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Abstract: This paper considers the problem associated with the numerical simulation of the inter-
action between the cocurrent stream occurring near a monoblock moving in the gas medium and
solid fuel combustion products flowing from a solid fuel rocket engine (SFRE). The peculiarity of
the approach used is the description of gas-dynamic processes inside the combustion chamber, in
the nozzle block, and the down jet based on a single calculation methodology. In the formulated
numerical methodology, the calculation of gas-dynamic parameters is based on the solution of
unsteady Navier–Stokes equations and the application of a hybrid computational grid. A hybrid
block-structured computational grid makes it possible to calculate gas flow near bodies of complex
geometric shapes. The simulation of the main phase of interaction, corresponding to the stationary
mode of rocket flight in the Earth’s atmosphere, has been carried out. A conjugated simulation of the
internal ballistics of SFRE and interaction of combustion products jets is conducted.

Keywords: mathematical model; mesh generation; Navier–Stokes equations; numerical computation
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1. Introduction

A significant number of experimental and theoretical works are devoted to the study
of the structure of jets of combustion products of rocket engines in which, as a rule, the
influence of such dimensionless similarity criteria as the Mach number at the nozzle exit Ma
and in the cocurrent flow M∞, the adiabatic index γ, the degree of non-design n = Pa/P∞,
Reynolds number Re = (ρauara)/µa and the angle of inclination nozzle contour in the
outlet section θa (where µa is the viscosity coefficient at the nozzle exit, ua is the longitudinal
velocity component at the nozzle exit, ra is the nozzle exit radius and M∞ and P∞ are the
Mach number and wake pressure at infinity).

Thanks to these studies, it was established that when a supersonic jet flows into a
cocurrent supersonic flow, a complex flow structure is formed: hanging barrel-shaped
shock waves appear in the external flow and inside the jet, rarefaction waves arise inside
the jet, and an expanding mixing layer is formed at the outer boundary of the jet. In this
case, the gaseous medium into which the outflow occurs can be at rest relative to the
solid propellant rocket engine SFRE (outflow into the flooded space) or move relative to
it at a speed W∞ (interaction with a cocurrent flow). An increase in pressure P∞ leads to
the appearance of an initially oblique hanging shock at the nozzle exit, and at a higher
counterpressure, the appearance of a Y-shaped system of shocks, consisting of two oblique
and one direct shocks, is observed. At a certain threshold value of pressure, the P∞,κp.
Y-shaped system of shocks enters the nozzle, separating the boundary layer from the nozzle
wall and significantly changing the gas-dynamic flow inside the nozzle apparatus.
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It is important to note here that the described picture of the gas flow inside the nozzle
apparatus is observed when the gas jet flows into the flooded space and can change under
conditions of interaction with the external gas flow. Due to the difference in flow rates in
the outgoing jet and the cocurrent flow, a central zone of reverse currents appears, which
has a toroidal shape. The size and location of the reverse flow zones strongly affect the
performance of the solid propellant rocket engine combustion chambers, which requires
appropriate research.

In addition, this paper also considers the issue of the impact of a shock wave resulting
from the impact on the oncoming undisturbed supersonic air flow of the head part of a
solid propellant rocket engine on the thermal physical parameters of the cocurrent air jet
and combustion products flowing from the nozzle apparatus of a solid-fuel rocket engine.

The paper presents a theoretical model of a solid fuel rocket, which allows calculating
the characteristics of gas-dynamic processes in the nozzle block of a solid fuel rocket
engine (SFRE) as well as calculating the interaction of the combustion product jet with the
surrounding gas medium based on a unified numerical methodology. The computational
studies are carried out within the framework of viscous (Navier–Stokes equations) gas
flow. Earlier multigrid methods have been created, and the computation for convection–
diffusion equations on nonuniform grids and equations with dynamic boundary conditions
was performed. Numerical simulations have been developed for different flows and
aerodynamic applications [1–3].

The important point in the numerical modeling of Navier–Stokes equations is the
construction of a computational grid in complicated two- and three-dimensional domains
Ω, which represents the computational domain Ω in the form of separate finite elements
(cells). In this paper, the hexagonal irregular grid method, based on the hybrid non-
structural multi-block structuring grids, is used for such domains. For this purpose,
uniform partitioning of the domain into rectangular cells of size Ds, and the boundary of
the computational domain Ω is presented as a piecewise-smooth contour ∂Ω consisting of
curvilinear segments approximated by Bezier curves, is applied as an initial approximation.
The numerical technique used in this research makes it possible to construct nonorthogonal
structured grids even in those areas where non-structured computational grids are normally
used to discretize the computational domain.

2. Method for Constructing Adaptive Grids

It is known from practical calculations that structured computational grids are prefer-
able for solving problems in plasma dynamics and aerodynamics. However, the range
of technical objects, the surface geometry of which can be described by structured com-
putational grids, is rather limited. Therefore, there is a compromise option—a hybrid
unstructured block-tetrahedral computational grid.

The use of a complex block-structured grid involves shaping the geometry of the com-
putational domain by representing it as a group of hexahedral block-primitives (Figure 1),
each of which constructs its structured grid Ωh consistent with the grid in neighbouring
blocks. The implementation of this approach requires that the blocks-primitives are docked
on the boundaries with each other, and the computational grid formed in each block is
combined into a single unstructured grid with common node numbering (Figure 2).

To approximate the curvilinear surfaces of faces, a Bezier projective surface is used,
which is defined by a finite set of ordered points of three-dimensional space called the
matrix of poles pij and the matrix of weights wij assigned to the same points. By changing
the positions of the poles pij (control points) and the values of weights wij, we can control

the closeness of the shape of the Bezier projective surface
→
r (u, υ) to the shape of the smooth

curvilinear surfaces of the faces. Note here that the larger (relative to other points) the
value of the weighting factor wij, the closer the Bezier surface is to the corresponding point
on the face surface of the primitive block (decreasing the weight of the vertex will have the
opposite effect).
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Figure 1. View of the primitive (a) curvilinear and (b) Cartesian block in the grid domain Ωh.
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Figure 2. Forming a computational grid of primitive blocks in the computational domain Ω in
(a) Cartesian and (b) curvilinear domains.

Analytically, a Bezier projective surface of order n × m (its representation is related
to Bernstein basis polynomials Bn

i (υ), Bm
j (u)) is described by a fractional-rational function

→
r (u, υ) of the following form (the weights wij of the angular vertices are considered to be
equal to 1) :

→
r (u, υ) =

n
∑

i=0

m
∑

j=0
Bn

i (υ)Bm
j (u)

〈
wij
〉→

pij =

=

(
m
∑

j=0
Bn

0 (υ)Bm
j (u)

〈
w0j
〉 →

p0j + . . . +
m
∑

j=0
Bn

n(υ)Bm
j (u)

〈
wnj
〉 →

pnj

)
,〈

wij
〉
=

wij
n
∑

i=0

m
∑

j=0
Bn

i (υ)Bm
j (u)wij

, 0 ≤ u ≤ 1, 0 ≤ υ ≤ 1,

Bn
i (υ) =

(
n
i

)
υi(1− υ)n−i, Bm

j (u) =
(

m
j

)
uj(1− u)m−j,

n
∑

i=0

m
∑

j=0
Bn

i (υ)Bm
j (u) = 1,
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where
(

n
i

)
= Ci

n = n!
i!(n−i)! ,

(
m
j

)
= Cj

m = m!
j!(m−j)! are the binomial coefficients, and

→
pij is

the pole matrix consisting of vectors (with x, y, z components) of control points.
When writing this formula, it is assumed that there is a set of control points conven-

tionally arranged as n + 1 rows of m + 1 points in each row. The indices of point
→
pij mean

that the given j-th control point is located in the i-th row (the first index equals the number
of the row; the second index equals the number of the point in the row). Note also that the
expression for

→
r (u, υ) is a convex hull of the poles

→
pij. That is, the projective Bezier surface

will be located inside this convex hull, “stretched” on these poles.
The Bezier surface can (for the convenience of further calculations) be written in

vector form:

→
rx(u, υ) =

(→
cx ·

→
ϕ
)
=

n
∑
`=0

c`,x ϕ`,
→
ry(u, υ) =

(→
cy ·
→
ϕ
)
=

n
∑
`=0

c`,y ϕ`,
→
rz(u, υ) =

(→
cz ·
→
ϕ
)
=

n
∑
`=0

c`,z ϕ`,
→
ϕ = (ϕ0, . . . , ϕ`, . . . , ϕn)

T , ϕ` =
(

Bn
` (υ)Bm

0 (u)〈w`0〉, . . . , Bn
` (υ)Bm

m(u)〈w`m〉
)
, ` = 0, n,

→
cx = (p0,x, . . . , p`,x, . . . , pn,x)

T ,
→
cy =

(
p0,y, . . . , p`,y, . . . , pn,y

)T
,
→
cz = (p0,z, . . . , p`,z, . . . , pn,z)

T ,

where p`,x = (p`0,x, . . . , p`m,x), p`,y =
(

p`0,y, . . . , p`m,y

)
, p`,z = (p`0,z, . . . , p`m,z).

Let us assume that on any curvilinear face surface, N × M points are interpolation
nodes, for which their Cartesian xij, yij, zij (i = 1, N, j = 1, M) coordinates are known
(as well as their corresponding values of parameters uij, υij), listed in the order of their
connection in the framework of control points of the face being constructed. Then using
the coordinate values of the interpolation nodes xij, yij, zij (and uij, υij) and the formula

for
→
r (u, υ), we can formulate a system of linear equations with the unknowns being the

coordinates of the control points (the pole matrix
→
pij):

A
→
cx =

→
qx, A

→
cy =

→
qy, A

→
cz =

→
qz,

A =


ϕ0(u1, υ1) . . . ϕ`(u1, υ1) . . . ϕn(u1, υ1)

. . . . . . . . . . . . . . .
ϕ0(ui, υi) . . . ϕ`(ui, υi) . . . ϕn(ui, υi)

. . . . . . . . . . . . . . .
ϕ0(uN×M, υN×M) . . . ϕ`(uN×M, υN×M) . . . ϕn(uN×M, υN×M)

,

→
cx = (p0,x, . . . , p`,x, . . . , pn,x)

T ,
→
cy =

(
p0,y, . . . , p`,y, . . . , pn,y

)T
,
→
cz = (p0,z, . . . , p`,z, . . . , pn,z)

T ,
→
qx = (x1, . . . , xi, . . . , xN×M),

→
qy = (y1, . . . , yi, . . . , yN×M),

→
qz = (z1, . . . , zi, . . . , zN×M),

where N ×M = (n + 1)× (m + 1) is a number of interpolation nodes on the curvilinear
face; (n + 1)× (m + 1) is the number of unknowns for each component (x, y or z) of pole
matrix

→
pij;

→
rs = (xs, ys, zs)

T is its radius vector; the Cartesian coordinates of points (in
number N ×M) on the curvilinear face are approximated by the Bezier surface; and us, υs
are parameter values (with a changing area 0 ≤ u ≤ 1, 0 ≤ υ ≤ 1), appropriate to specified
points

→
rs , where s = 1, N ×M, on the curvilinear face.

However, such a system of equations will in most cases be overdetermined. The least
squares method [4] can be used to overcome this disadvantage:
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A
→
cx =

→
qx, A

→
cy =

→
qy, A

→
cz =

→
qz,

A =



N×M
∑

s=1
ϕ0(us, υs)ϕ0(us, υs) . . .

N×M
∑

s=1
ϕ0(us, υs)ϕ`(us, υs) . . .

N×M
∑

s=1
ϕ0(us, υs)ϕn(us, υs)

. . . . . . . . . . . . . . .
N×M

∑
s=1

ϕi(us, υs)ϕ0(us, υs) . . .
N×M

∑
s=1

ϕi(us, υs)ϕ`(us, υs) . . .
N×M

∑
s=1

ϕi(us, υs)ϕn(us, υs)

. . . . . . . . . . . . . . .
N×M

∑
s=1

ϕn(us, υs)ϕ0(us, υs) . . .
N×M

∑
s=1

ϕn(us, υs)ϕ`(us, υs) . . .
N×M

∑
s=1

ϕn(us, υs)ϕn(us, υs)


,

→
cx = (p0,x, . . . , p`,x, . . . , pn,x)

T ,
→
cy =

(
p0,y, . . . , p`,y, . . . , pn,y

)T
,
→
cz = (p0,z, . . . , p`,z, . . . , pn,z)

T ,

qk,x =
N×M

∑
s=1

ϕk(us, υs)·xs, qk,y =
N×M

∑
s=1

ϕk(us, υs)·ys, qk,z =
N×M

∑
s=1

ϕk(us, υs)·zs, k = 0, n,
→
ϕ = (ϕ0, . . . , ϕ`, . . . , ϕn)

T , ϕ` =
(

Bn
` (υ)Bm

0 (u)〈w`0〉, . . . , Bn
` (υ)Bm

m(u)〈w`m〉
)
, ` = 0, n,

p`,x = (p`0,x, . . . , p`m,x), p`,y =
(

p`0,y, . . . , p`m,y

)
, p`,z = (p`0,z, . . . , p`m,z),

where N ×M = (n + 1)× (m + 1) is the number of interpolation nodes on the curvilinear
face; (n + 1)× (m + 1) is the number of unknowns for each component (x, y or z) of pole
matrix

→
pij;

→
rs = (xs, ys, zs)

T are its radius vector and Cartesian coordinates of points (in
number N ×M) on the curvilinear face, which is approximated by the Bezier surface; and
us, υs are parameter values (with a changing area 0 ≤ u ≤ 1, 0 ≤ υ ≤ 1), appropriate to
specified points

→
rs , where s = 1, N ×M on the curvilinear face.

Using the found projective variant (Bezier surface) of each curvilinear surface of block-
primitive faces, a surface grid of block-primitives can be constructed. Then operating on this
surface grid and using the method of three-dimensional transfinite interpolation [5] as well
as the quasi orthogonalization method, a bulk structured quasiorthogonal computational
grid (consisting of grid surfaces whose nodes are numbered using parameters) inside
the block-primitive is created. Then, as mentioned above, the constructed local (in block-
primitive) computational grid is combined (Figure 3) into a single global unstructured
grid with common node numbering. After that, an additional stage of its optimization
(improvement—“regularization”) with the assessment of its quality is applied.
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Figure 3. Formation of a single global unstructured grid.

For numerical adaptation (to the solution peculiarities) of the volumetric computa-
tional grid, the results of [6] or the principle of uniform distribution (equidistributional
method) of the “adaptation” (weight) function w are used.

To give the bulk structured computational grid (generally speaking non-orthogonal)
inside the block-primitive properties of quasiorthogonality, an approximate solution of the
equation describing the longitudinal deformation of the plates is found in [7]. The initial
approximation for the mock orthogonalization method is the computational grid obtained
after the numerical adaptation step.
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When describing the mock orthogonalization method, we introduce in the Cartesian
coordinate system XYZ a rectangular parallelepiped ABFEDCGH, which has a contin-
uously differentiable way to be mapped into a curvilinear parallelepiped (hexahedron)
A′B′F′E′D′C′G′H′. The rectangular grid mapped to the domain forms ABFEDCGH, a
smooth curvilinear grid in the domain A′B′F′E′D′C′G′H′.

Denote by
→
r the radius vector in the XYZ coordinate system and introduce a vector

→
U =

→
r
∗
−→r characterizing the displacement of points. Here,

→
r and

→
r
∗

are radius vectors
of points of domains before

→
r ∈ ABCD and after

→
r
∗
∈ A′B′F′E′D′C′G′H′ transformation.

To construct regular adaptive grids close to being orthogonal, the following equations are
used to determine the displacement values Ux, Uy, Uz and to describe the longitudinal
deformation of the plates [7]:

∂
∂x

(
∂Ux
∂x

)
+ (1−σ)

2
∂

∂y

(
∂Ux
∂y

)
+ (1−σ)

2
∂
∂z

(
∂Ux
∂z

)
+ (1+σ)

2

{
∂

∂x

(
∂Uy
∂y

)
+ ∂

∂x

(
∂Uz
∂z

)}
+

+
{

∂
∂x

(
W
√

g22g33
g11

∂Ux
∂x

)
+ ∂

∂y

(
W
√

g33g11
g22

∂Ux
∂y

)
+ ∂

∂z

(
W
√

g11g22
g33

∂Ux
∂z

)}
= 0,

∂
∂y

(
∂Uy
∂y

)
+ (1−σ)

2
∂

∂x

(
∂Uy
∂x

)
+ (1−σ)

2
∂
∂z

(
∂Uy
∂z

)
+ (1+σ)

2

{
∂

∂y

(
∂Ux
∂x

)
+ ∂

∂y

(
∂Uz
∂z

)}
+

+
{

∂
∂x

(
W
√

g22g33
g11

∂Uy
∂x

)
+ ∂

∂y

(
W
√

g33g11
g22

∂Uy
∂y

)
+ ∂

∂z

(
W
√

g11g22
g33

∂Uy
∂z

)}
= 0,

∂
∂z

(
∂Uz
∂z

)
+ (1−σ)

2
∂

∂x

(
∂Uz
∂x

)
+ (1−σ)

2
∂

∂y

(
∂Uz
∂y

)
+ (1+σ)

2

{
∂
∂z

(
∂Ux
∂x

)
+ ∂

∂z

(
∂Uy
∂y

)}
+

+
{

∂
∂x

(
W
√

g22g33
g11

∂Uz
∂x

)
+ ∂

∂y

(
W
√

g33g11
g22

∂Uz
∂y

)
+ ∂

∂z

(
W
√

g11g22
g33

∂Uz
∂z

)}
= 0,

The boundary conditions required to solve this system of equations are given as
follows: Ui|Γ = r∗i

∣∣
∂(A′B′F′E′D′C′G′H′) − ri|∂(ABFEDCGH), i ∈ {x, y, z}, where the symbol ∂

means that the components of the radii of the vectors
→
r and

→
r
∗

are defined at the boundary
of the corresponding domain.

The components of the covariant and contravariant metric tensor entering the system
of equations are defined by the relations:

gik =
3

∑
α=1

∂r′α

∂qi
∂r′α

∂qk ,
3

∑
k=1

gikgkj = δ
j
i =

{
1, i = j
0, i 6= j

, q1 = x, q2 = y, q3 = z.

The σ ∈ [−1, 1] coefficient describes the ratio of transverse strain to longitudinal
strain. The coefficient W(x, y, z) is a control function used to achieve the desired degree of
densification of the grid lines in the area of the strongest change in gas-dynamic functions
or spatial boundaries.

Let us introduce vectors ∂
→
U

∂ξ , ∂
→
U

∂η , ∂
→
U

∂ζ tangent to the grid lines in the spatial domain
(x, y, z); then the control function can be formulated in the form

W(x, y, z) = 1+

+β
∮

Γξη


∣∣∣∣ ∂
→
U

∂ξ

∣∣∣∣·∣∣∣∣ ∂
→
U

∂η

∣∣∣∣[
∂
→
U

∂ξ ×
∂
→
U

∂η

]


2

dΓξη + γ
∮

Γηζ


∣∣∣∣ ∂
→
U

∂η

∣∣∣∣·∣∣∣∣ ∂
→
U

∂ζ

∣∣∣∣[
∂
→
U

∂η ×
∂
→
U

∂ζ

]


2

dΓηζ + χ
∮

Γξζ


∣∣∣∣ ∂
→
U

∂ξ

∣∣∣∣·∣∣∣∣ ∂
→
U

∂ζ

∣∣∣∣[
∂
→
U

∂ξ ×
∂
→
U

∂ζ

]


2

Γξζ ,

This kind of control function leads to the orthogonalization of relatively small cells. In
the numerical construction of high aspect ratio grids, instead of contour integrals, the sum

of expressions of the form


∣∣∣∣ ∂
→
U

∂ξ

∣∣∣∣·∣∣∣∣ ∂
→
U

∂η

∣∣∣∣[
∂
→
U

∂ξ ×
∂
→
U

∂η

]


2

or


∣∣∣∣ ∂
→
U

∂η

∣∣∣∣·∣∣∣∣ ∂
→
U

∂ζ

∣∣∣∣[
∂
→
U

∂η ×
∂
→
U

∂ζ

]


2

, etc., and overall grid corners

will be used.
To solve the problem A

→
U = 0, we used the method of establishment [8]. Step by “time”

τ is found using the iterative method of a variational type.
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3. A Mathematical Model for Determining the Individual Characteristics of a
Solid-Propellant Rocket

This section considers the effect of a ballistic wave, resulting from the oncoming
unperturbed airflow of the monoblock head part, on the thermophysical parameters of
the down jet of air and combustion products flowing from the nozzle of a solid fuel
rocket engine.

The numerical investigations of such kinds of flows can be performed on the basis of
the solution of Navier–Stokes equations. The case of transition from Cartesian coordinates
xα to arbitrary curvilinear coordinates qα while taking into account the absence of depen-
dence of this transformation on time t is used for transformation. In this case, the system
of Navier–Stokes equations of a compressible heat-conducting gas in arbitrary curvilinear
coordinates q1, q2, q3 takes the form [9]:

∂
∂t (J−1ρ) + ∂

∂qα (J−1ρvα) = 0,
∂
∂t (J−1ρvi) + ∂

∂qα (J−1ρvαvi) + J−1Γi
αβρvαvβ + J−1giα ∂p

∂qα−

−J−1giα ∂
∂qα (θdiv(

→
v ))− J−1giβ( 1√

g
∂

∂qα (
√

gAα
β)− Γα

β`A`
α)− J−1gαγ(

∂Ai
γ

∂qα + Γi
`α A`

γ − Γ`
γα Ai

`) = 0,

∂
∂t (J−1ρe) + ∂

∂qα

[
J−1(ρvαe)

]
+ J−1P√

g
∂

∂qi (
√

gvi)− J−1θ
{

1√
g

∂
∂qi (
√

gvi)
}2
−

− J−1 Aα
` A`

α
µ − J−1gi`gαγ Ai

γ A`
α

µ − gαβ J−1 ∂
∂qα (λ

∂T
∂qβ ) + gαβ J−1Γ`

βα

(
λ ∂T

∂q`

)
= 0

Piα = giαP− giα
[
θdiv(

→
v )
]
− giβ Aα

β − gαγ Ai
γ, Aα

β = µ(∂vα/∂xβ + Γα
kβvk).

where P, ρ and T are pressure, density and temperature; e and
3
∑

i=1

v2
i

2 are internal and kinetic

energies of gas; Pαβ = (P− θ∇αvα)gαβ − µ(gαγ∇γvβ + gβγ∇γvα) is stress tensor; gαβ is
the contravariant metric tensor; vi is the contravariant components of the velocity vector,
θ = − 2

3 µ; µ is the shear viscosity; and λ is the heat transfer coefficient. In these expressions,
repeated indices summation is assumed.

The reduced system of equations is supplemented by the initial conditions:

u(r, 0) = 0, ρ(r, 0) = ρo, e(r, 0) = eo.

The boundary conditions that determine the characteristics of the combustion products
entering the engine chamber from the surface of a burning solid fuel have the form:

→
u s = uw(ρT/ρs)

→
n ,ρs =

P
RTs

, es =
RTs

(γ− 1)
.

where us, ρs, Ts, es and R are the speed, density, temperature, internal energy and gas
constant of incoming gaseous combustion products from the surface of solid fuel; ρT is the
density of solid fuel; and uw is the speed of movement of the surface of the fuel during its
burnout. It is assumed that gas injection into the engine chamber occurs along the normal
to the fuel surface. The burnup rate is known from experimentation or from calculations of
the combustion kinetics [10]. It is given in the following form [11]:

uw = uwoPν,

where uwo is the value of the speed of movement of the burnable fuel boundary at pressure
P = 1, and v is the constant, depending on the type of fuel used.

On the stationary solid surfaces of the nozzle and the front bottom of the engine, the
conditions of impermeability are set as

(→
u
→
n
)
= 0. At the boundary of the computational

domain (behind the nozzle exit), through which the co-flow enters, the following gas-
dynamic parameters are set: γ = 1.4, ρ∞, P∞, V∞, where V∞, ρ∞ and P∞ are the velocity,
density and pressure of the gas entering through the boundary surface, respectively.
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On the external (located at sufficiently large distances from the nozzle exit) surfaces

of the computational domain, the free flow conditions are set as ∂2
→
f

∂x2
n
= 0, where xn is the

coordinate normal to the boundary surface, and
→
f is the vector of resulting variables.

Given what is known in the physical space, x, y, z coordinates of the grid nodes in the
computational domain q1, q2, q3, the metric coefficients can generally be found by numerical
differentiation using the formulas [12].

The Christoffel symbols of the second kind are found using the formula

Γi
jk =

3
∑
`=1

1
2 g`i

(
∂g`j

∂qk + ∂g`k
∂qj −

∂gjk

∂q`

)
, and for the case of Euclidean physical space x, y, z, also

using the formula Γi
jk =

3
∑

α=1

[(
∂qi

∂xα

)(
∂2xα

∂qk∂qj

)]
.

4. Computational Method

To solve the gas-dynamic part of the system of equations, a nonlinear quasimonotone
compact-polynomial difference scheme of higher-order accuracy [7,13–15], as well as a
spatial splitting of Navier–Stokes equations [7] written in an arbitrary curvilinear coordinate
system, were used. To calculate the flux vectors at the boundaries of the computational cell,
the discontinuity calculation procedure formulated in [16] was applied. Other details of the
nonlinear quasi-monotone compact polynomial difference scheme are given in [7,13]. The
time step required to integrate the above difference scheme was chosen from the condition
of the Courant–Friedrichs–Levy stability criterion.

The “hyperbolic” (convective) part of the computer model of targets was tested on a
one-dimensional version of the Riemann problem (Soda problem) about the decay of an
unstable discontinuity of a given configuration. A comparison of the exact solution and
the approximate solution showed that the difference is not more than one percent [16].
Verification calculations were carried out to estimate the degree of attenuation of the re-
flected shockwave system and showed that the calculation error is within the experimental
accuracy of the results and can reach a level of 10%. As an additional verification test, we
considered flowing air around a wedge mated to a plate and a cone mated to a cylinder
with the following oncoming flow parameters: pressure P = 2060 Pa, speed V = 1860 m/s,
temperature T = 223 K and Mach number M∞ = 6. These results are also in good agree-
ment [12] with the above calculations (relative error of 0.4%). In addition, the methodology
was tested with an example of a viscous jet flowing into a downstream gas stream [17]
(relative error of 5%). The “thermal” (“parabolic”) part of the model has been tested on
some problems admitting exact analytical solutions: heating of a continuous medium [18]
filling a flat semibounded space r > 0 by a heat flow through the left fixed boundary r = 0
(relative error less than 1.0%).

A composite two-block structured grid was invented, which was combined into
a single computational grid. Block number one of the computational grid described
the grid space of the combustion chamber, the nozzle block and the wake jet of com-
bustion products. The characteristic size of the computational grid in the first block is
150 × 400 cells. The second block is located outside the solid propellant rocket monoblock
and the wake (these two blocks are separated (for illustration) from each other by a black
line in Figures 4–6). The characteristic size of the computational grid in this block is
350 × 550 cells. The calculation cells were thickened in the area of the boundary layer (the
thickness of the boundary layer is several millimeters; the number of cells in the direction
perpendicular to the SFRE surface is not less than 50) in the head part of the monoblock,
at the cut of the combustion chamber nozzle and also in the mixing layers. The density
gradient was used as a control (monitor) function.
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5. Some Results of Calculations of Gas-Dynamic Parameters of a Jet Flowing into a
Downstream Gas Stream

Based on the developed numerical codes [19–21] a numerical simulation of two tra-
jectory points of the ARIAN 5 missile flight path was carried out: (1) W∞ = 0.72 km/s,
P∞ = 0.036 at, T∞ = 270 K, γ = 1.4, distance from the Earth’s surface 25 km and (2) W∞ = 1.5 km/s,
P∞ = 0.00065 at, h = 55 km). The prototype engine chosen was the solid propellant rocket
engine P-85, which belongs to the medium class of solid propellant boosters of the European
Space Agency [22], i.e., the monoblock consists of a cylinder with length Znoz = 1060 cm,
diameter equal to the diameter of the nozzle shear Dnoz = 215 cm and a conical head with
an opening angle of 54 degrees. The condensed phase was neglected [23].

Figures 4 and 5 show the spatial distributions of temperature T and Mach numbers for
the first and second points of the trajectory of the ARIAN 5 rocket. The following notations
were used: Mach numbers at nozzle cutoff Ma = Wa/Ca = 4 and in unperturbed flow
M∞ = W∞/C∞, adiabatic exponent γ and degree of inconsistency n = Pa/P∞ (where
the indices a and ∞ correspond to the gas-dynamic parameters at nozzle cutoff and
unperturbed flow).

Figure 4 shows spatial distributions of the temperature and Mach number correspond-
ing to the first point of the monoblock flight path. In this case, a flow pattern corresponding
to a small value of the degree of inconsistency (h = 25 km, n = 1) was realized. Here, due
to a sufficiently large value of pressure in the down jet (P∞ ≈ Pa), the radial expansion
of the central exhaust gas jet was strongly limited. This limitation lead to the falling of
the densification jump on the jet axis (axial coordinate of drop region Z = 1700 cm—conic
nozzle shape) with the following regular reflection from it; the temperature distribution
was aligned along the jet axis, and the characteristic transverse size of the central jet was
close to diameter of nozzle shear. In this case, the number of “barrels” increases (if we
compare with the results of 55 km) and becomes more than one during interaction between
the down jet and the central jet.
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At high under-expanding (second point of the flight path; option h = 55 km, n = 80),
the flow pattern shown in Figure 5 is realized. These figures illustrate the wave structure of
a highly under-expanded jet flow into the cocurrent stream. From the given distributions,
it can be seen that with sufficiently high values of the degree of under-expansion n near
the exit edge of the nozzle and in the down jet of ambient air due to the collision of the
expanding jet of the SFRE exhaust and the down jet, an oblique shock wave (SW) and a
hanging SW falling on the jet axis, which is characterized by a regular reflection from the
jet axis (the axial coordinate of the incident area Z = 1700 cm—“conical” nozzle shape),
emerge. In this case, due to the fact that the size of the first barrel grows as

√
n, only the first

“barrel” is observed, the size of which significantly exceeds the characteristic transverse
size of the SFRE.

The calculations also show that there is a noticeable (second trajectory point in Figure 5)
effect of the leading shock wave on the thermophysical parameters of the down jet of air
and combustion products expiring from the nozzle of the solid propellant rocket engine.

It is known [24–28] that a decrease in the degree of non-design n below a certain
value ncr leads to the irregular reflection of the incident shock from the jet axis with the
formation of a Y-shaped system of shocks, consisting of two oblique and one direct shocks.
Spatial distributions of the Mach number, pressure and longitudinal velocity in combustion
products and wake air corresponding to the first point of the ARIAN 5 flight trajectory
(flight altitude 6 km), which are presented in Figures 6 and 7, illustrate this fact. In this
group of calculations, the formation of “barrels” is not observed; the temperature along
the jet axis is equalized and amounts to 600 K. The decrease in the degree of non-design
is accompanied by an irregular reflection of the hanging shock from the jet axis with the
formation of a figurative system of shocks, consisting of two oblique and one direct shocks.
In these variants of calculations (altitude 6 km, degree of non-design n = 0.7), this shock
system had a “standard” form, entered the supersonic part of the nozzle and led to the
separation of the SFRE exhaust gas flow from the nozzle walls. At the same time, a zone of
reverse currents formed behind the central shock wave, which has a toroidal shape [29].
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The appearance of the reverse flow zone is mainly associated with a large positive
pressure gradient (Figure 7, axial region (1000 ≤ z ≤ 1200 cm)) behind the nozzle exit [24],
which occurs due to a sharp expansion of the wake jet towards the axis of the coaxially
interacting jets (the pressure in the wake jet P∞ is approximately twice the pressure at the
nozzle exit Pa).

Wake jet expansion leads to the narrowing and hence the deceleration (with pressure

increase to PT ≈ P∞ +
ρ∞V2

∞,z
2 ≈ 1; see Figure 7) of the jet flowing out through the solid

propellant rocket nozzle exit, consisting of combustion products. This increase in pressure
creates a positive gradient in the axial region (1000 ≤ z ≤ 1200 cm), which leads to the
occurrence of a reverse flow (Figure 7, for Z = 1000 cm, Vz = −1 × 10−5 cm/s). At the same
time, as can be seen from Figure 7, the equilibrium condition for the vortex flow is satisfied
(the pressure inside the shock system (3); (4) is equal to the flow pressure in the stagnation
zone PT), and the vortex region spatially fixes its position.

Thus, apparently, a necessary condition for the occurrence of a vortex region in the
nozzle apparatus behind the shock wave is the achievement in the stagnation zone (Figure 7,
at Vz ≈ 0) of the level of pressure values equal to the total pressure in the cocurrent air flow,

i.e., P ≈ P∞ +
ρ∞V2

∞,z
2 . In this case, it is also necessary that the degree of non-design n < 1,

determined at the nozzle exit, be located below a certain critical value ncr.
In general, the structure of the gas flow in the SFRE nozzle block under the condition

of the formation of a zone of reverse currents differs from the case of flow, when a Y-shaped
system of shocks is formed inside the nozzle, and can be described as follows (Figure 6):
the main shock wave resulting from the entry of a hanging shock wave into the nozzle
apparatus; secondary SW or compression wave, which may appear due to the occurrence
of a reverse flow at a large value of the positive pressure gradient in the stagnation zone;
zone of reverse currents, located behind the system of jumps; and stagnation zone of the
flow of combustion products of solid fuel, located behind the nozzle exit and responsible
for the occurrence of a positive pressure gradient P.

The dimensions, shape and location of the reverse current zone are determined by the
following factors:

* Ratio of velocities in the wake and central jets;
* Degree of unaccountability n;
* Geometry of the nozzle.

6. Conclusions

A numerical technique for constructing regular curvilinear adaptive grids in arbitrary
domains is formulated. This technique makes it possible to construct an adaptive (to the
boundaries of the computational zone and peculiarities of solving mathematical physics
problems [30–36]) computational grid by solving elliptic partial derivative equations and
with the help of special adaptation algorithms. On the basis of the developed numeri-
cal codes, numerical simulations of two points of the ARIAN 5 rocket flight trajectory
were performed.

The features of the structure and spatial distributions of the gas-dynamic parameters
of the exhaust viscous flow inside the nozzle and in their interaction with the cocurrent flow
of the surrounding gas outside the nozzle apparatus were studied. Numerical solutions
were obtained that describe the structure of wakes in relation to the flight conditions of
the ARIAN 5 rocket. Numerical studies have revealed the emergence of a central zone of
reverse currents, having a toroidal shape, inside the nozzle apparatus behind a Y-figurative
system of jumps.
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