In this process, the random-
erasure algorithm will have different effects on the training data. When the random-erasure
algorithm is executed, firstly, a rectangular area Re is randomly selected in the image, and
the pixels in the area are erased with random numbers [18]. Assuming that the area of the
image used for training is A, then:

A = W × H (1)

where W is the width of the image and H is the height of the image.
The area of the erased rectangular area is initialized to Ae, where the size of Ae/A is

between A1 and Ah. The aspect ratio of the erased rectangular area is randomly initialized,

Mathematics 2022, 10, 2126 6 of 17

and the value is between β1 and β2. The height and width of the erased rectangular
frame are:

He =
√

Se × βe (2)

We =

√
Ae

βe
(3)

where the height of the erased rectangular frame is He, the width is We, the height–width
ratio is βe, and the area is Ae. In image M, a point Z is initialized randomly and Z = (xe, ye),
if the following conditions are true:

xe + We ≤W (4)

ye + He ≤ H (5)

Take the area Ae = (xe, ye, xe +We, ye + He) as the selected rectangular area. Otherwise,
the above process is repeated until a suitable rectangular area Ae is selected. Then, each
pixel in the selected rectangular area, that is, the area Ae to be erased, is assigned a random
value ranging from 0 to 255.

As a lightweight image preprocessing method, random erasure can be deployed
in various convolutional neural networks without any additional parameter learning
and memory consumption, and it is a supplement to the existing data enhancement and
regularization methods. Therefore, the introduction of the random-erasure algorithm not
only solves the generalization ability of the model, but also does not increase the parameters
of the model.

3.2. Parallel Pruning Algorithm

After preprocessing the data set, the next thing to do is prune the model. Pruning
and accelerating the deep convolution neural network can effectively reduce the memory
consumption and computation of the network, and solve the problem that the depth model
is difficult to be applied to resource constrained devices [19]. In order to remove the
redundant parameters in the model as much as possible, next, we will briefly introduce the
two pruning strategies involved:

(1) Channel pruning method based on batch normalization layer

Compared with filter pruning, the compression ratio of channel pruning is larger. This
is one of the reasons why this paper chooses channel pruning as the initial thinning of
the model. The essence of channel pruning [5] is to use the scaling factor learned by the
batch normalization layer as the basis for judging the channel importance, which simplifies
the process of channel importance calculation. Because the scaling factor is a parameter
automatically learned in the process of model training, it can also be said to be adaptive
pruning to some extent. Specifically, the idea of channel pruning is to introduce a scaling
factor for each channel and multiply it by the output of that channel. Then, combining the
weight of the training network with the introduced scaling factor, the latter is subjected
to sparsity regularization. Finally, the small factor channel is trimmed and the trimmed
network is fine-tuned. The objective function of channel pruning is [20]:

L = ∑
(x,y)

l(f (x, W), y) + λ ∑
γ∈Γ

g(γ) (6)

where (x, y) represents the input and output of training, W is the training weight, the
first sum term corresponds to the normal training loss of the network, g(γ) is the sparsity
penalty for the scaling factor, and λ is used to balance these two terms.

Using the γ parameter in the batch normalization layer as the scaling factor required
for channel pruning, its biggest advantage is that it will not bring additional computational
overhead to the network. Because the batch normalization layer can accelerate network con-
vergence, it has been widely used in various network structures. The batch normalization

Mathematics 2022, 10, 2126 7 of 17

layer is usually placed behind the convolution layer to normalize the output characteristics
of the convolution layer, so that each layer structure in the network can learn by itself and is
slightly independent from other layers [21]. In the learning process, the batch normalization
layer will obtain two parameters, scaling coefficient and offset coefficient, and then adjust
the normalized feature data according to these two parameters, so that the feature value
can learn the feature distribution of each layer [21]. The batch normalization layer performs
the following transformation:

Fout = γ
Fin − µ√

σ + ε
+ β (7)

In Formula (7), Fin represents the input, Fout represents the output, µ represents
the average of the input activation values, and σ is the variance of the input activation
values, and γ and β are the scaling coefficients and offset coefficients of the corresponding
activation channels. In the batch normalization layer, the learned parameter γ corresponds
to each active channel, so γ can be used to judge the importance of each active channel.

After channel-level sparsity training, a sparse model can be obtained. There are many
scaling factors close to zero in this model, and then the channels with these scaling factors
close to zero are pruned. Prune the channel by using a global critical value across all layers,
which is defined as a percentage of all scale factor values. For example, set the threshold
percentage to 70%, and then trim 70% channels with a low scale factor. In this way, we
can obtain a compact network with fewer parameters and calculation operations and less
memory consumption.

(2) Filter pruning method based on geometric median

Next, the second pruning strategy to be introduced is filter pruning. This pruning
method is mainly based on geometric median. The main idea is to prune redundant filters,
not those that are relatively unimportant. It selects those filters that contribute the most
substitutability. According to the characteristics of geometric median (GM) [22] of filters in
the same convolution layer in the model, the nearby filters can be represented by residual
filters. The algorithm process is as follows:

Assuming that the network to be pruned is L layer, Ci represents the number of input
channels in the i convolution layer, Ci+1 represents the number of output channels in the i
convolution layer, and Fi,j represents the j filter in the i convolution layer. In layer i, find
the filter closest to the geometric median of this layer, and its formula is as follows:

Fi,j∗ = argmin‖Fi,j′ − xGM‖
2
, s.t.j

′ ∈ [1, Ci+1] (8)

Then, Fi,j∗ can be represented by other filters in the same layer, so trimming them
has little impact on network performance. Where xGM is the geometric mean. As the
geometric mean is a classical robust estimation of data centrality in Euclidean space, the
geometric mean is used to obtain the common information of all filters in a single layer,
and its calculation is as follows:

xGM = argmin
x∈RCi×K×K

∑
j′∈[1,Ci+1]

‖x− Fi,j′ ‖2
(9)

Both pruning methods belong to structured pruning, but there are some differences
between them. The difference is that the compression ratio of filter pruning is obviously
smaller than that of channel pruning, that is, the compression ratio of filter pruning is
limited. Secondly, usually, channel pruning will directly delete unimportant channels
according to the pruning strategy, so the memory occupation of the model will be reduced
a lot after pruning, while the filter pruning will not be directly deleted—only the redundant
parameters will be set to zero, so the memory occupation of the model will hardly change
after pruning. Based on these two differences, this paper proposes a parallel pruning
algorithm. In this algorithm, the channel pruning based on batch normalization layer
and the filter pruning based on geometric median are fused, and the model is pruned

Mathematics 2022, 10, 2126 8 of 17

horizontally and vertically in parallel, which greatly reduces the parameter redundancy in
the model, reduces the memory occupancy of the model after pruning, and improves the
compression ratio of the model.

3.3. Algorithm Flow Chart

Through the research of channel pruning and filter pruning methods, it can be seen
that only one pruning strategy, such as channel pruning or filter pruning, is adopted to
optimize and accelerate the depth network model, and there are still many redundant
parameters in the optimized model [19]. Usually, a deep convolution neural network
contains hundreds of channels, and each channel describes different aspects of the previous
layer. As far as the structure level of the network is concerned, the channel and convolution
kernel are located in the next layer of the filter, while the concepts of the filter and the layer
are at the same level. Therefore, directly pruning the filter will greatly cause information
loss and affect the accuracy of model classification, and the filter pruning method limits
the compression ratio of network compression. In order to improve the compression ratio
and further optimize the network model, a parallel pruning method combining channel
pruning and filter pruning is proposed.

Firstly, the training data is preprocessed, and the generalization ability of network
learning is improved by random erasing methods. Secondly, channel pruning method is
used to train the model at channel level. The batch normalization layer is widely used
in deep neural networks, such as VGG and DenseNet, because it can accelerate network
convergence. According to the scaling factor of the batch normalization layer, the channels
with low importance are pruned to obtain a more compact network compared with the
original model, but there are still many redundant parameters in the compressed network.
Finally, in order to further optimize the compressed model, the redundant filters are
trimmed by the filter pruning method. At this time, the convolution layer is regarded as a
three-dimensional space, and the filters in it are regarded as points in the space. Because
the geometric median is a classical robust estimation of data centrality in Euclidean space,
the geometric median is used to obtain the common information of all filters in a certain
layer. Then, we calculated the distance from other filters to this geometric median, and
found the filter closest to this geometric median. Then it could be considered that this filter
is redundant and can be replaced by other filters and pruned. The algorithm flowchart is
shown in Figure 1.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 18

layer. Then, we calculated the distance from other filters to this geometric median, and
found the filter closest to this geometric median. Then it could be considered that this filter
is redundant and can be replaced by other filters and pruned. The algorithm flowchart is
shown in Figure 1.

Begin Pre-processing Training
original model

Set different pruning rates
for channel branches

modify the model slightly and restore
the accuracy rate of the model

Pruning the filter according to the
geometric center median methodGet the final branch pruned modelImage classificationEnd

Figure 1. Flowchart of parallel pruning algorithm based on image preprocessing.

4. Experimental Results and Analysis
The experiment was conducted on a device with Ubuntu system, Intel Core i7 9750H

processor and NVIDIA Ge Force GTX 1650 graphics card. The experimental environment
is Pycharm 2019.2.4 (community edition), torchversion1.8.0 and CUDA version10.0.

In this experiment, CIFAR10 and CIFAR100 data sets are selected. CIFAR10 and
CIFAR100 are both classic data sets used for image recognition. The CIFAR10 data set was
collected and produced by Krizhevsky, etc. It contains 60,000 images with 10 categories.
The CIFAR100 data set also contains 60,000 images. The difference between the two data
sets is that CIFAR100 is divided into 100 categories, with 600 images in each category [23].
The images in CIFAR data set are all from real objects in reality, and they are all three-
channel images. In these images, the size, characteristics and background of objects are
different, so they have certain complexity and diversity. Compared with a single one-
channel data set MNIST, which only contains handwritten numbers, CIFAR data set has
more practical significance [23]. Furthermore, compared with the complex ILSVRC2012
dataset, CIFAR is relatively small in scale, not easily limited by the performance of equip-
ment, and convenient for training.

During the experiment, the data set is preprocessed at first. Besides flipping, clipping
and normalizing the data set, random erasing is also performed, which not only increases
the diversity of data, but also enhances the generalization ability of the model. After ran-
domly erasing the CIFAR10 dataset, the occlusion effect diagram generated by it is shown
in Figure 2.

Figure 2. The effect of random erasure algorithm on CIFAR10 dataset.

Figure 1. Flowchart of parallel pruning algorithm based on image preprocessing.

4. Experimental Results and Analysis

The experiment was conducted on a device with Ubuntu system, Intel Core i7 9750H
processor and NVIDIA Ge Force GTX 1650 graphics card. The experimental environment
is Pycharm 2019.2.4 (community edition), torchversion1.8.0 and CUDA version10.0.

In this experiment, CIFAR10 and CIFAR100 data sets are selected. CIFAR10 and
CIFAR100 are both classic data sets used for image recognition. The CIFAR10 data set was
collected and produced by Krizhevsky, etc. It contains 60,000 images with 10 categories. The
CIFAR100 data set also contains 60,000 images. The difference between the two data sets is
that CIFAR100 is divided into 100 categories, with 600 images in each category [23]. The
images in CIFAR data set are all from real objects in reality, and they are all three-channel

Mathematics 2022, 10, 2126 9 of 17

images. In these images, the size, characteristics and background of objects are different,
so they have certain complexity and diversity. Compared with a single one-channel data
set MNIST, which only contains handwritten numbers, CIFAR data set has more practical
significance [23]. Furthermore, compared with the complex ILSVRC2012 dataset, CIFAR is
relatively small in scale, not easily limited by the performance of equipment, and convenient
for training.

During the experiment, the data set is preprocessed at first. Besides flipping, clipping
and normalizing the data set, random erasing is also performed, which not only increases
the diversity of data, but also enhances the generalization ability of the model. After
randomly erasing the CIFAR10 dataset, the occlusion effect diagram generated by it is
shown in Figure 2.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 18

layer. Then, we calculated the distance from other filters to this geometric median, and
found the filter closest to this geometric median. Then it could be considered that this filter
is redundant and can be replaced by other filters and pruned. The algorithm flowchart is
shown in Figure 1.

Begin Pre-processing Training
original model

Set different pruning rates
for channel branches

modify the model slightly and restore
the accuracy rate of the model

Pruning the filter according to the
geometric center median methodGet the final branch pruned modelImage classificationEnd

Figure 1. Flowchart of parallel pruning algorithm based on image preprocessing.

4. Experimental Results and Analysis
The experiment was conducted on a device with Ubuntu system, Intel Core i7 9750H

processor and NVIDIA Ge Force GTX 1650 graphics card. The experimental environment
is Pycharm 2019.2.4 (community edition), torchversion1.8.0 and CUDA version10.0.

In this experiment, CIFAR10 and CIFAR100 data sets are selected. CIFAR10 and
CIFAR100 are both classic data sets used for image recognition. The CIFAR10 data set was
collected and produced by Krizhevsky, etc. It contains 60,000 images with 10 categories.
The CIFAR100 data set also contains 60,000 images. The difference between the two data
sets is that CIFAR100 is divided into 100 categories, with 600 images in each category [23].
The images in CIFAR data set are all from real objects in reality, and they are all three-
channel images. In these images, the size, characteristics and background of objects are
different, so they have certain complexity and diversity. Compared with a single one-
channel data set MNIST, which only contains handwritten numbers, CIFAR data set has
more practical significance [23]. Furthermore, compared with the complex ILSVRC2012
dataset, CIFAR is relatively small in scale, not easily limited by the performance of equip-
ment, and convenient for training.

During the experiment, the data set is preprocessed at first. Besides flipping, clipping
and normalizing the data set, random erasing is also performed, which not only increases
the diversity of data, but also enhances the generalization ability of the model. After ran-
domly erasing the CIFAR10 dataset, the occlusion effect diagram generated by it is shown
in Figure 2.

Figure 2. The effect of random erasure algorithm on CIFAR10 dataset. Figure 2. The effect of random erasure algorithm on CIFAR10 dataset.

Next, pruning training is carried out on DenseNet40, VGG19 and other deep network
models, so as to optimize the compression model parameters and calculation amount
while slightly improving or not affecting the classification accuracy of the models. This
experiment is a further improvement of the research method of pruning algorithm of
depth separable filter based on PCA, which makes up for the shortcomings of its single
model and data set experiment and method. A parallel pruning algorithm combined with
image enhancement is proposed, and the above network is tested. After 300 rounds and
160 rounds of training respectively, the learning rate was set to 0.1, and the batch size
was 64.

In this paper, the pruning experiments of VGG19 and DenseNet40 models are carried
out by setting different pruning rates on the datasets of CIFAR10 and CIFAR100, keeping
other parameters the same. The results are shown in Tables 1 and 2. Table 1 shows
the pruning results of VGG19 and DenseNet40 on CIFAR10, while Table 2 shows the
pruning results on CIFAR100. Compared with the single channel pruning and filter pruning
methods, the method proposed in this paper has a certain effect on reducing the calculation
and parameter of the models. When the pruning rate is 70%, The parameters of VGG19
model are reduced by 83.8%, and the calculation is reduced by 71%, and the accuracy of the
model is improved by about 1%, which provides a further possibility for its deployment
on small devices. In Tables 1 and 2, the experimental results of the lightweight network
MobileNetV2 on CIFAR10 and CIFAR100 data sets are also given, and the change of
its correct rate in the training process is drawn, as shown in Figures 3 and 4. Because
MobileNet itself is a lightweight structure specially designed for mobile terminals, this
article does not prune it here.

Mathematics 2022, 10, 2126 10 of 17

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 18

Next, pruning training is carried out on DenseNet40, VGG19 and other deep network
models, so as to optimize the compression model parameters and calculation amount
while slightly improving or not affecting the classification accuracy of the models. This
experiment is a further improvement of the research method of pruning algorithm of
depth separable filter based on PCA, which makes up for the shortcomings of its single
model and data set experiment and method. A parallel pruning algorithm combined with
image enhancement is proposed, and the above network is tested. After 300 rounds and
160 rounds of training respectively, the learning rate was set to 0.1, and the batch size was
64.

In this paper, the pruning experiments of VGG19 and DenseNet40 models are carried
out by setting different pruning rates on the datasets of CIFAR10 and CIFAR100, keeping
other parameters the same. The results are shown in Tables 1 and 2. Table 1 shows the
pruning results of VGG19 and DenseNet40 on CIFAR10, while Table 2 shows the pruning
results on CIFAR100. Compared with the single channel pruning and filter pruning meth-
ods, the method proposed in this paper has a certain effect on reducing the calculation
and parameter of the models. When the pruning rate is 70%, The parameters of VGG19
model are reduced by 83.8%, and the calculation is reduced by 71%, and the accuracy of
the model is improved by about 1%, which provides a further possibility for its deploy-
ment on small devices. In Tables 1 and 2, the experimental results of the lightweight net-
work MobileNetV2 on CIFAR10 and CIFAR100 data sets are also given, and the change
of its correct rate in the training process is drawn, as shown in Figures 3 and 4. Because
MobileNet itself is a lightweight structure specially designed for mobile terminals, this
article does not prune it here.

Figure 3. Changes of accuracy of Densenet40, VGG19 and MobileNetV2 on CIFAR10 data set. Figure 3. Changes of accuracy of Densenet40, VGG19 and MobileNetV2 on CIFAR10 data set.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 18

Figure 4. Changes of accuracy of Densenet40, VGG19 and MobileNetV2 on CIFAR100 data set.

Table 1. Comparison of pruning effects of models VGG19 and DenseNet40 on CIFAR10 dataset.

Network
Method

(Pruning Rate.%)
Test Acc

(%)
Param

(M)
Prune

(Acc. %)
Flops
(G)

VGG-19
Baseline 93.66 20.04 — 7.97

LECNN (70%) 93.80 2.30 88.5 3.91
Cp-and-FpRe (70%) 94.90 3.25 83.8 2.31

Densenet-40

Baseline 93.89 1.05 — 5.33
LECNN (40%) 94.89 0.69 34.3 3.81
FPGM (40%) 93.57 1.05 — 2.87

Cp-and-Fp (40%) 94.04 0.88 — —
Cp-and-FpRe (40%) 94.99 0.88 16.2 2.49

Cp (60%) 87.32 0.49 53.3 1.53
Fp (60%) 93.43 1.05 — —

Cp-and-Fp (60%) 93.30 — — 1.76
Cp-and-FpRe (60%) 94.30 0.59 43.8 1.76

Cp-and-Fp (65%) 93.77 0.59 — —
Cp-and-Fp-Cos (65%) 93.81 — — —
Cp-and-FpRe (65%) 94.21 0.59 43.8 1.76

MoblieNetV2 — 90 4.133 — 6.08
The bold and highlights are experimental results of the proposed algorithm.

Figure 4. Changes of accuracy of Densenet40, VGG19 and MobileNetV2 on CIFAR100 data set.

Mathematics 2022, 10, 2126 11 of 17

Table 1. Comparison of pruning effects of models VGG19 and DenseNet40 on CIFAR10 dataset.

Network Method
(Pruning Rate.%)

Test Acc
(%)

Param
(M)

Prune
(Acc. %)

Flops
(G)

VGG-19
Baseline 93.66 20.04 — 7.97

LECNN (70%) 93.80 2.30 88.5 3.91
Cp-and-FpRe (70%) 94.90 3.25 83.8 2.31

Densenet-40

Baseline 93.89 1.05 — 5.33
LECNN (40%) 94.89 0.69 34.3 3.81
FPGM (40%) 93.57 1.05 — 2.87

Cp-and-Fp (40%) 94.04 0.88 — —
Cp-and-FpRe (40%) 94.99 0.88 16.2 2.49

Cp (60%) 87.32 0.49 53.3 1.53
Fp (60%) 93.43 1.05 — —

Cp-and-Fp (60%) 93.30 — — 1.76
Cp-and-FpRe (60%) 94.30 0.59 43.8 1.76

Cp-and-Fp (65%) 93.77 0.59 — —
Cp-and-Fp-Cos (65%) 93.81 — — —
Cp-and-FpRe (65%) 94.21 0.59 43.8 1.76

MoblieNetV2 — 90 4.133 — 6.08

The bold and highlights are experimental results of the proposed algorithm.

Table 2. Comparison of pruning effects of models VGG19 and DenseNet40 on CIFAR100 dataset.

Network Method Test Acc (%) Param
(M) Prune (Acc.%) Flops

(G)

VGG-19

Baseline 73.26 20.08 — 7.97
LECNN (50%) 73.48 5.0 75.1 5.01

Cp-and-Fp (50%) 74.50 7.24 — —
Cp-and-FpRe (50%) 75.67 7.24 63.9 3.0

Densenet-40

Baseline 74.64 1.06 — 5.33
Cp (40%) 74.72 0.66 37.5 3.71
Fp (40%) 73.89 1.06 — 2.87

Cp-and-Fp (40%) 74.90 — — —
Cp-and-FpRe (40%) 76.40 0.76 28.3 2.49

MoblieNetV2 — 68.08 — — —

The bold and highlights are experimental results of the proposed algorithm.

In order to achieve better compression effect of the model, this paper prunes the
model in parallel. By combining channel pruning, the restriction of filter pruning on
compression ratio is improved and the compression ratio of the whole model is increased.
As shown in Figures 3 and 4, on the data sets of CIFAR10 and CIFAR100, after increasing
the compression ratio of the models, the classification accuracy of the models DenseNet40
and VGG19 can still remain the same as the baseline, even slightly higher, which is in line
with the experimental expectation.

5. Case Study

After pruning the model, the classification performance of the pruned model is verified
by image classification experiments. The experimental results show that the method
proposed in this paper effectively reduces the parameters and computation of the deep
network model, greatly reduces the occupation of internal storage of the model, and
improves the accuracy of model classification. This is only a theoretical study, and the
classification effect of the pruned model in practical application remains to be studied.
Image classification is simply a method of image processing. The classification of images
is based on the different features of the images themselves in the image information [24].
Image classification is the core of computer vision and has been widely used in practice.

Mathematics 2022, 10, 2126 12 of 17

However, for image classification, it is rarely applied to the mobile terminal, because
most of the image classification models are very large, such as VGG, ResNet, DenseNet,
etc., which all require high memory, so it is very difficult to deploy them to the mobile
terminal. Therefore, the next content to be studied in this paper is the application of image
classification based on a mobile terminal.

5.1. Image Classification Based on Mobile Terminal

The reason why the model is pruned is to facilitate its deployment on the mobile side.
The process of image classification on the mobile terminal is as follows.

Firstly, the pruned model is trained on PyCharm, and the tag file corresponding to the
training data set is generated during the training process. Then, the prediction file is called
to test the model, and the format of the Pth model file generated after the test is converted
into a pt file that can be deployed on the mobile terminal. Here, the first step to realize the
classification of the model on the mobile side is completed.

The following is the experiment of the classification effect on the mobile terminal.
Based on Android Studio platform, put the model converted in the previous step in the
folder./app/src/main/assets, then connect the mobile terminal, open the USB debugging
and installation, run the files, and classify the pictures. The final classification result is
shown in Figure 5.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 18

Figure 5. Image classification effect based on mobile terminal.

5.2. Mobile Traffic Object Detection Combined with Transfer Learning
The purpose of accelerating the optimization of the model is to maximize the appli-

cation of the model, so that it cannot be limited by equipment and so on, and better serve
the lives of the public. In order to make the compressed model have good generalization
ability and be able to identify and detect targets well in different situations, this chapter
proposes mobile traffic object detection based on transfer learning. Through transfer
learning on the public driving dataset BDD100K, we build our own traffic object detection
network.

5.2.1. Transfer Learning of BDD100K Dataset and YOLO Network
The data set used in this paper is BDD100K, published by the AI Lab of Berkeley

University, and the data set BDD100K is the dataset related to traffic objects with the most
images and the most extensive content at present. This sample set contains 100,000 video
resources, and each segment is about 40 s, 720 p and 30 fps. We sampled the important
frames in the 10th second of each video segment to obtain 100,000 pictures (picture size:
1280 × 720) and labelled them [25]. It contains 100,000 road boundary boxes, 100,000 driv-
ing ranges, 100,000 lane markings and 10,000 full-frame examples. Among them, the
marked objects are: the uniform resource locator, category label, size (start coordinates,
end coordinates, width and height), truncation, occlusion and traffic signal color of the
source image [26]. There are 10 kinds of images, namely Bus, Light, Sign, Person, Bike,
Truck, Motor, Car, Train and Rider. There are about 1,840,000 calibration boxes in total.
These 100,000 pictures contain pictures of different climates, scenes and times, and there
are clear and unclear pictures, which are large in scale and diverse [27], all of which are
real driving scenes.

After introducing the data set, the following is the network YOLO, which is one of
the classic target detection networks and has been widely studied and applied since it was
put forward. As a fast, compact and effective open-source object detection network,

Figure 5. Image classification effect based on mobile terminal.

5.2. Mobile Traffic Object Detection Combined with Transfer Learning

The purpose of accelerating the optimization of the model is to maximize the applica-
tion of the model, so that it cannot be limited by equipment and so on, and better serve the
lives of the public. In order to make the compressed model have good generalization ability
and be able to identify and detect targets well in different situations, this chapter proposes
mobile traffic object detection based on transfer learning. Through transfer learning on the
public driving dataset BDD100K, we build our own traffic object detection network.

Mathematics 2022, 10, 2126 13 of 17

5.2.1. Transfer Learning of BDD100K Dataset and YOLO Network

The data set used in this paper is BDD100K, published by the AI Lab of Berkeley
University, and the data set BDD100K is the dataset related to traffic objects with the most
images and the most extensive content at present. This sample set contains 100,000 video
resources, and each segment is about 40 s, 720 p and 30 fps. We sampled the important
frames in the 10th second of each video segment to obtain 100,000 pictures (picture size:
1280 × 720) and labelled them [25]. It contains 100,000 road boundary boxes, 100,000
driving ranges, 100,000 lane markings and 10,000 full-frame examples. Among them, the
marked objects are: the uniform resource locator, category label, size (start coordinates,
end coordinates, width and height), truncation, occlusion and traffic signal color of the
source image [26]. There are 10 kinds of images, namely Bus, Light, Sign, Person, Bike,
Truck, Motor, Car, Train and Rider. There are about 1,840,000 calibration boxes in total.
These 100,000 pictures contain pictures of different climates, scenes and times, and there
are clear and unclear pictures, which are large in scale and diverse [27], all of which are
real driving scenes.

After introducing the data set, the following is the network YOLO, which is one of
the classic target detection networks and has been widely studied and applied since it
was put forward. As a fast, compact and effective open-source object detection network,
compared with other models, it has stronger performance and good reliability. It is the first
network that can predict the category and bounding box of the target object, and can predict
multiple bounding box positions and categories at once. The biggest feature of YOLO is its
fast detection speed. YOLO has been upgraded to v5 version up to now, showing its strong
vitality from v1 to v5. YOLOv5 is used as the experimental network here. In this paper,
YOLO is trained and pruned on a custom data set, and the specific process is not described
here. What we want to say here is that YOLO network has its unique data set label format.
The following is a study on the migration of the pruned network. The so-called transfer
learning is to apply the knowledge learned in a certain scene or task to different but related
scenes or problems.

During the training of custom data set, due to the insufficient amount of data and
relatively single data, when doing target detection, for a certain scene, the detection effect is
not ideal because of insufficient data, so it is very suitable for transfer learning. Therefore,
in order to build our own traffic object detection network, this paper makes up for the
lack of data in the early stage by transferring and learning the automatic driving data
set BDD100K.

After the data set BDD100K and YOLO V5 model framework are prepared, the label
format of the training sample is converted to YOLO format. The University of California,
Berkeley, provides a tool for tag viewing and tag format conversion of BDD100K datasets.
As there is no tool to directly convert BDD100K into YOLO format, one must first convert
the label of BDD100K into the label format of coco data set, and then convert the coco label
format into YOLO label format. You will obtain two .json files after the conversion. The
following is to change the label format of training data and verification data into YOLO
format. In the process of conversion, it should be noted that the positions of training and
verification data set images, matching tag files and finally YOLO tags should be specified
respectively. Then, one can start training the model and obtain the weight file of .pt.

5.2.2. Application of Mobile Object Detection

This chapter is to deploy the above-mentioned network to the mobile terminal to
realize the real-time target detection of the mobile terminal. The process includes three
modules, YOLOv5 target detection project file, ONNX model conversion tool and NCNN
framework. The experimental environment is Android Studio 2020.3.1, the mobile device
used is Android 11.0 and the screen resolution of mobile phone is 2340 × 1080. The
experiment is carried out in the framework of PyTorch. Although the PyTorch framework
is the mainstream deep learning development platform at present, there are still some

Mathematics 2022, 10, 2126 14 of 17

shortcomings in the deployment. Therefore, this paper uses NCNN to deploy the PyTorch
model to the mobile terminal.

NCNN is an open-source deep learning forward framework for mobile devices (espe-
cially Android) which is opened by Tencent. It only has forward calculation, so it cannot be
trained and learned. It is necessary to input the network parameters that have been trained
and learned by other frameworks. NCNN has been deeply considered for the application of
mobile phones from the beginning of its development. It can be used on multiple platforms
without relying on third-party support, and the speed of mobile phone processor is faster
than the existing open-source architecture. In general, NCNN can be seen in reference [28].

Model Transformation

After transferring the model, to deploy it on mobile devices, it is necessary to transform
the model.

First, we need to convert the trained model into ONNX, a unified format, and store it.
It is a middleware in model transformation. Because there is no direct interaction between
NCNN and PyTorch models. ONNX (Open Neural Network Exchange) is an open-file
format specially designed for machine learning. It can be used to represent the standards
of machine learning neural networks and preserve the learned models, which can make
the networks transfer and interact among different architectures, such as Pytorch, Caffe2,
MXNet, etc. The file generated after ONNX model conversion not only saves the weight of
the network model, but also saves the structure information of the model, the input and
output of each layer in the model and some other related information.

Then, the model in ONNX file format is converted into NCNN model. Before that,
the model should be simplified to prevent the model from being uncompiled. Finally, the
generated NCNN model contains two files (.param and .bin), .param is the configuration
file of the model and .bin is the weight file of the model. The model conversion process is
shown in Figure 6 below.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 18

Model Transformation
After transferring the model, to deploy it on mobile devices, it is necessary to trans-

form the model.
First, we need to convert the trained model into ONNX, a unified format, and store

it. It is a middleware in model transformation. Because there is no direct interaction be-
tween NCNN and PyTorch models. ONNX (Open Neural Network Exchange) is an open-
file format specially designed for machine learning. It can be used to represent the stand-
ards of machine learning neural networks and preserve the learned models, which can
make the networks transfer and interact among different architectures, such as Pytorch,
Caffe2, MXNet, etc. The file generated after ONNX model conversion not only saves the
weight of the network model, but also saves the structure information of the model, the
input and output of each layer in the model and some other related information.

Then, the model in ONNX file format is converted into NCNN model. Before that,
the model should be simplified to prevent the model from being uncompiled. Finally, the
generated NCNN model contains two files (.param and .bin), .param is the configuration
file of the model and .bin is the weight file of the model. The model conversion process is
shown in Figure 6 below.

PyTorch

. pth weight
file generated

by model
transfer
training

Import a .pth
file and

convert it into
an .onnx file

ONNX
conversion Simplified ONNX

Simplify
.onnx model

files with
onnx-

smiplifier

ONNX to NCNN

Generate
NCNN model

Figure 6. Model transformation process.

System Deployment
After converting the model, the whole PC and mobile system application deploy-

ment is started. Compile and run the converted NCNN model, and realize real-time traffic
object detection on Android based on the compressed model YOLO. The system deploy-
ment is shown in Figure 7.

Mobile terminal system deploymentPC terminal system deployment

System deployment

Transfer the weight file
after learning and training

Compile and run NCNN
module

ONNX model

NCNN modelModel training

Original
model

Pruning
algorithm

转
换

转
换

Generate .apk file

Mobile phone opens USB installation and
debugging

Install the .apk file

Real-time target detection

Picture detection Video detection

Figure 7. System deployment diagram.

Figure 6. Model transformation process.

System Deployment

After converting the model, the whole PC and mobile system application deployment
is started. Compile and run the converted NCNN model, and realize real-time traffic object
detection on Android based on the compressed model YOLO. The system deployment is
shown in Figure 7.

Traffic Detection and Recognition Effect

After building the framework, transforming the model and deploying the system, the
next thing to do is to realize the object detection on the mobile terminal. In this paper,
YOLOV5s, a target detection model, is used. By transferring and learning the large-scale
driving data set BDD100K, traffic objects can be detected and identified. According to the
situation, you can choose to detect both pictures and videos in real time. The detection and
recognition effect are shown in Figure 8.

Mathematics 2022, 10, 2126 15 of 17

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 18

Model Transformation
After transferring the model, to deploy it on mobile devices, it is necessary to trans-

form the model.
First, we need to convert the trained model into ONNX, a unified format, and store

it. It is a middleware in model transformation. Because there is no direct interaction be-
tween NCNN and PyTorch models. ONNX (Open Neural Network Exchange) is an open-
file format specially designed for machine learning. It can be used to represent the stand-
ards of machine learning neural networks and preserve the learned models, which can
make the networks transfer and interact among different architectures, such as Pytorch,
Caffe2, MXNet, etc. The file generated after ONNX model conversion not only saves the
weight of the network model, but also saves the structure information of the model, the
input and output of each layer in the model and some other related information.

Then, the model in ONNX file format is converted into NCNN model. Before that,
the model should be simplified to prevent the model from being uncompiled. Finally, the
generated NCNN model contains two files (.param and .bin), .param is the configuration
file of the model and .bin is the weight file of the model. The model conversion process is
shown in Figure 6 below.

PyTorch

. pth weight
file generated

by model
transfer
training

Import a .pth
file and

convert it into
an .onnx file

ONNX
conversion Simplified ONNX

Simplify
.onnx model

files with
onnx-

smiplifier

ONNX to NCNN

Generate
NCNN model

Figure 6. Model transformation process.

System Deployment
After converting the model, the whole PC and mobile system application deploy-

ment is started. Compile and run the converted NCNN model, and realize real-time traffic
object detection on Android based on the compressed model YOLO. The system deploy-
ment is shown in Figure 7.

Mobile terminal system deploymentPC terminal system deployment

System deployment

Transfer the weight file
after learning and training

Compile and run NCNN
module

ONNX model

NCNN modelModel training

Original
model

Pruning
algorithm

转
换

转
换

Generate .apk file

Mobile phone opens USB installation and
debugging

Install the .apk file

Real-time target detection

Picture detection Video detection

Figure 7. System deployment diagram. Figure 7. System deployment diagram.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 18

Traffic Detection and Recognition Effect
After building the framework, transforming the model and deploying the system, the

next thing to do is to realize the object detection on the mobile terminal. In this paper,
YOLOV5s, a target detection model, is used. By transferring and learning the large-scale
driving data set BDD100K, traffic objects can be detected and identified. According to the
situation, you can choose to detect both pictures and videos in real time. The detection
and recognition effect are shown in Figure 8.

Figure 8. Detection and recognition effect of mobile objects.

6. Conclusions
This paper presents a parallel pruning method based on image preprocessing. This

algorithm combines the random-erasure algorithm with image preprocessing, and makes
use of the respective advantages of channel pruning and filter pruning to evaluate the
importance and redundancy of channel and filter. The main idea of the algorithm is to
preprocess the data set, use a random-erasure algorithm, increase the number of training
samples and enhance the generalization ability of the model. Secondly, the model is pre-
liminarily thinned, and the channel importance is preliminarily evaluated through the
parameters learned in the model training process, that is, scaling factor, and the channel
with low importance is pruned. Then, the Euclidean distance is used to calculate the in-
formation distance of all filters in each convolution layer, and then the redundancy of
filters is identified by the value of information distance of each layer, and the redundant
filters are pruned. Here, the algorithm evaluates the importance of channels and filters

Figure 8. Detection and recognition effect of mobile objects.

Mathematics 2022, 10, 2126 16 of 17

6. Conclusions

This paper presents a parallel pruning method based on image preprocessing. This
algorithm combines the random-erasure algorithm with image preprocessing, and makes
use of the respective advantages of channel pruning and filter pruning to evaluate the
importance and redundancy of channel and filter. The main idea of the algorithm is to
preprocess the data set, use a random-erasure algorithm, increase the number of training
samples and enhance the generalization ability of the model. Secondly, the model is
preliminarily thinned, and the channel importance is preliminarily evaluated through the
parameters learned in the model training process, that is, scaling factor, and the channel
with low importance is pruned. Then, the Euclidean distance is used to calculate the
information distance of all filters in each convolution layer, and then the redundancy of
filters is identified by the value of information distance of each layer, and the redundant
filters are pruned. Here, the algorithm evaluates the importance of channels and filters
from two directions. Finally, the algorithm performs experiments on multiple models on
multiple data sets. The results show that this algorithm prunes the model, which further
improves the performance of the model. This method is applied to the mobile terminal. By
introducing transfer learning, traffic objects are classified and detected in real time.

Author Contributions: Data curation, T.L.; Investigation, Y.Y.; Methodology, M.L. and S.-L.P.; Soft-
ware, T.L.; Writing—original draft, M.Z.; Writing—review & editing, M.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by Hubei Provincial Department of Education: 21D031.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, M.; Hu, M.; Li, M.; Peng, S.-L.; Tan, J. A Novel Fusion Pruning Algorithm Based on Information Entropy Stratification and

IoT Application. Electronics 2022, 11, 1212. [CrossRef]
2. Gong, K.; Zhang, C.; Zeng, G. Convolutional neural network model pruning combined with tensor decomposition compression

method. Comput. Appl. 2020, 40, 3146–3151.
3. Wang, Z.; Xu, Z.; Song, C.; Zhang, H.; Cai, Y. Deep network pruning algorithm based on gradient. Comput. Appl. 2020, 40,

1253–1259.
4. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. arXiv 2016, arXiv:1608.08710.

Available online: https://arxiv.org/abs/1608.08710 (accessed on 27 December 2021).
5. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning Efficient Convolutional Networks through Network Slimming. In

Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.
6. He, Y.; Dong, X.; Kang, G.; Fu, Y.; Yan, C.; Yang, Y. Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks.

IEEE Trans. Cybern. 2019, 49, 4501–4564. [CrossRef] [PubMed]
7. Liu, J.; Chen, Q.; Amudula, E. Research on point target tracking technology based on correlation filtering and CNN. Laser Infrared

2021, 51, 244–249.
8. Zhang, X.; Wei, Y. Detection and extraction of key targets in driving scenes based on deep learning. J. East China Univ. Sci. Technol.

2019, 45, 980–988.
9. Guo, J. Research on Pruning Method of Deep Convolution Neural Network Model; Beijing Jiaotong University: Beijing, China, 2020.
10. Pang, S.; Huang, C. Research on Image Classification Based on Convolutional Neural Network. Mod. Comput. 2019, 23, 40–44.
11. Gao, Q.; Li, C.; Jin, X.; Li, Y.; Wu, H. Research on weed classification and model compression method in tea garden based on

depth residual network. J. Anhui Agric. Univ. 2021, 48, 668–673.
12. Xie, X. Research on Driver Fatigue Detection Based on Machine Vision; Central South University: Changsha, China, 2010.
13. Zhang, W.; Sun, X.; Qiao, Y.; Bai, P.; Jiang, H.; Wang, Y.; Du, C.; Zong, H. Tobacco disease identification based on incidence v3.

Acta Table Sin. 2021, 27, 61–70.
14. Jiang, Y.; Zhang, H.; Chen, L.; Tao, S. Image data enhancement algorithm based on convolutional neural network. Comput. Eng.

Sci. 2019, 41, 2007–2016.
15. Lian, C.; Zhong, S.; Zhang, T.; Zhou, N.; Xie, M. Transfer learning classification of optical coherence tomography retinal images.

Adv. Laser Optoelectron. 2021, 58, 270–276.

http://doi.org/10.3390/electronics11081212
https://arxiv.org/abs/1608.08710
http://doi.org/10.1109/TCYB.2019.2933477
http://www.ncbi.nlm.nih.gov/pubmed/31478883

Mathematics 2022, 10, 2126 17 of 17

16. Guan, S.; Zhang, Q.Y.; Xie, H.; Qiang, Y.; Cheng, Z. Convolutional neural network model for CT image recognition. J. Comput.
Aided Des. Graph. 2018, 30, 1530–1535. [CrossRef]

17. Jin, C.; Wang, H.; Chen, S. Pedestrian reidentification method based on random erasure pedestrian alignment network. J. Shandong
Univ. 2018, 48, 67–73.

18. Yu, X.; Bing, X.; Meng, J.Z. Self-adaptive particle swarm optimization for large-scale feature selection in classification. ACM Trans.
Knowl. Discov. Data 2019, 13, 1–27.

19. Jin, L.L.; Yang, W.; Wang, S.; Cui, Z.; Chen, X.; Chen, L. A hybrid pruning method for convolutional neural network compression.
Minicomput. Syst. 2018, 39, 2596–2601.

20. Cai, Z.; Ying, N.; Guo, C.; Kuoray, Y.P. Multi-person attitude estimation of YOLOv3 pruning model. J. Image Graph. 2021, 26,
837–846.

21. Lu, H.; Xia, H.; Yuan, X. Dynamic network pruning based on filter attention mechanism and characteristic scaling coefficient.
Minicomput. Syst. 2019, 40, 1832–1838.

22. He, Y.; Liu, P.; Wang, Z.; Hu, Z.; Yang, Y. Filter Pruning via Geometric Median for Deep Convolutional Neural Networks
Acceleration. arXiv 2019, arXiv:1811.00250. Available online: https://arxiv.org/abs/1811.00250 (accessed on 3 October 2021).

23. Zhang, M.; Lu, Q.; Li, W.; Song, H. Deep neural network compression algorithm based on joint dynamic pruning. Comput. Appl.
2021, 41, 1589–1596.

24. Liu, G.; Xu, C.; Chen, S.; Wu, C. Image classification method combining deep confidence network and hybrid neural network.
Minicomput. Syst. 2017, 38, 2146–2151.

25. Xue, Y.; Tang, Y.; Xu, X.; Liang, J.; Neri, F. Multi-objective feature selection with missing data in classification. IEEE Trans. Emerg.
Top. Comput. Intell. 2022, 6, 355–364. [CrossRef]

26. Huang, T.; Xiang, G.; Yang, X. Research progress of pedestrian detection technology based on deep learning. J. Chongqing Univ.
Technol. 2019, 33, 98–109.

27. Zhao, W.; Xu, C.; Wang, C. Domain adaptive target detection for domain confrontation. Electron. Meas. Technol. 2020, 43, 45–49.
28. Wang, D.-X. Research on Multi-Target Detection and Tracking Method Based on Deep Learning; Dalian University of Technology: Dalian,

China, 2021. [CrossRef]

http://doi.org/10.3724/SP.J.1089.2018.16789
https://arxiv.org/abs/1811.00250
http://doi.org/10.1109/TETCI.2021.3074147
http://doi.org/10.26991/d.cnki.gdllu.2021.000376

	Introduction
	Related Work
	Introduction of Deep Convolutional Neural Network
	Image Preprocessing
	Network Pruning
	Transfer Learning

	Parallel Pruning Algorithm Based on Image Preprocessing
	The Random-Erasure Algorithm in Image Preprocessing Is Introduced to Preprocess the Data Set
	Parallel Pruning Algorithm
	Algorithm Flow Chart

	Experimental Results and Analysis
	Case Study
	Image Classification Based on Mobile Terminal
	Mobile Traffic Object Detection Combined with Transfer Learning
	Transfer Learning of BDD100K Dataset and YOLO Network
	Application of Mobile Object Detection

	Conclusions
	References

