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Abstract: Municipal waste management has become a challenging issue with the rise in urban popu-
lations and changes in people’s habits, particularly in developing countries. Moreover, government
policy plays an important role associated with municipal waste management. Thus, this research
proposes the regional location routing problem (RLRP) model and multi-depot regional location
routing problem (MRLRP) model, which are extensions of the location routing problem (LRP), to
provide a better municipal waste collection process. The model is constructed to cover the minimum
number of depot facilities’ policy requirements for each region due to government policy, i.e., the
large-scale social restrictions in each region. The goal is to determine the depot locations in each
region and the vehicles’ routes for collecting waste to fulfill inter-regional independent needs at a
minimum total cost. This research conducts numerical examples with actual data to illustrate the
model and implements a hybrid genetic algorithm and simulated annealing optimization to solve the
problem. The results show that the proposed method efficiently solves the RLRP and MRLRP.

Keywords: regional location routing problem; multi-depot; waste collection; genetic algorithm;
simulated annealing

MSC: 90B06; 90-08

1. Introduction

Municipal waste management is a challenging problem faced by developing countries.
This research focuses on handling waste collection due to government policy, i.e., the large-
scale social restrictions (LSR). We look to build a scenario approach to provide alternative
solutions for the waste collection process. Although the mobility of the population from one
area to another is limited, our proposed scenarios are designed to make each region able
to solve its waste problems. First, we modify the centralized system into a decentralized
one by implementing regional consideration. Therefore, we can reduce the total volume of
waste that the final depot must process, shorten the vehicle travel route, and reduce the
waste collection time. As a result, each region can handle the waste collection and reduce
the volume of waste. Moreover, the route distance for each vehicle falls by opening an
alternative depot in each area.
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Previous research has shown that regional consideration, such as territory design
for last-mile delivery and logistic distribution, contributes to increasing the system’s effi-
ciency [1]. Most service providers avoid optimizing their delivery or pick-up routes each
day from scratch for the current customer set. They prefer to partition the territory serviced
by a depot into smaller districts that remain constant for a longer time [1]. As a result, each
district’s repeated route pattern services make it easier for the drivers according to their
own knowledge—for example, a two-stage optimization for the vehicle routing problem
where customers have to be divided into regions first and delivery tours within each district
must be determined afterward [2]. Carlsson [3] studied an incapacitated version, where
customer locations are stochastic but assumed to be distributed according to a known
probability density function. Lei et al. [4] subdivided a territory into regions, whereby, over
multiple periods with varying deterministic customer sets, multiple traveling salesman
problems from multiple depots within each region are minimized.

Although the existing studies have made significant progress in implementing regional
considerations into the routing model, most of them mainly focus on an operational
decision, such as determining the vehicle routes. Based on the literature, it is proven that
this integration will significantly minimize the cost and maximize the service level [5]. One
of the integrated approaches is the well-known location-routing problem (LRP).

The LRP literature has been increasing over the years. It covers many real case studies,
such as agriculture, airlines, automotive logistics, city logistics, military, e-commerce,
disaster management, food distribution, healthcare logistics, oil and energy, postal delivery,
telecommunications, and waste management [6]. Each area presents unique challenges for
the researchers in their efforts to develop and represent the actual situation. The application
of LRP models to optimize a case of waste management is by far the most popular study.
Hence, we aim to implement a location routing problem (LRP) model to solve the problem
of a waste management system implementing regional factors.

In this study, we consider a regional strategy in waste collection. By doing so, we
integrate strategic and operational decisions and a regional constraint. We develop an
LRP model that considers the present depot location and new depot alternatives required
to be established in each region or district. The model can also determine the route for
each vehicle in collecting waste in each district. The study also considers the minimum
requirement of depots in each district.

As far as the literature review, this study is the first to examine the minimum number
of depots in each area. Moreover, the scenario for the LRP application is implemented to
provide alternative solutions during LSR, which is still limited. We develop two models
representing two scenarios based on the original LRP model: the regional location routing
problem (RLRP) and multi-depot regional location routing problem (MRLPR).

Since the LRP is NP-hard [7] and the RLRP and MRLRP are particular cases of the LRP,
then the RLRP and MRLRP are also NP-hard. Thus, using the classical approaches will be
challenging because they require a high computational time [8]. Consequently, we propose
a metaheuristics approach to solve the model: a hybrid genetic algorithm and simulated
annealing (GASA). Compared with other methods, the algorithm provides a competitive
solution based on the experiment conducted, such as the Gurobi solver.

Our main contributions are as follows:

• We present a new location routing problem to solve the waste collection problem and
provide some scenarios.

• We develop a hybrid genetic algorithm and simulated annealing (GASA) that can
efficiently solve the model for each scenario.

• We implement the proposed methods into a real example adopted from PD Kebersihan
in Bandung City to provide a more realistic illustration of this waste collection problem

In the remainder of this study, Section 2 presents the relevant literature. Section 3
clearly describes the scenario’s model and application. Section 4 details the solution
methodology. Section 5 offers the experimental results and discussion, including the case
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study regarding PD Kebersihan. Finally, Section 6 provides a conclusion and suggestions
for future research.

2. Literature Review

The problem involving operational decisions (routing problem) and strategic decisions
(depot location) is known as the location routing problem (LRP) [6]. A general illustration
of the LRP can be seen in Appendix A. The LRP model determines the location of facilities
(depot, distribution center, or warehouse) and the vehicle’s route simultaneously when
delivering goods to the customer(s). The LRP has proven to reduce costs over the long-
term of operations and plays a significant role in cost-savings, increased productivity, and
delivering positive impacts for operators and communities when they address issues earlier
in the long-term planning stages [9].

Since the LRP provides enormous benefits for industries, research on it has evolved
with various approaches. The model may use different frameworks reliant on the institution
or firm’s judgment, problem assumptions, and factors considered by the decision-makers.
Several LRP models have been utilized in different industries, such as in the food and
beverage distribution (United Kingdom), the distribution of newspapers (Denmark), rubber
plant industries (Malaysia), the garbage collection process (Belgium), billing deliveries
(Hong Kong), optical network design (South Korea), and a telecom network (France) [6].
By looking at the applications of the LRP model, we implement the LRP research in
different fields.

Many LRP variants now exist. The recent survey paper conducted by Mara et al. [6]
shows the classification of research in the LRP field. We categorize LRP models based
on type of study, solution approach, scenario characteristics, physical characteristics, and
objective function [6]. The type of study includes literature survey, development of theory,
research article, and case study. The solution approach includes both exact and approxima-
tion methods (classical heuristics, metaheuristics, and simulation). The scenario character-
istics relate to the strategic and tactical decisions of the developed model, such as planning
period, customer type, and data obtained. On the other hand, the physical characteristics
relate to a strategic and operational decision, such as the location of facilities, echelon type,
routing type, vehicle type, and capacity consideration. Lastly, the objective function could
be classified into cost minimization, environmental aspects, equity distribution, and specific
performance indicators.

The location routing problem (LRP) itself was newly developed initially from the
vehicle routing problem (VRP) and the facility location problem (FLP) [7]. Since these two
problems are included in NP-hard problems, then the LRP is also NP-hard [10]. At least
four solution approaches are implemented to solve the LRP model: exact methods, classical
heuristics, metaheuristics, and simulation. Based on the recent literature, the metaheuristics
method is the most popular one used by researchers from 2014 to 2019 [6]. Metaheuristics
is formally defined as an iterative process that guides a subordinate heuristic by combining
intelligently different concepts to explore and exploit the search space or create a balance
between the intensification and diversification of the search space [11]. The metaheuristic
methods that are used to solve the LRP include simulated annealing (SA) [10], genetic
algorithm (GA) [12], non-dominated sorting genetic algorithm II (NSGA-II) [13], particle
swarm optimization (PSO) [14], ant colony [15], tabu search (TS) [16], large neighborhood
search (LNS) [17], iterated local search (ILS) [18], memetic algorithm (MA) [19], differential
evolution [20], harmony search [21], hyper-heuristic (HH) [22], cross-entropy algorithm
(CEA) [23], and greedy randomized adaptive search procedure (GRASP) [24].

Metaheuristic approaches in finding solutions to routing problems, i.e., the LRP, can
generally be grouped into two types, namely (1) single-solution approaches, e.g., SA, TS,
ILS, and VNS, and (2) population-based approaches, e.g., GA and PSO [25]. Single solution
approaches focus on modifying and improving a candidate solution to meet the evaluation
criteria. The current solution will be replaced until a satisfactory result (good-quality
solution) is obtained. In contrast, population-based approaches iterate, maintain, and
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improve multiple candidate solutions, often using population characteristics to guide the
search. Both of these solution search processes have advantages and disadvantages.

Single-solution approaches have the advantage of providing better results in terms of
quality because of emphasizing an exploitation strategy or focusing on finding optimum
solutions around a good (near-)optimal solution [26]. However, the global optimum
may not reach and may get stuck in the local optimum due to the randomized initial
solution [27]. In contrast, the population-based approach maintains the diversity of the
solution globally and has the potency of expanding the search space or exploration strategy,
so it has advantages to better search space [26,27]. However, the population-based approach
requires sufficient knowledge regarding the search space in the initial steps, so the solution
quality may be worse than a single solution because more exploitation is required by a
lapse of steps [26]. Therefore, an appropriate trade-off between the single-solution and
population-based approaches is necessary for an efficient search.

This research implements a hybrid GA and SA to produce solutions by pursuing a
balanced exploitation and exploration strategy. By implementing GA as an initial explo-
ration strategy in the hybrid process, we could avoid trapping into the local optima and
increasing the search space. Moreover, GA has an advantage in providing faster computa-
tional time, but it is not easy to obtain the optimum value, so we increase the population
for GA. In contrast, SA may take a longer computational process since the initial solution is
randomized [28]. Therefore, the GA outputs are upgraded using SA to exploit and produce
a better solution. Implementing this mechanism could obtain a good solution, as shown in
the various types of routing-like problems [29–31].

The exact method is the second most preferred choice. Most studies consider the exact
method by using commercial solvers, such as CPLEX, GUROBI, or LINGO, to verify the
mathematical model. Only a few works attempt to develop classical heuristic methods, such
as branch and cut algorithm [32] and branch and price algorithm [33]. Several works have
also deployed the simulation technique to handle the uncertain values of some variables
and have integrated them into a metaheuristic framework in a simheuristic technique [34].

3. Location Routing Model and Scenario Approach

We develop two scenarios with a specific model to deal with the problem and provide
an alternative solution for waste collection. Figure 1 shows the illustration for each scenario.
The details of each scenario can be seen in Table 1. Scenario 1 determines the location of the
new depot for several location candidates without considering the closure of the existing
depot. This strategy is used if the decision-maker aims to open a new depot, especially in
areas with no depot. In this scenario, the regional model location routing problem is the
one that is developed. The regional LRP (RLRP) focuses on a minimum number of depots
in a particular area or region and is developed from the basic LRP model with a specific
assumption that the depot’s location and the customers are divided into several regions.
Each region has a minimum number of depot requirements. The model in this scenario can
be denoted as the M1 model.

Scenario 2 is for determining the location of the new depot by considering the existing
depot. This policy can be applied if there is currently a depot that has been operated
but is ineffective or causes losses. The consequence of this second scenario is the cost of
closing the existing depot if it turns out that it must be closed. In scenario 2, we develop a
multi-depot location routing problem model (MRLRP). The model in scenario 2 is denoted
as the M2 model.
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Figure 1. Illustration of scenario 1 and scenario 2.

Table 1. Scenarios.

Scenario Details

S1
Regional Location Routing Problem (RLRP)

Prins et al. [35] use the location routing problem
model as the base model. This model does not
consider the closure of the existing depot. Note
that a slight modification of the base model is
made upon implementation by imposing the
minimum number of depots in each area or region.
The scenario denoted as h represents a particular
region, and Ih represents the depot set located
in region h. The minimum number of depots
available in each region is denoted by w.

S2
Multi-depot Regional Location Routing
Problem (MRLRP)

The MRLRP variant of the RLRP model considers
two depots: the present depot ( Ip) and candidate
depot (Ic) In this scenario the objective function
is modified from the RLRP model and considers
Li parameters as fixed costs when opening or
closing the depot.

3.1. Regional Location Routing Problem

We take research conducted by Prins et al. [35] for the capacitated location routing
problem as a reference model to develop the RLRP model. The formal mathematical
model for the capacitated location problem is presented as follows. Let G represent a
graph G = (V, E), with G resembling a network containing V, a non-empty set containing
vertices. In this case, V represents a set of nodes consisting of a subset l of m potential
depot sites and a subset J = V|I from n customers. Here, E is a set of edges connecting
each pair of nodes in V. Each edge (i, j) ∈ E is associated with travel costs cij. Each depot
i ∈ I has a capacity (Wi) and has a depot opening cost (Oi). Each customer has demand dj
and must be fulfilled by a single vehicle. A number K of identical vehicles with capacity
Q is available. Each vehicle starting the route and coming from depot i has fixed costs Fi
associated with the depot. Every vehicle route must start and end at the same depot. The
total load carried by the vehicle must not exceed the capacity of the vehicle.

By considering the minimum number of depots in each area or region, this study
denotes h to represent a particular region, while Ih represents the depot set located in region
h. The minimum number of depots to be available in each region is denoted by w. The
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model’s objective is to determine which depots should be opened in each region and the
route for each vehicle from the depot to the customer to minimize the total cost.

We define binary variables yi = 1 if depot i is opened, fij = 1 if customer j is assigned
to depot i, and xjlk = 1 if edge (j, l) is traversed from j to l in the route performed by the
vehicle k ∈ K. The problem formulation for RLRP goes as follows.

Minimize
Z = ∑

i∈I
Oiyi + ∑

i∈V
∑
j∈V

∑
k∈K

cijxijk + ∑
k∈K

∑
i∈I

∑
j∈J

Fixijk (1)

Subject to:
∑
k∈K

∑
i∈V

xijk = 1, ∀j ∈ J (2)

∑
j∈J

∑
i∈V

djxijk ≤ Q, ∀k ∈ K (3)

∑
j∈J

dj fij ≤Wiyi, ∀i ∈ I (4)

∑
j∈V

xijk − ∑
j∈V

xjik = 0, ∀i ∈ V, k ∈ K (5)

∑
i∈I

∑
j∈J

xijk ≤ 1, ∀k ∈ K (6)

∑
i∈S

∑
j∈J

xijk ≤ |S| − 1, ∀S ⊆ J (7)

∑
u∈J

xiuk + ∑
u∈V\{j}

xujk ≤ 1 + fij, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (8)

∑
i∈Ih

yi ≥ w, ∀h = 1, . . . , r (9)

xijk ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (10)

yi ∈ {0, 1}, ∀i ∈ I (11)

fij ∈ {0, 1}, ∀i ∈ I, j ∈ V (12)

The objective function (1) is the sum of depot opening costs and the routing costs,
including the travel costs and the fixed costs associated with vehicle usages. Constraint (2)
ensures that each customer belongs to one route and has only one predecessor in the
route. Constraints (3) and (4) are capacity constraints associated with routes and depots,
respectively. Constraints (5) and (6) guarantee the continuity of each route so that each
route terminates at the depot where the route starts. Constraint (7) is a sub-tour elimination
constraint. Constraint (8) ensures that a customer must be assigned to a depot if a route
connects to the customer. Constraint (9) ensures that the minimum number of depots are
available in every region. Finally, constraints (10)–(12) are for the binary variable.

3.2. Multi-Depot Regional Location Routing Problem

The multi-depot regional location routing problem (MRLRP) is a variant of the regional
location routing problem (RLRP). MRLRP was developed to answer the need for deciding
which depot should be opened and closed, including the route of vehicles originating from
each depot. The decision of MRLRP is more complex than RLRP because it also determines
which depots should be opened and closed in each region. In the MRLRP model, the depots
are categorized into present depots and candidate depots. The present depots are depots
that are currently operating or in use, denoted by Ip. The candidate depots are unused
depots that can be chosen as a new depot, denoted by Ic. Therefore, the set of depots I
consists of Ip and Ic, I = Ip ∪ Ic. Since we consider two types of depots, we introduce Li
as the fixed cost of having depot i in the solution. If depot i is a depot that is not already
present or a depot candidate, then Li will have a relatively large positive value; otherwise,
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it will denote the cost (gain) of the closing depot i and will possibly have a negative value.
The objective function for MRLRP goes as follows.

Minimize

Z = ∑
i∈I

Oiyi + ∑
i∈V

∑
j∈V

∑
k∈K

cijxijk + ∑
k∈K

∑
i∈I

∑
j∈J

Fixijk + ∑
i∈Ic

Liyi + ∑
i∈Ip

Li(1− yi) (13)

The objective function (13) minimizes the sum of fixed-opening depot costs and routing
costs, including the travel costs and the fixed costs associated with vehicle usages. Several
decision variables are binary that can be taken, for example, variable yi = 1 if depot i is
opened, with i ∈ Ip (for present depot) or i ∈ Ic (for candidate depot). Here, xjlk = 1 if
edge (j, l) is traversed from j to l in the route performed by the vehicle k ∈ K. Similar to
RLRP, each depot i ∈ I has a specific capacity (Wi) and has a depot opening cost (Oi). Each
vehicle starting the route and coming from depot i has fixed costs Fi associated with the
depot. The term cij represents travel costs from i to j. Since MRLRP is a variant of RLRP,
the constraints for MRLRP are the same as RLRP.

4. Solution Method

This section explains the solution method to solve the problem. Since RLRP and
MRLRP are particular cases of LRP and LRP is an NP-hard problem, we consider using
metaheuristics to solve the model. Although existing studies have made significant progress
in developing solution approaches, it turns out that there are still fewer studies that
implement GA in combination with SA to solve LRP. We propose a hybrid approach of
GA and SA for two reasons: (1) GA may fail to converge to a global optimum since it
explores too many search spaces, whereas (2) we could increase the solution quality using
GA output as the initial solution for SA. Moreover, we adopt this approach because it is one
of the more promising alternatives to deal with this class of problems and has proven to
provide a good result for various types of routing-like problems [31,36,37]. The illustration
of the hybrid method is shown in Figure 2.

4.1. Genetic Algorithm

Before going into the technical details of our hybrid approach, we briefly explain the
basic concept of GA. GA is a population-based metaheuristic that adopts the mechanism
of genetic rules for the individual. Those individuals are following genetic rules to raise
new offspring. GA starts with a population of solutions, and then it finds a better solution
by applying genetic operators (selection, mutation, and crossover) over the individuals
of each iteration. The critical issue when designing GA is to define the genetic operators
carefully [18].

The first step that we need to prepare is all the information required in the model
(customer attributes, depot attributes, vehicle attributes, and distance for each location) and
the parameter for GA. The next step is generating chromosomes as initial candidates. In
our approach, a solution is represented by a string of numbers consisting of a permutation
of m depots denoted by the set {1, 2, 3, . . . , m}, n potential customers denoted by the set
{m + 1, m + 2, . . . , m + n}, and Ndummy zeros used to separate routes, in addition to the
vehicle and depot capacity constraints. Suppose we have two candidate depots and twelve
customers, as shown in Table 2. The vehicle capacity is 60, with the vehicle cost associated
with depot (Fi) equal to 10. The opening cost for each depot (Oi) is equal to 1000. The
distance for each node is calculated using the distance matrix API developed by Google
based on latitude and longitude of each node. The asymmetric distance matrix is generated.

Based on Table 2, we generate chromosomes as initial candidates with a chromosome
length equal to 14 (2 depot and 12 customers). Suppose we use 10 mutations for each
iteration and generate the initial route, as shown in Appendix B.
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For each chromosome, we insert a depot to serve the customer based on the maximum
waste picked up by the vehicle. To determine which depot to serve the customer, we
implement the shortest distance allocation method. We use dummy zero in the solution
representation to separate the route for each vehicle. For example, in chromosome-1 on
Appendix B, customers 5 and 14 will be served by depot 1 instead of 2 because depot 1 is
the shortest distance from the node. By doing so, we are able to minimize the total distance
for each route. The solution representation for chromosome-1 is shown in Figure 3.

Based on Figure 3, we use two depots and six vehicles to serve all the customers. The
total cost (fitness value) for chromosome-1 is 123,117. By doing the same thing, we are able
to calculate the fitness value for all chromosomes. The results are shown in Appendix C.
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Table 2. An example of depot and customer attributes.

Depot Customer

Depot No. Depot Capacity Latitude Longitude Customer No. Demand
(Waste Volume) Latitude Longitude

1 1200 −6.85 107.59 3 39.49 −6.88 107.58
2 1200 −6.93 107.61 4 45.39 −6.88 107.57

5 14 −6.86 107.58
6 16 −6.87 107.60
7 4.5 −6.86 107.60
8 9.08 −6.92 107.62
9 27.37 −6.91 107.62

10 1.78 −6.91 107.60
11 31.93 −6.91 107.61
12 4 −6.91 107.60
13 33.39 −6.92 107.65
14 43.56 −6.92 107.64
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The next step is the selection process. The proposed method implements tournament
selection for choosing the fittest candidates from the current generation in GA. These
selected candidates are then passed on to the next generation. After selecting the individuals
using tournament selection, we create a new generation by combining parent solutions to
produce a new solution in GA. We apply partially matched crossover (PMX) to generate
new offspring. PMX is the most frequently used crossover operator that Goldberg and
Lingle proposed for the traveling salesman problem (TSP) [38]. The illustration of PMX in
the proposed GA is shown in Figure 4.
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Based on Figure 4, PMX starts by choosing parents from the previous selecting process.
In this example, we choose chromosome-7 as parent-1, which has the lowest fitness value.



Mathematics 2022, 10, 2131 10 of 23

Parent-2 is generated from parent-1 by shifting the order in parent-1. Step-1 chooses a
random segment (substrings) and copies it from parent to child. It determines the mapping
relationship between two substrings as references to select the position of the node. Step-2
exchanges the substrings between parents and checks whether any node is duplicated in
the strings. Since we have the references from the mapping, we replace the duplicated node
with another node following the mapping relationship. The rest of the offspring can be
filled similarly with the parents.

The next step after crossover is conducting a mutation operator. The mutation operator
is conducted to increase the probability of avoiding local solutions in GA. The mutation
operator alters one or multiple genes in the children’s solutions after the crossover phase.
Until the end criterion, GA improves the population using the operators mentioned above.
Finally, the output of GA is used as the initial solution of the simulated algorithm.

4.2. Simulated Annealing

Simulated annealing (SA) is performed after an initial solution is created. In the
beginning, we determine SA parameters, such as the current temperature, maximum outer
iteration, maximum inner iteration, and cooling temperature coefficient. The proposed SA
conducts two types of iterations: inner and outer.

Inner iteration focuses on finding the new solution based on the current solution
utilizing the neighborhood moves. For inner iteration, we determine the maximum number
of inner iterations to terminate the looping process. In contrast, outer iteration is used to
control the temperature of SA. Two types of solutions are kept during the iterations of SA:
σcurrent, which represents the current solution, and σbest to represent the best-found solution.
Initially, σcurrent is obtained from the initial solution, which is from the GA output. We
implement roulette-wheel selection to create a neighborhood with the probability of 0.2, 0.5,
and 0.3 for swap, reversion, and insertion, respectively. A new solution σnew is generated
from one of three neighborhood moves.

After σcurrent is generated, the objective value of σcurrent is calculated. Let f (σ) repre-
sent the objective value of a solution σ. To determine whether σcurrent is accepted as σnew,
a comparison between f (σcurrent) and f (σnew) is necessary. Consequently, ∆ is defined as
f (σnew) − f (σcurrent). If ∆ < 0, then σnew will replace σcurrent. However, if ∆ > 0, then
σnew is not directly rejected and a random value r1 ranging from 0 to 1 is generated. The
neighborhood solution is accepted with the probability e−(

∆
T ). If r1 < e−(

∆
T ), then σnew is

accepted as σcurrent; otherwise, σnew is rejected. This process continues until inner and outer
iterations are completed. T is reduced by multiplying with a constant α.

5. Experimental Results and Discussion

This study develops two scenarios to provide an alternative solution for waste collec-
tion. Therefore, we implemented the model into the real problem adopted from the waste
collection process in Bandung City, Indonesia. Before explaining the computational results
of the proposed method, we briefly explain the situation and problem in the case study.

5.1. Case Study: Bandung

The increasing number of Bandung’s population has resulted in a greater volume of
municipal waste. The volume of waste in Bandung in 2020 was 1735.99 M3/day, with the
total population at 2,444,160 people, which continues to grow year by year [39]. To manage
the waste in Bandung City, the local government selected PD Kebersihan to manage the
waste problem. PD Kebersihan has conducted various innovations, such as a waste bank,
composting, biodigester, bioconversion with maggots, and so forth; the waste disposed at
the waste final processing site did drop. The final disposal location is the Sarimukti landfill
(TPA) located in Sarimukti Village, Cipatat Subdistrict West Bandung Regency, which
covers 25 Ha. The distance from Bandung City to the TPA location is 45 km. Therefore, it
takes 1 to 2 h to travel to TPA. The Sarimukti landfill’s waste comes from Bandung City,
Cimahi City, and West Bandung Regency.
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Due to the large volume of waste and fuel and oil for transportation, a substantial
cost is needed for this situation. Therefore, PD Kebersihan initiated a policy to increase the
revenue from the billing sector by increasing the tariffs for waste services to overcome the
high cost. PD Kebersihan also considered the application of new technology and setting
the location of the depot. However, the problem is still a major challenge. The waste
management system in Bandung is still centralized and only uses one central depot as
a final waste collection for all four districts in Bandung. It causes the garbage collection
systems to take a long time and incur high transportation costs. During the pandemic and
LSR policy, PD Kebersihan faced more challenges collecting the waste for the four districts.
Therefore, this research was conducted by developing two scenarios to deal with the waste
problem in Bandung and, more specifically, to help PD Kebersihan.

To deal with the problem and implement the scenario, we collected the data from
PD Kebersihan for the year 2016, including the waste disposal point, waste volume for
each site, alternative location for final dumping point, vehicle capacity, and the costs
associated with it. All the information that we used in the model can be downloaded at
https://cutt.ly/1n660Md (accessed on 18 April 2022) An illustration of the Bandung City
map and waste collection point is shown in Appendix D.

Based on the data provided by PD Kebersihan, we calculated the matrix of origins
and destinations using the distance matrix API developed by Google for each node and
obtained an asymmetric matrix distance. In total, there are 154 locations for temporary
waste dumps in Bandung City. From these 154 locations, we generated 20 instances with
various data sizes for each scenario. Both the RLRP and MRLRP have 20 data samples each,
so the total number of instances we generated is 40. For each instance, we included the
number of regions, the number of potential depots, the number of customers, the minimum
number of depots for each region, the capacity of a vehicle, and cost components.

To generate the instances, we first determined and varied the number of location
points, starting from the small size of 12 locations to the largest size of 154 locations. Next,
we determined which regions will be sampled and the minimum number of depots opened.
Location points were selected as candidate depots and other points in the same region as
consumers to fulfil their requests according to the data taken from PD Kebersihan. It was
ensured that the depot capacity could accommodate the consumer demand in the region
to produce feasible solutions. The capacity of the vehicle was determined to be able to
meet the demands of all the consumers. This study assumed that the number of vehicles is
infinity to satisfy all the demands. Subsequent development can refer to previous instances
by adding location points and varying the minimum number of depots required. The cost
components attached to each component were assumed to be fixed and not dynamic. For
the MRLRP case, we developed the instances from RLRP datasets by selecting one of the
depots as the present depot and the other depots as candidate depots.

5.2. Experimental Results

The proposed algorithm was implemented in Matlab. The experiments were con-
ducted on a computer with an Intel Core i5-6400 CPU @ 2.70 Ghz. The mathematical model
for the RLRP and MRLPR was solved using a Gurobi solver on the same machine.

5.2.1. RLRP Dataset

The proposed algorithm was tested on the RLRP dataset. The results appear in Table 3.
We compared the results obtained by our developed GASA with the solution from the
Gurobi solver. In Table 3, the BKS column represents the best solution provided by Gurobi,
GA, and GASA. The following formula defines the performances of GA and GASA:

Gapa(%) =
GA.Obj.(best)− BKS

BKS
× 100% (14)

Gapb(%) =
GASA.Obj.(best)− BKS

BKS
× 100% (15)

https://cutt.ly/1n660Md
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Gapc(%) =
GA.Obj.(best)− GA.Obj.(avg)

GA.Obj.(avg)
× 100% (16)

Gapd(%) =
GASA.Obj.(best)− GASA.Obj.(avg)

GASA.Obj.(avg)
× 100% (17)

Based on Table 3, the smallest gap between GA and BKS is obtained for solving R1 and
R2—i.e., 0.00%—while the largest gap reaches 0.91% from solving R19. GA performs better
than Gurobi for solving the R14 dataset. The average gap of the objective result between GA
and BKS is 0.38%. The proposed GASA outperforms Gurobi in quality solutions for solving
R4, R7, R8, R10, and R14. The largest gap compared with BKS is obtained for solving R15,
i.e., 0.11%. The average gap of objective results is 0.01%. GASA provides a better solution
than GA in terms of solution quality because the input of GASA is developed from GA.
However, for computational time, GA is faster, at an average of 40.83 s compared to GASA.
Both GA and GASA, on average, have lower computational times than Gurobi.

Gurobi outperforms GASA, with the largest gap of 0.11% for solving R15. However,
among 20 instances, Gurobi only solves 14 instances, with an average computational time
of 12,342.69. Moreover, the optimal solution is obtained in solving five instances. In other
instances, we set a maximum of 5 h to develop a feasible solution for Gurobi. With this
setting, the Gurobi solver is expected to provide feasible outputs even though it does not
reach the global optimum. Based on Table 3, we conclude that the proposed GASA is
competitive in solving RLRP instances compared to Gurobi. In terms of computation time,
GASA is, on average, faster than Gurobi.

Furthermore, we investigated the gap between the best solution and the average
solution obtained by GA and GASA on each RLRP instance. The average gaps are −4.74%
and −0.50% for GA and GASA, respectively. Based on the result, the gap value is relatively
constant in each instance, and we conclude that the proposed algorithm is robust enough
to solve RLRP.

5.2.2. MRLRP Dataset

The proposed algorithm is also tested on the MRLRP dataset. For the fundamental
difference between the RLRP dataset and MRLRP dataset, in MRLRP, we consider two
types of depots: present depot and candidate depot. As shown in Table 4, we conduct
parameters for the two depot types. The results are summarized in Table 4. We compare
the results obtained by our proposed GASA with BKS and calculate the gap following
Formulas (14)–(17), as mentioned in the previous section.

Based on Table 4, the largest gap between GA and BKS is 1.78%, obtained for solving
MR20. The average gap of GA for solving MRLRP instances is 0.64%. Although, for some
instances, Gurobi outperforms GA, GA is able to solve all 20 instances, while Gurobi is
only able to solve 14 of 20 instances. The largest gap between the proposed GASA and
BKS is 0.07%, obtained for solving MR15. Both GA and GASA, on average, have lower
computational time than Gurobi.

We further note that Gurobi outperforms GASA for solving MR3, MR11, MR15, and
MR16. However, Gurobi can only solve 14 of 20 instances, with an average computational
time of 10,870.15. Therefore, we conclude that our proposed algorithm is competitive
versus the Gurobi solver.

We investigated the gap between the best solution and the average solution for GA
and GASA for each instance to evaluate the robustness of the proposed algorithms. The
average gap is −0.99% and −0.50 for GA and GAS, respectively. Therefore, we could
conclude that, based on the experiment, the proposed algorithm is relatively robust to
solve MRLRP.
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Table 3. Comparative objective value results for the RLRP dataset.

Ins ID
Parameter

BKS
Gurobi GA GASA

Gapa % Gapb %
Cus. Dep. Reg. Min Dep. Reg. VCap. Obj. CPU Obj.

(Best)
Obj.

(Avg) Gapc % CPU Obj.
(Best)

Obj.
(Avg) Gapd % CPU

R1 12 2 2 1 60 68,319 68,319 1.297 68,319 71,345 −4.24 3.23 68,319 68,661 −0.50 3.23 0.00 0.00
R2 14 4 2 1 60 59,983 59,983 51.031 59,983 62,982 −4.76 6.017 59,983 60,283 −0.50 6.017 0.00 0.00
R3 18 6 3 1 60 77,671 77,671 4596.72 81,615 85,696 −4.76 6.77 79,024 79,419 −0.50 8.87 0.05 0.02
R4 18 6 3 2 60 79,024 79,024 39 80,833 84,875 −4.76 6.75 79,024 79,419 −0.50 8.87 0.02 0.00
R5 24 8 3 1 60 97,106 97,106 18,000 113,027 118,678 −4.76 7.82 100,199 100,698 −0.50 10.14 0.16 0.03
R6 24 8 3 2 60 99,038 99,038 18,000 107,337 112,704 −4.76 7.9 100,199 100,700 −0.50 10.12 0.08 0.01
R7 28 10 4 1 60 108,734 111,633 18,000 122,971 129,120 −4.76 8.71 108,734 109,278 −0.50 11.52 0.13 0.00
R8 28 10 4 2 60 111,224 111,633 18,000 126,380 132,699 −4.76 9.38 111,224 111,780 −0.50 12.2 0.14 0.00
R9 36 12 4 1 60 131,858 131,858 18,000 161,033 169,085 −4.76 10.74 134,685 135,358 −0.50 14.35 0.22 0.02

R10 36 12 4 2 60 133,942 134,790 18,000 161,155 169,213 −4.76 10.56 133,942 134,612 −0.50 14.15 0.20 0.00
R11 55 12 4 1 70 155,323 155,323 18,000 213,928 224,624 −4.76 17.34 159,049 159,844 −0.50 25.01 0.38 0.02
R12 55 12 4 2 70 157,326 157,326 18,000 203,547 213,724 −4.76 18.07 158,558 159,351 −0.50 26.17 0.29 0.01
R13 81 12 4 1 70 236,882 N/A - 400,925 420,971 −4.76 45.9 236,882 238,066 −0.50 60.16 0.69 0.00
R14 81 12 4 2 70 234,576 383,266 18,000 370,470 388,994 −4.76 41.4 234,576 235,749 −0.50 55.94 0.58 0.00
R15 81 12 4 1 80 206,012 206,012 6109.59 387,943 407,340 −4.76 41.5 228,877 230,021 −0.50 57.8 0.88 0.11
R16 81 12 4 2 80 225,483 N/A - 349,678 367,162 −4.76 42.6 225,483 226,610 −0.50 59.1 0.55 0.00
R17 114 12 4 1 80 334,055 N/A - 578,311 607,227 −4.76 124.8 334,055 335,725 −0.50 146.03 0.73 0.00
R18 114 12 4 2 80 329,100 N/A - 577,099 605,954 −4.76 125.2 329,100 330,746 −0.50 146.7 0.75 0.00
R19 142 12 4 1 100 473,491 N/A - 906,360 951,678 −4.76 140.77 473,491 475,858 −0.50 167.57 0.91 0.00
R20 142 12 4 2 100 448,238 N/A - 852,295 894,910 −4.76 141.21 448,238 450,479 −0.50 168.31 0.90 0.00

Average 12,342.69 −4.74 40.83 −0.50 50.61 0.38 0.01

N/A indicates that an optimal solution cannot be found within the time limit.
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Table 4. Comparative objective value results for the MRLRP dataset.

Ins ID
Parameter

BKS
Gurobi GA GASA

Gapa % Gapb %
Cus. Dep.

Pres.
Dep.
Can. Reg. Min Dep. Reg. VCap. Obj. CPU Obj.

(Best)
Obj.

(Avg) Gapc % CPU Obj.
(Best)

Obj.
(Avg) Gapd % CPU

MR1 12 1 1 2 1 60 69,319 69,319 0.922 69,319 70,012 −0.99 4.16 69,319 69,666 −0.50 6.21 0.00 0.00
MR2 14 1 3 2 1 60 62,585 62,585 32.687 64,370 65,014 −0.99 5.1 62,585 62,898 −0.50 7.616 0.03 0.00
MR3 18 2 4 3 1 60 80,671 80,671 34.25 85,171 86,023 −0.99 6.57 82,024 82,434 −0.50 9.83 0.06 0.02
MR4 18 2 4 3 2 60 82,025 82,025 7.985 88,071 88,951 −0.99 6.58 82,025 82,435 −0.50 9.87 0.07 0.00
MR5 24 2 6 3 1 60 100,569 101,908 18,000 123,820 125,058 −0.99 8.126 100,569 101,072 −0.50 11.774 0.23 0.00
MR6 24 3 5 3 2 60 99,624 99,624 6858.77 118,283 119,466 −0.99 7.92 99,624 100,122 −0.50 11.49 0.19 0.00
MR7 28 3 7 4 1 60 114,530 116,435 18,000 145,759 147,217 −0.99 8.7 114,530 115,103 −0.50 12.608 0.27 0.00
MR8 28 3 7 4 2 60 112,017 116,435 18,000 157,384 158,958 −0.99 8.645 112,017 112,577 −0.50 12.525 0.41 0.00
MR9 36 3 9 4 1 60 137,582 137,790 18,000 162,708 164,335 −0.99 11.23 137,582 138,270 −0.50 15.799 0.18 0.00
MR10 36 3 9 4 2 60 135,707 137,790 18,000 170,166 171,868 −0.99 11.4 135,707 136,386 −0.50 16.1 0.25 0.00
MR11 55 3 9 4 1 70 161,338 161,338 18,000 284,462 287,307 −0.99 15.418 164,900 165,725 −0.50 21.52 0.76 0.02
MR12 55 3 9 4 2 70 160,620 160,620 1247.42 246,332 248,795 −0.99 15.54 160,620 161,423 −0.50 21.74 0.53 0.00
MR13 81 4 8 4 1 70 243,847 N/A - 400,308 404,311 −0.99 20.81 243,847 245,066 −0.50 29.757 0.64 0.00
MR14 81 4 8 4 2 70 236,264 N/A - 492,545 497,470 −0.99 20.7 236,264 237,445 −0.50 29.5 1.08 0.00
MR15 81 4 8 4 1 80 214,991 214,991 18,000 417,620 421,796 −0.99 20.22 229,602 230,750 −0.50 28.367 0.94 0.07
MR16 81 4 8 4 2 80 219,161 219,161 18,000 460,555 465,161 −0.99 20.6 224,586 225,709 −0.50 29.1 1.10 0.02
MR17 114 4 8 4 1 80 334,792 N/A - 797,049 805,020 −0.99 29.09 334,792 336,466 −0.50 48.87 1.38 0.00
MR18 114 4 8 4 2 80 321,570 N/A - 839,465 847,860 −0.99 29.2 321,570 323,178 −0.50 49 1.61 0.00
MR19 142 4 8 4 1 100 442,832 N/A - 999,450 100,9445 −0.99 35.7 442,832 445,046 −0.50 53.77 1.26 0.00
MR20 142 4 8 4 2 100 423,353 N/A - 117,8817 119,0605 −0.99 35.8 423,353 425,470 −0.50 54.87 1.78 0.00

Average 10,870.15 −0.99 16.08 −0.50 24.02 0.64 0.01

N/A indicates that there is no optimal solution found within the time limit.
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5.3. Sensitivity Analysis for GA and SA Parameters

The sensitivity analysis aims to investigate the relationships among GA, SA, and
solution output. We examine the effect of parameter configuration for each algorithm on
the CPU time and objective value. This study conducts one-at-a-time (OAT) sensitivity
measures to analyze the effects of parameters on the output. Using OAT, we repeatedly
vary one parameter at a time while holding the others fixed. In this study, we use four
value levels for each parameter to determine the proper configuration of the proposed
algorithm. Appendix E represents the output of our proposed algorithm for different
parameter values.

Based on Appendix E, we present each parameter’s effect on the objective value and
computational time in Figure 5. We see that higher levels of population and generation
parameter for GA increase the computational time but do increase the quality of the
solution (case of minimization). However, for the mutation rate of GA, the experimental
study shows that the mutation rate’s size does not directly affect the quality of the results
and computational time. Therefore, in this study, for GA, we implement the size of
population = 750, number of generations = 750, and mutation rate = 0.012.

The parameters of SA that we measure in this study are the maximum number of outer
iterations, the maximum number of inner iterations, and the value of α. We show that, the
higher the number of iterations (outer or inner) is, the better the quality of the solution will
be, but the computation time will also increase. For the level of α, based on the experiment,
an increase in the α value is not directly proportional to the quality of the solution and the
computational time. Therefore, in this study, for SA, we set the maximum number of outer
iterations = 750, the maximum number of inner iterations = 20, and α = 0.9.

5.4. Discussion

We define two sets of municipal waste management scenarios and indicate them as
scenarios S1 and S2. In scenarios S1 and S2, we assume a minimum number of depots for
each region. Although our proposed scenarios meet the criteria when the LSR policy is
implemented, we also analyze that these two scenarios can provide benefits even though
the LSR policy is no longer implemented. Insofar as the status quo only uses one final
depot/landfill to handle all the waste in the city, the consequences of this policy are (1) a
large area for waste is needed, (2) a long time to transport the waste due to the distance
is required, and (3) a high environmental impact occurs due to the waste volume at the
landfill. With the scenarios that we develop, some of the impacts are (1) reducing the need
for large areas because the waste collection is carried out in each region, (2) the waste
collection is faster because the distance to the depot is closer than before, and (3) the faster
the waste is processed, the more it will reduce its environmental impact. However, for
implementing the model, we realize that additional costs are needed to facilitate equipment
at the new depot because, previously, the depot point was only for collecting waste, not
processing waste. The cost depends on the location, so our model has not covered it in
detail. Another critical note at the time of implementation was the need for information
on the social and environmental impact analysis in advance to open the depot so the
decision-maker can calculate the necessary steps.

This paper proposes two scenarios represented by mathematical programming mod-
els: RLRP and MRLRP. Besides these two, the mathematical model can also solve the
capacitated location routing problem (CLRP) since it is developed from the CLRP. However,
to implement the RLRP and MRLRP into the CLRP, we need to adjust the constraints
and parameters. Since the CLRP does not consider the minimum number of depots for
each region, if we only consider one region and the minimum number of depots equals
zero, then the RLRP will become a problem of the CLRP. This situation also applies to the
MRLRP model; if we assume that there is no present depot, it will also become the problem
of CLRP.
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Based on the experiments, we compare the output of the mathematical model through
commercial solver Gurobi and a metaheuristic. As shown in Tables 3 and 4, the commercial
solver cannot solve all the instances because of the complexity of the model. Although
we already limit the computational time to 5 h, the commercial solver can only solve 28 of
40 instances. The limitation of the commercial solver leads to the development of a heuristic,
i.e., genetic algorithm and simulated annealing. However, using the result obtained from
the commercial solver allows us to evaluate the performance of the proposed algorithm.

The proposed GASA provides a competitive solution compared with Gurobi to solve
the RLRP and MRLRP. However, for other LRP problems, we suggest conducting further
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experiments since each algorithm has its limitations. The disadvantages of metaheuristics
are a weak local search and the role of randomness. We run several experiments to
determine the most appropriate parameter for the proposed algorithms to handle these
weaknesses. We run at least 20 times for each algorithm to obtain the best solution on
each instance.

The critical factors of GA in providing a good solution for the RLRP and MRLRP
are the GA operator and the parameter tuning. Therefore, utilizing the parameter value
based on the experiments, we explore the wide range of solution spaces to find a promising
solution. For SA, the critical factors are utilizing neighborhood moves, the acceptance
criteria, and tuning parameters. Neighborhood moves increase the search space of finding
the solution, the acceptance criterion escapes from local optima, and the tuning parameters
achieve a good performance. There are two important issues in search strategies: exploring
the search space and exploiting the best solution. Although GA and SA include mechanisms
to manipulate the explore (diversification) and exploit (intensification) aspects of the search
space, we found that, in our case, GA performs better in exploring the search space. This
is due to the crossover operator tending to perform a widespread search. In contrast,
SA can take an unchanged or effective solution as a new current solution with an exact
probability so that the algorithm can tune itself in a near-optimal solution. Therefore, the
two algorithms can complement each other to produce a better solution.

In terms of complexity and computational time, the complexity of the proposed GASA
is located in (1) the objective calculation procedure and (2) the exploration procedure to
find a new solution. The other remaining parts can be obtained in a constant time.

The procedures of objective calculation have complexity O(|n + m|) because they se-
quentially evaluate all nodes (i.e., n customers and m depots) in the solution representation.
Consequently, the increasing number of nodes raises the time to generate a solution. The
exploration procedures include the genetic operators and SA neighborhood moves. The
genetic operators consist of selection, mutation, and crossover. The selection requires a
constant time, while the other two depend on the locations of the selected nodes. For the
mutation, the complexity is O(nt), where nt represents the number of nodes that need to be
mutated. For the crossover, we implement PMX, and the complexity is O(2nx), where nx
represents the number of nodes on the substrings that we choose as the mapping references.
The SA neighborhood moves consist of swap, insertion, and inversion. The swap requires
a constant time, while the other two depend on the locations of the selected nodes. For
insertion, the complexity is O(ni), where ni represents the number of nodes that need to be
shifted due to the insertion move. For the inversion, the complexity is O(bnv/2c), where nv
is the number of nodes located between the selected two nodes (including the two nodes)
in the inversion move. Based on the complexities mentioned above, they become the main
reason that the sizes of the dataset influence the computational time of GASA.

We also conduct statistical tests to evaluate the performance of our proposed algorithm
and implement the Wilcoxon signed-rank test to measure the significance of our proposed
method compared with BKS and Gurobi. To analyze and test the hypothesis, we apply
the confidence level of alpha equal to 0.004. Therefore, if the p-value is less than the alpha,
we conclude that the methods are different. Based on Appendix F, in terms of solution
value, for GA to solve the RLRP, the p-value is less than 0.05, which means that there is
a significant difference between GA with Gurobi and GA with BKS. On the other hand,
the p-value results of GASA and Gurobi are more than 0.05, denoting that the result is not
significantly different, so GASA provides a competitive result compared with Gurobi for
the RLRP dataset. However, in terms of running time, both GA and GASA have a p-value
less than the alpha, and, hence, the running time is significantly different from Gurobi. We
conclude that, statistically, GASA can provide competitive results at a faster running time
compared with Gurobi. For the MRLRP datasets, GA obtains a p-value of less than 0.05,
indicating that there is a significant difference in the GA results compared with Gurobi and
BKS. On the other side, the GASA result for the solution test has a p-value more than the
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alpha, meaning that there is no significant difference for GASA to obtain a solution for the
MRLRP, and thus the proposed algorithm is competitive.

6. Conclusions

This research proposes a new variant of the LRP, named RLRP and MRLRP, by con-
sidering the minimum number of depots for each region and two types of depots and
proposes two mathematical models and a hybrid algorithm. Moreover, we generate a new
set of instances from the real example adopted from PD Kebersihan in Bandung City to
provide a more realistic illustration of the waste problem since the problem has never been
dealt with in previous works (see sample illustration of the result in Appendix G).

We further analyze the performance of the proposed algorithm in solving both RLRP
and MRLPR instances. For the RLRP dataset, GASA obtains near-optimal results, with the
highest gap of 0.11% compared to BKS. For the MRLRP dataset, GASA has the highest gap
of 0.07% versus BKS. The results indicate that the proposed method provides competitive
results and a reasonable computational time compared to the commercial solver.

Several future directions that could be considered are noted as follows. Since this
is a new problem, future works may improve the solutions. In this study, we consider
homogeneous vehicles. Therefore, a follow-up study could consider a heterogeneous
vehicle. Moreover, a multi-objective experiment could be conducted to minimize the cost
and maximize the service level. Another interesting aspect of research could be conducted
by comparing the performance of the proposed algorithm to solve a different problem
or benchmark instances in the LRP. The development of better solution methods can
also be conducted in further research, such as embedding SA into GA, particle swarm
optimization (PSO), differential evolution (DE), ant colony optimization (ACO), and other
metaheuristic algorithms. Lastly, future research can develop different scenarios to solve
the waste problems.
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Appendix B

Table A1. Chromosome and permutation for each customer.

Chromosome Customer Node

1 5 14 8 7 3 12 11 6 9 10 13 4
2 9 7 11 14 6 10 3 13 8 4 12 5
3 10 7 3 5 14 13 4 9 12 8 11 6
4 3 10 5 12 8 9 11 7 6 14 4 13
5 7 13 8 10 12 3 9 5 6 4 14 11
6 6 8 14 9 3 4 13 12 7 11 10 5
7 7 3 5 8 13 9 11 10 4 14 12 6
8 3 14 12 13 6 5 4 8 11 7 9 10
9 10 8 14 12 11 13 4 5 6 7 9 3

10 4 8 5 10 13 3 9 14 11 6 12 7

Appendix C

Table A2. Fitness value for each chromosome.

Chromosome Customer Node Fitness Value

1 5 14 8 7 3 12 11 6 9 10 13 4 123,117
2 9 7 11 14 6 10 3 13 8 4 12 5 129,960
3 10 7 3 5 14 13 4 9 12 8 11 6 109,699
4 3 10 5 12 8 9 11 7 6 14 4 13 112,264
5 7 13 8 10 12 3 9 5 6 4 14 11 101,833
6 6 8 14 9 3 4 13 12 7 11 10 5 132,268
7 7 3 5 8 13 9 11 10 4 14 12 6 84,500
8 3 14 12 13 6 5 4 8 11 7 9 10 112,148
9 10 8 14 12 11 13 4 5 6 7 9 3 96,237
10 4 8 5 10 13 3 9 14 11 6 12 7 133,538

Bold value denotes the smallest value.
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Appendix E

Table A3. Tested parameter values for GA and SA.

Genetic Algorithm Simulated Annealing

Parameter Level Obj. CPU Parameter Level Obj. CPU

Population 100 103,443 6.22
Max outer
iterations 100 117,353 37.12

250 102,150 13.30 250 105,834 38.86
500 101,372 25.42 500 104,124 39.13
750 101,199 42.06 750 101,605 40.98

Generation 100 103,559 6.79
Max inner
iterations 5 104,394 37.96

250 101,276 13.52 10 101,859 38.75
500 100,909 26.05 15 101,781 39.01
750 100,624 38.67 20 101,372 40.92

Mutation rate 0.004 101,781 37.85 α 0.7 102,991 38.37
0.008 105,600 39.08 0.8 102,926 39.86
0.012 101,399 38.84 0.9 102,447 40.53
0.016 101,604 37.68 0.99 103,948 39.41
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Appendix F

Table A4. The results of the Wilcoxon signed-rank test on the solution value and running time for
RLRP and MRLRP datasets.

GA vs. GASA vs.

BKS Gurobi BKS Gurobi

RLRP
datasets

Test on solution value

W −3.724 −2.667 −2.366 −1.020
p-value 0.000 0.018 0.008 0.308

Test on running time

W −3.233 −3.233
p-value 0.001 0.001

MRLRP datasets

Test on solution value

W −3.823 −3.180 −1.826 −0.415
p-value 0.000 0.001 0.068 0.678

Test on running
time

W −3.170 −3.107
p-value 0.002 0.002
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