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Abstract: Recently, bistable viral infection systems have attracted increased attention. In this paper,
we study bistability and robustness for virus infection models with nonmonotonic immune responses
in viral infection systems. The results show that the existing transcritical bifurcation undergoes
backward or forward bifurcation in viral infection models with nonmonotonic immune responses.
Our investigation demonstrates that the backward bifurcation threshold is the elite control threshold.
When the immune intensity is greater than the elite control threshold, the virus will be under elite
control; when the immune intensity is less than the elite control threshold, the virus may rebound.
We also give a new definition of robustness to characterize bistable systems.

Keywords: nonmonotonic immune response; saddle-node bifurcation; backward bifurcation; forward
bifurcation
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1. Introduction

Viral infection has always been a major threat to human health, and the human
immune system plays a key role in fighting viruses. When a virus first begins to infect the
human body, host cells rapidly activate natural killer cells, macrophages and so on, so as
to participate in nonspecific immunity. Then, after the virus infects the human body for a
period of time, the immune system will activate cytotoxic T lymphocyte (CTL) cells and
antibody cells to produce a specific immune response.

In many viral infections, toxicity T lymphocyte (CTL) cells and antibody cells will
attack infected cells to destroy the virus. These two kinds of cells play extremely im-
portant roles in antiviral responses. There are many mathematical models formulated
to study the within-host virus dynamics with and without an immune response in re-
cent studies [1–6]. Furthermore, there are many studies considering age-structure [7,8] or
reaction-diffusion [9,10] in virus dynamics.

Many studies focus on nonmonotonic functional responses, such as in population
models [11,12], virus models with immune response [2–4] and epidemic models [13,14].
The general form of nonmonotonic functions named Monod–Haldane functions was given
by Andrews [15] in 1968. Recently, Wang et al. [1] used the Monod–Haldane function to
model the nonmonotonic immune response in virus dynamics. They investigated and
studied three-dimensional and two-dimensional viral infection systems with nonmonotonic
immune responses as follows

dx(t)
drt = s− dx− (1− ε)βxy , g1

dy(t)
dt = (1− ε)βxy− ay− pyz , g2,

dz(t)
dt = cyz

α+γy+y2 − bz , g3,

(1)
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and { dy(t)
dt = ry

(
1− y

K
)
− ay− pyz , P2,

dz(t)
dt = cyz

α+γy+y2 − bz , Q2,
(2)

where x is the density of activated CD4+ T cells, y is the density of infected CD4+ T cells and
z is the density of immune cells. For system (1), z represents the immune cells stimulated
by the viruses at rate cyz

α+γy+y2 . Activated CD4+ T cells will generate at rate s, die at rate d,

and become infected at rate (1− ε)βxy. a and b are the death rates of infected CD4+ T cells
and immune cells, respectively. Furthermore, pyz is the rate of Infected CD4+ T cells killed
by immune cells. As for system (2), infected CD4+ T cells grow according to the logistic
growth rate, with limitations of size K. All parameters in system (1) and (2) are positive
and the overall treatment effectiveness ε satisfies 0 ≤ ε < 1.

The bistability and bifurcation problems in viral dynamics models have attracted the
interest and attention of researchers in recent years [1,2,16]. Not only in viral dynamics
models, the bifurcation problem has also been considered in other biological models, such
as healthcare and epidemic dynamics models [13,14,17–22] and population models [12].
The phenomenon of bifurcation indicates the complex dynamic behavior of the model, and
different bifurcations make different sense. Thus, it is important to determine the type
of bifurcation.

We find that, when we select the immune intensity c as the bifurcation parameter, sys-
tem (1) and system (2) undergo backward bifurcation and forward bifurcation under some
conditions, which will be proven in Section 2. Furthermore, we introduce the definition
of robustness for bistable system in Section 3. Lastly, we perform sensitive analysis and
numerical simulations in Section 4 and conclude the paper with discussions in Section 5.

2. Bifurcations Analysis

In this section, we prove the existence of backward and forward bifurcation in sys-
tem (1) and system (2). In fact, backward/forward bifurcation was well studied in [23] for
the first time and was also studied in [24]. In the following, we use the method in [23,24] to
prove the existence of backward/forward bifurcation.

We first denote B = γb− c and c2 = γb + 2b
√

α. Then, for system (1) and (2), we
give some thresholds, and the basic reproduction number R0 gives the average number of
infections transmitted by a single infected individual among fully susceptible individuals.
To find the R(1)

0 of system (1), we follow the next-generation matrix method proposed by
van den Driessche and Watmough [23]. Thus, for system (1), let X = (x, y, z)T and rewrite
system (1) as dX

dt = F−V, where F is the rate at which new infections occur, and V is all
other traffic inside and outside of each compartments. Thus, we have

F =

 0
(1− ε)βxy

0


and

V =

−s + dx + (1− ε)βxy
ay + pyz

− cyz
α+γy+y2 + bz


the system (1) always admits an infection-free equilibrium E(1)

0 = (x0, 0, 0), where x0 = s
d .

Then, the Jacobian matrices of F and V at E(1)
0 are given by

DF
E(1)

0
=

0 0 0
0 (1− ε)βx0 0
0 0 0


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and

DV
E(1)

0
=

d (1− ε)βx0 0
0 a 0
0 0 b

,

The form of the next generation matrix is

FV−1 =

 0 0 0
0 sβ(1−ε)

ad 0
0 0 0

.

Now, according to Theorem 2 in [23], the spectral radius ρ of the matrix FV−1 is
the maximum eigenvalue of FV−1, which gives the basic reproduction number R(1)

0 of

the system (1). Thus, we obtain R(1)
0 = sβ(1−ε)

ad . In addition, we also denote the other
thresholds as follows

R(1)
c = 1 +

β(1− ε)

d
√

α,

R1±
∗ =

(1− ε)βs− ad
(1− ε)βay1±

∗
, c∗∗1 = γb + by(1)1 +

αb

y(1)1

and the equilibria E(1)
1 = (x(1)1 , y(1)1 , 0), E1±

∗ = (x1±
∗ , y1±

∗ , z1±
∗ ), where

x(1)1 =
a

β(1− ε)
, y(1)1 =

d(R(1)
0 − 1)

β(1− ε)

and

x1±
∗ =

s
(1− ε)βy1±

∗ + d
, y1±
∗ =

−B±
√

B2 − 4αb2

2b
, z1±
∗ =

(1− ε)βay1±
∗ (R1±

∗ − 1)
p[(1− ε)βy1±

∗ + d]
.

As for system (2), Using the same method in [23], we can find

F1 =

[
r 0
0 0

]
, V1 =

[
a 0
0 b

]
,

and the next generation matrix of system (2) is

F1V−1
1 =

[ r
a 0
0 0

]
.

Thus, the basic reproduction number of system (2) is R(2)
0 = r

a . Then, we denote the
other thresholds

R(2)
c = 1 +

√
αr

Ka
,

R2±
∗ =

r
a

(
1− y2±

∗
K

)
, c∗∗2 = γb + by(2)1 +

αb

y(2)1

and the equilibria E(2)
1 = (y(2)1 , 0) and E2±

∗ = (y2±
∗ , z2±

∗ ), where

y(2)1 =
Ka
r
(R(2)

0 − 1)
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and

y2±
∗ =

−B±
√

B2 − 4αb2

2b
, z2±
∗ =

a
p
(R2±
∗ − 1).

These thresholds were introduced in [1], and the stability of the equilibria in system (1)
and (2) has also been analyzed, which can be concluded from Tables 1 and 2. Where
GAS represents global asymptotic stability, LAS represents local asymptotic stability, US
represents instability, and—represents that the equilibrium does not exist.

Table 1. The stabilities of the equilibria and the behaviors of system (1) in the case that R(1)
0 > 1.

E(1)
1 E1−

∗ E1+
∗ System (1)

1 < R(1)
0 < R(1)

c , 0 < c < c∗∗1 LAS — — Converges to E(1)
1

1 < R(1)
0 < R(1)

c , c∗∗1 < c US LAS — Converges to E1−
∗

R(2)
0 > R(1)

c > 1, 0 < c < c2 LAS — — Converges to E(1)
1

R(2)
0 > R(1)

c > 1, c2 < c < c∗∗1 LAS LAS US Bistable

R(2)
0 > R(1)

c > 1, c > c∗∗1 US LAS — Converges to E1−
∗

Table 2. The stabilities of the equilibria and the behaviors of system (2) in the case that R(2)
0 > 1.

E(2)
1 E2−

∗ E2+
∗ System (2)

1 < R(2)
0 < R(2)

c , 0 < c < c∗∗2 GAS — — Converges to E(2)
1

1 < R(2)
0 < R(2)

c , c∗∗2 < c US GAS — Converges to E2−
∗

R(2)
0 R(2)

c > 1, 0 < c < c2 GAS — — Converges to E(2)
1

R(2)
0 > R(2)

c > 1, c2 < c < c∗∗2 GAS GAS US Bistable

R(2)
0 > R(2)

c > 1, c > c∗∗2 US GAS — Converges to E2−
∗

2.1. Bifurcations in Three-Dimensional Model

In this section, we prove the existence of backward and forward bifurcations in sys-
tem (1) using the theorem developed by Castillo-Chavez and Song [24]. From the results
in [1], let Ẽ be any arbitrary equilibrium of system (1). The Jacobian matrix associated with
system (1) is

J1 =

 −d− β(1− ε)y −β(1− ε)x 0
β(1− ε)y β(1− ε)x− a− pz −py

0 cαz−czy2

(α+γy+y2)2
cy

α+γy+y2 − b

.

The characteristic equation of the linearized system of (1) at Ẽ is given by ‖λI− J1‖ = 0.

Theorem 1. If R(1)
0 > R(1)

c > 1 and c = c∗∗1 , then system (1) undergoes a backward bifurcation at

E(1)
1 . Here, c is the bifurcation parameter.

Proof. From Theorem 3.10 in [1], we know that Det[J
E(1)

1
] = 0 and zero is a simple eigen-

value of J
E(1)

1
. Here, J = J1. Let v = (v1, v2, v3)

T and w = (w1, w2, w3) denote the right
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eigenvector and the left eigenvector of J
E(1)

1
corresponding to the zero eigenvalue, respec-

tively. Then, we can find a right eigenvector associated with zero eigenvalue, given by

v =

(
1,
−d− β(1− ε)y(1)1

β(1− ε)x(1)1

,
β(1− ε)

p

)T

.

The left eigenvector is given by w = (0, 0, 1) from Theorem 3.10 in [1]. Let (x, y, z) =
(x1, x2, x3) and G = (g1, g2, g3)

T . From the proof of Theorem 3.10 [1], we have

DGc(E(1)
1 ; c∗∗1 )v ,


∑3

i=1 vi
∂2g1
∂xi∂c (E(1)

1 , c∗∗1 )

∑3
i=1 vi

∂2g2
∂xi∂c (E(1)

1 , c∗∗1 )

∑3
i=1 vi

∂2g3
∂xi∂c (E(1)

1 , c∗∗1 )



=

0 0 0
0 0 0

0 (α−y2)z
(α+γy+y2)2

y
α+γy+y2


(E(1)

1 ;c∗∗1 )


1

−d−β(1−ε)y(1)1

β(1−ε)x(1)1
β(1−ε)

p



=


0
0

β(1−ε)y(1)1

p
(

α+γy(1)1 +(y(1)1 )2
)

,

D2G(E(1)
1 ; c∗∗1 )(v, v) ,


∑3

i,j=1 vi
∂2g1

∂xi∂xj
(E(1)

1 , c∗∗1 )

∑3
i,j=1 vi

∂2g2
∂xi∂xj

(E(1)
1 , c∗∗1 )

∑3
i,j=1 vi

∂2g3
∂xi∂xj

(E(1)
1 , c∗∗1 )



=


2(d+β(1−ε)y)

x
0

−2cz(3αy+αγ−y3)
(α+γy+y2)3

(d+β(1−ε)y)2

(β(1−ε)x)2 −
2c(α−y2)(d+β(1−ε)y)

p(α+γy+y2)2x


(E(1)

1 ;c∗∗1 )

=


2
(

d+β(1−ε)y(1)1

)
x(1)1
0

−
2c∗∗1

(
α−(y(1)1 )2

)(
d+β(1−ε)y(1)1

)
p
(

α+γy(1)1 +(y(1)1 )2
)2

x(1)1

.

Therefore,

b = w ·
[

DGc(E(1)
1 ; c∗∗1 )v

]
=

β(1− ε)y(1)1

p
(

α + γy(1)1 + (y(1)1 )2
) ,

a = w ·
[

D2G(E(1)
1 ; c∗∗1 )(v, v)

]
= −

2c∗∗1
(

α− (y(1)1 )2
)(

d + β(1− ε)y(1)1

)
p
(

α + γy(1)1 + (y(1)1 )2
)2

x(1)1

.

We know that, when R(1)
0 > R(1)

c and c = c∗∗1 , we have y(1)1 >
√

α from [1]. Then,

b > 0 and α− (y(1)1 )2 < 0, implying that a > 0. Therefore, according to Corollary 4.1 in [24],
both a and b are positive, implying that system (1) undergoes a backward bifurcation at
c = c∗∗1 . Here, c is the bifurcation parameter.
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Remark 1. Suppose R(1)
0 > R(1)

c > 1. From Table 3 in [24], we can see that, when the vertical axis
represents z (Immune cells) and x (Activated CD4+ T cells), the bifurcation diagrams are drawn in
Figure 1a,c. Considering Remark 1 in [24], if we choose

v =

(
−1,

d + β(1− ε)y(1)1

β(1− ε)x(1)1

,− β(1− ε)

p

)T

and w =

(
0, 0,− p

β(1− ε)

)
,

then we can find a < 0 and b > 0 by calculation. Thus, when the vertical axis represents y (Infected
CD4+ T cells), the bifurcation diagram is drawn in Figure 1b.

(a)

(b)

(c)

Figure 1. Bifurcation diagrams of system (1) where the vertical axis represents Activated CD4+ T
cells (see (a)), Infected CD4+ T cells (see (b)) and Immune cells (see (c)). The parameter values are
listed in Table 3. The solid line represents stable equilibria, and the dotted line represents unstable
equilibria. The post-treatment control threshold is c2 ≈ 0.3, the elite control threshold is c∗∗ ≈ 0.3837,
and the bistable interval is (0.3, 0.3837).
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When 1 < R(1)
0 < R(1)

c , there also exists forward bifurcation in system (1), which will
be proven in the following.

Theorem 2. If 1 < R(1)
0 < R(1)

c and c = c∗∗1 , then system (1) undergoes a forward bifurcation at

E(1)
1 . Here, c is the bifurcation parameter.

Proof. We know that, when 1 < R(1)
0 < R(1)

c and c = c∗∗1 , y(1)1 <
√

α from [1]. Then, we can
find that

b =
β(1− ε)y(1)1

p
(

α + γy(1)1 + (y(1)1 )2
) > 0

and

a = −
2c∗∗1

(
α− (y(1)1 )2

)(
d + β(1− ε)y(1)1

)
p
(

α + γy(1)1 + (y(1)1 )2
)2

x(1)1

< 0.

Therefore, according to Theorem 4.1 in [24], we know that, when a < 0 and b > 0, sys-
tem (1) undergoes a forward bifurcation at c = c∗∗1 . Here, c is the bifurcation parameter.

Remark 2. Suppose 1 < R(1)
0 < R(1)

c . From Table 3 in [24], we can see that the vertical axis
represents z (Immune cells) and x (Activated CD4+ T cells) in the bifurcation diagrams plotted in
Figure 2a,c. Considering Remark 1 in [24], if we choose

v =

(
−1,

d + β(1− ε)y(1)1

β(1− ε)x(1)1

,− β(1− ε)

p

)T

and w =

(
0, 0,− p

β(1− ε)

)
,

then we can find a > 0 and b > 0. Thus, when the vertical axis represents y (Infected CD4+ T
cells), the bifurcation diagram is plotted in Figure 2b.
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Figure 2. Cont.
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0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

c / Immune intensity
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0

0.1
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0.3
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Forward bifurcation Point

Stable Equilibrium E
*

(c)

Figure 2. Bifurcation diagrams of system (1) where the vertical axis represents Activated CD4+ T
cells (see (a)), Infected CD4+ T cells (see (b)) and Immune cells (see (c)). The parameter values are
listed in Table 3 and α = 10. The solid line represents stable equilibria, and the dotted line represents
unstable equilibria. The elite control threshold is c∗∗1 ≈ 0.7549 .

2.2. Bifurcations in Two-Dimensional Model

In this section, we use the same method to prove the existence of backward bifurcation
in system (2). From the results in [1], let Ẽ be any arbitrary equilibrium of system (2). The
Jacobian matrix associated with the system (2) is

J2 =

[
r− a− 2γ

K y− pz −py
(α−y2)cz

(α+γy+y2)2
cy

α+γy+y2 − b

]
.

The characteristic equation of the linearized system of (2) at Ẽ is given by ‖λI− J2‖ = 0.

Theorem 3. If R(2)
0 > R(2)

c > 1 and c = c∗∗2 , then system (2) undergoes a backward bifurcation at

E(2)
1 . Here, c is the bifurcation parameter.

Proof. From Theorem 5.11 in [1], we know that Det[J
E(2)

1
] = 0 and zero is a simple eigen-

value of J
E(2)

1
. Here, J = J2. Let ξ = (ξ1, ξ2)

T and θ = (θ1, θ2) denote the right eigenvector

and left eigenvector of J
E(2)

1
corresponding to the zero eigenvalue, respectively. Then, the

right eigenvector associated with 0 eigenvalue is ξ = (− pK
r , 1)T , and the left eigenvector θ

is θ = (0, 1). Let F = (P2, Q2)
T . From the proof of Theorem 5.11 in [1], we can find

DFc(E(2)
1 ; c∗∗2 )ξ =

[
0 0

(α−y2)z
(α+γy+y2)2

y
α+γy+y2

][
− pK

r
1

]
(E(2)

1 ;c∗∗2 )

=

 0
y(2)1

α+γy(2)1 +(y(2)1 )2


and

D2F(E(2)
1 ; c∗∗2 )(ξ, ξ) =

[
0

−2cz(3αy+αγ−y3)
(α+γy+y2)3 − 2cγ(α−y2)

pK(α+γy+y2)2

]
(E(2)

1 ;c∗∗2 )

=

 0

− 2γc∗∗2 (α−(y(2)1 )2)

(α+γy(2)1 +(y(2)1 )2)2 pK

.



Mathematics 2022, 10, 2139 9 of 20

Therefore,

b = θ ·
[

DFc(E(2)
1 ; c∗∗2 )ξ

]
=

y(2)1

α + γy(2)1 + (y(2)1 )2
,

a = θ ·
[

D2F(E(2)
1 ; c∗∗2 )(v, v)

]
= −

2pKc∗∗2 pK
(

α− (y(2)1 )2
)

r
(

α + γy(2)1 + (y(2)1 )2
)2 .

We know that, when R(2)
0 > R(2)

c > 1 and c = c∗∗2 , we have y(2)1 >
√

α from [1].

Thus, it is clear that b > 0 and α− (y(2)1 )2 < 0 implying that a > 0. Therefore, according
to Corollary 4.1 in [24], both a and b are positive, implying that system (2) undergoes a
backward bifurcation at c = c∗∗1 . Here, c is the bifurcation parameter.

Remark 3. Suppose R(2)
0 > R(2)

c . From Table 3 in [24], we can see that, when the vertical axis
represents z (Immune cells), the bifurcation diagram is plotted in Figure 3b. Considering Remark 1
in [24], if we choose ξ = (1,− r

pK )
T and θ = (0,− pK

r ), then we can find a < 0 and b > 0 by
calculation. Thus, the vertical axis represents y (Infected CD4+ T cells) in the bifurcation diagram
plotted in Figure 3a.

(a)

(b)

Figure 3. Bifurcation diagrams of system (2) where the vertical axis represents Infected CD4+ T cells
(see (a)) and Immune cells (see (b)). The parameter values are listed in Table 4 and K = 6 cells/µL.
The solid line represents stable equilibria, and the dotted line represents unstable equilibria. The
post-treatment control threshold is c2 ≈ 2.5, the elite control threshold c∗∗2 ≈ 3.8333, and the bistable
interval is (2.5, 3.8333).
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Theorem 4. If 1 < R(2)
0 < R(2)

c and c = c∗∗2 , then system (2) undergoes a forward bifurcation at

E(2)
1 . Here, c is the bifurcation parameter.

Proof. We use the same method as Theorem 2 and the results in Theorem 3. When
1 < R(2)

0 < R(2)
c and c = c∗∗2 , we have y(2)1 >

√
α, then

b =
y(2)1

α + γy(2)1 + (y(2)1 )2
> 0

and

a = −
2pKc∗∗2 pK

(
α− (y(2)1 )2

)
r
(

α + γy(2)1 + (y(2)1 )2
)2 < 0.

Therefore, according to Theorem 4.1 in [24], we know that, when a < 0 and b > 0, sys-
tem (2) undergoes a forward bifurcation at c = c∗∗2 . Here, c is the bifurcation parameter.

Remark 4. Suppose 1 < R(2)
0 < R(2)

c . From Table 3 in [24], we can see that the vertical axis
represents z (Immune cells), and the bifurcation diagram is plotted in Figure 4b. Considering
Remark 1 in [24], if we choose ξ = (1,− r

pK )
T and θ = (0,− pK

r ), then we can find a > 0
and b > 0 by calculation. Thus, the vertical axis represents y (Infected CD4+ T cells), and the
bifurcation diagram is plotted in Figure 4a.
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Figure 4. Bifurcation diagrams of system (2) where the vertical axis represents Infected CD4+ T cells
(see (a)) and Immune cells (see (b)). The parameter values are listed in Table 4 and K = 1.4 cells/µL.
The solid line represents stable equilibria, and the dotted line represents unstable equilibria. The elite
control threshold c∗∗2 ≈ 2.6286.
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3. Robustness for Bistable System

When a system with backward bifurcation is bistable, it has two basins of attraction.
Robustness is one of the fundamental characteristics of biological systems. A general
definition of the robustness for biological systems can be used: robustness, the ability to
maintain performance in the face of perturbations and uncertainty, is a long-recognized
key property of living systems [25].

According to the general definition, we propose the definition of robustness for bistable
systems, which is measured by the area of the basin of attraction, namely the definite inte-
gral of positive steady solution curve on the bistable interval. The robustness corresponding
to x, y and z for bistable system (1) can be calculated by

R(1)
x =

∫ c∗∗1

c2

x1+
∗ dc

=
∫ c∗∗1

c2

s
(1− ε)βy1+

∗ + d
dc,

R(1)
y =

∫ c∗∗1

c2

y1+
∗ dc

=
∫ c∗∗1

c2

c− γb±
√
(γb− c)2 − 4αb2

2b
dc,

R(1)
z =

∫ c∗∗1

c2

z1+
∗ dc.

As shown in Figure 1, the area covered by cyan denotes R(1)
x (a), R(1)

y (b) and R(1)
z (c),

the robustness for bistable system (1) corresponding to x, y and z, respectively. Here, we
use the default parameter in Table 3, and we can calculate R(1)

x ≈ 65.5722, R(1)
y ≈ 0.1553

and R(1)
z ≈ 0.0126.

Using the same method, we can define the robustness corresponding to y and z for
bistable system (2) as follows

R(2)
y =

∫ c∗∗2

c2

y2+
∗ dc

=
∫ c∗∗2

c2

c− γb±
√
(γb− c)2 − 4αb2

2b
dc,

R(2)
z =

∫ c∗∗2

c2

z2+
∗ dc.

Then, the area covered by cyan in Figure 3 denotes R(2)
y (a) and R(2)

z (b), the robustness
for bistable system (2) corresponding to y and z, respectively. Here, we use the default
parameter in Table 4, and we can calculate R(2)

y ≈ 2.9014 and R(2)
z ≈ 1.0986.

When the system has some parameter and initial value perturbations, if the parameter
and initial values are always in one basin of attraction, then the system will maintain its
performance. However, if the parameter and initial values change the basin of attraction
to another due to the perturbations, then the system will appear to have a regime shift
and change the original performance. Thus, the larger the attraction is, the more difficult
to find a regime shift. Considering systems (1) and (2), we can think of robustness R(1)

x ,
R(1)

y (R(2)
y ) and R(1)

z (R(2)
z ) as the difficulty of virus rebound, the greater R(1)

y (R(2)
y ) is, the

better robustness for bistable system, and then the tumor cells have greater difficulty in
rebounding. However, the greater R(1)

x and R(1)
z (R(2)

z ) are, the easier the system to be in
the steady state of high virus load—that is, the virus can rebound more easily.
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4. Sensitive Analysis and Numerical Simulations
4.1. Sensitive Analysis

Sensitive analysis is an important method to test the influence of parameter variations
on system dynamics [26]. In the following, we conduct sensitive analysis with the aim
of revealing the relationship between the elite control threshold and the basic immune
reproduction number and system parameters in our model (1) and model (2). Here, we use
Latin hypercube sampling (LHS) and partial rank correlation coefficients (PRCCs) [27,28]
to test the dependence of c∗∗1 , c∗∗2 and R1−

∗ , R2−
∗ . As a statistical sampling method, LHS

provides an efficient analysis of parameter variations across simultaneous uncertainty
ranges in each parameter [27].

PRCC, on the other hand, shows the level of significance for each parameter. The
PRCC is obtained using the rank transformed LHS matrix and output matrix [28]. We
performed 4000 simulations per run and used a uniform distribution function to test for
the significance of PRCCs for all parameters with wide ranges. When |PRCC| > 0.4, there
was a significant correlation between the input parameters and output variables. For
|PRCC| ∈ (0.2, 0.4], the correlations were moderate. When |PRCC| ∈ [0, 0.2], we had weak
correlations.

The PRCC results in Figure 5 illustrate the dependence of c∗∗1 and R1−
∗ on each param-

eter in system (1). Furthermore, Figure 6 illustrates the dependence of c∗∗2 and R2−
∗ on each

system parameter in system (2).
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Figure 5. Partial rank correlation coefficients illustrating the dependence of c∗∗1 (a) and R1−
∗ (b) for

the system (1) on each parameter. The parameter values are listed in Table 3.
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Figure 6. Partial rank correlation coefficients illustrating the dependence of c∗∗2 (a) and R2−
∗ (b) for

the system (2) on each parameter. The parameter values are listed in Table 4.
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From Figure 5 for system model (1), we notice that the generated rate of CD4+ T cells
s, the death rate of CD4+ T cells d , the infected rate β, the treatment rate ε, the death rate
of infected cells a and the death rate of immune cells b have significant influences on the
exile control threshold c∗∗1 ; and the generated rate of CD4+ T cells s, the death rate of CD4+

T cells d , the infected rate β, the treatment rate ε and the death rate of infected cells a have
significant influences on the basic immune reproduction number R1−

∗ . From Figure 6 for
system model (2), the growth rate of infected cells r, the environmental capacity K, the
death rate of immune cells b and the death rate of infected cells a have significant influences
on the exile control threshold c∗∗2 ; and the growth rate of infected cells r, the death rate of
immune cells b, the death rate of infected cells a and the immune intensity c have significant
influences on the basic immune reproduction number R2−

∗ .

4.2. Numerical Simulation

In this section, we perform numerical simulations to verify our analytical results. We
perform numerical simulations for system (1) using the default parameters in Table 3.

Table 3. Description and values of the parameters in model (1).

Symbol Description Value Reference

s Production rate of CD4+ T cells 10 cells/µL/day [29]
d Death rate of CD4+ T cells 0.01 day−1 [29]
ε Drug efficacy 0.9 –
β Infection rate of CD4+ T cells 0.015 cells/µL/day [6]
a Death rate of infected cells 1.1 day−1 –

p Killing rate of infected CD4+ T cells by
immune cells 0.5 day−1 –

c immune intensity 0.3 day−1 –
α Constant in nonmonotonic immune response 1 cells/µL –
γ Constant in nonmonotonic immune response 1 cells/µL –
b Death rate of immune cells 0.1 day−1 –

Then, the thresholds R(1)
0 ≈ 1.3636, c2 = 0.3 and c∗∗1 ≈ 0.3837. In this case, when we

choose c2 < c = 0.37 < c∗∗1 and different initial values, both the immune-free equilibrium

E(1)
1 and the positive equilibrium E1−

∗ are stable (see Figure 7), and system (1) appears
bistable . When we choose c = 0.65 > c∗∗1 and different initial values, only the positive

equilibrium E1−
∗ is stable (see Figure 8). If we choose α = 10 cells/µL, then R(1)

0 ≈ 1.3636,

R(1)
c ≈ 1.4743 > R(1)

0 , c2 = 0.3 and c∗∗1 ≈ 0.7549. In this case, when we choose c = 0.8 > c∗∗1
and different initial values, only the immune-free equilibrium E(1)

1 is stable (see Figure 9).
When we choose c = 0.7 < c∗∗1 and different initial values, only the positive equilibrium
E1−
∗ is stable (see Figure 10). Figures 7–10 verify the results in Figures 1 and 2.
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Figure 7. Time histories and trajectories of system (1) with different initial values for c = 0.37 day−1.

E(1)
1 and E1−

∗ are stable. System (1) shows the bistable phenomenon. Other parameter values are
listed in Table 3.
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Figure 8. Time histories and trajectories of system (1) with different initial values for c = 0.65 day−1.
Only E1−

∗ is stable. Other parameter values are listed in Table 3.
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Figure 9. Time histories and trajectories of system (1) with different initial values for c = 0.7 day−1.

Only E(1)
1 is stable. Other parameter values are listed in Table 3 and α = 10.
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Figure 10. Time histories and trajectories of system (1) with different initial values for c = 0.8 day−1.
Only E1−

∗ is stable. Other parameter values are listed in Table 3 and α = 10.

We perform numerical simulations for system (2). We use the default parameters in
Table 4.
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Table 4. Description and values of the parameters in model (2).

Symbol Description Value Reference

r Growth rate of infected cells 6 day−1 –
K Environmental carrying capacity of infected cells – –
a Death rate of cells 3 day−1 –
p Killing rate of infected CD4+ T cells by immune cells 1 day−1 –
c immune intensity 3 day−1 –
α Constant in nonmonotonic immune response 1 cells/µL –
γ Constant in nonmonotonic immune response 1 cells/µL –
b Death rate of immune cells 1 day−1 –

If we choose K = 6 cells/µL, then the thresholds R(2)
0 = 2, R(2)

c ≈ 1.3333 < R(2)
0 ,

c2 = 2.5, and c∗∗2 ≈ 3.8333. In this case, when we choose c2 < c = 3 < c∗∗2 and different

initial values, both the immune-free equilibrium E(2)
1 and the positive equilibrium E2−

∗
are stable (see Figure 11a). When we choose c = 4 > c∗∗1 and different initial values, only
the positive equilibrium E2−

∗ is stable (see Figure 11b). If we choose K = 1.4 cells/µL and
different initial values, then R(2)

0 = 2, R(2)
c ≈ 2.4286 > R(2)

0 , c∗∗2 ≈ 2.6286. In this case, when

we choose c = 2.5 < c∗∗2 and different initial values, only the immune-free equilibrium E(2)
1

is stable (see Figure 12a). When we choose c = 2.7 > c∗∗1 and different initial values, only
the positive equilibrium E2−

∗ is stable (see Figure 12b). Figures 11 and 12 verify the results
in Figures 3 and 4.

(a)

(b)

Figure 11. Trajectories of system (2) with different initial values for c = 3 day−1 and c = 4 day−1.

When c = 3 day−1, E(2)
1 and E2−

∗ are stable. System (2) shows the bistable phenomenon (see (a)).
When c = 4 day−1, only E2−

∗ is stable (see (b)). Other parameter values are listed in Table 4 and
K = 6 cells/µL.
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Figure 12. Trajectories of system (2) with different initial values for c = 2.5 day−1 and c = 2.7 day−1.

When c = 2.5 day−1, only E(2)
1 is stable (see (a)). When c = 2.7 day−1, only E2−

∗ is stable (see (b)).
Other parameter values are listed in Table 4 and K = 1.4 cells/µL.

5. Discussion

In this paper, we found that the nonmonotonic immune responses in the viral infection
systems in [1] undergo backward and forward bifurcation at the elite control threshold if
we select the immune intensity as the bifurcation parameter under different conditions.
When the immune intensity is less than the elite control threshold, the viral load will be
under control or rebound. Only when the immune intensity is greater than the elite control
threshold will the viral load be under elite control. Such concepts can be applied to the
dynamics of infection and immunity of EBV, HIV and SARS-CoV2.

The results show that a combination of antiviral therapy and immunotherapy may
contribute to the functional cure of HIV, that is, the immune intensity is greater than the elite
control threshold through immunotherapy. Then, with long term control of viral replication
and low viral load, a functional cure of HIV can be realized. The HIV patients under elite
control still need to be cautious and continue to receive immunotherapy. If the immune
intensity is less than the post-treatment control threshold, the virus can rebound again.
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