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Abstract: This article considers a parallel monotone hybrid algorithm for a finite family of G-
nonexpansive mapping in Hilbert spaces endowed with graphs and suggests iterative schemes
for finding a common fixed point by the two different hybrid projection methods. Moreover, we show
the computational performance of our algorithm in comparison to some methods. Strong convergence
theorems are proved under suitable conditions. Finally, we give some numerical experiments of our
algorithms to show the efficiency and implementation of the LASSO problems in signal recovery
with different types of blurred matrices and noise.
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1. Introduction

Let C be a nonempty subset of a real Banach space X. Let ∆ denotes the diagonal of
the cartesian product C× C, i.e., ∆ = {(s, s) : s ∈ C}. Assume that G is a directed graph
such that V(G) is the set of its vertices that coincides with C, and E(G) is the set of its
edges. We assume that G has no parallel edge and ∆ ⊆ E(G). A graph of G is defined
by (V(G), E(G)). A mapping Θ : C → C is said to be G-nonexpansive if Θ satisfies the
conditions: Θ preserves edges of G, i.e.,

(s, t) ∈ E(G)⇒ (Θs, Θt) ∈ E(G), ∀(s, t) ∈ E(G);

and Θ non-indecreases the weights of edges of G in the following way:

(s, t) ∈ E(G)⇒ ‖Θs−Θt‖ ≤ ‖s− t‖, ∀(s, t) ∈ E(G).

It’s easy to see that G-nonexpansive mapping generalizes nonexpansive mapping. Many
problems in mathematical sciences have been solved by finding a fixed-point approximation
of a nonexpansive mapping in many metric spaces. Iterative sequences have been proposed
for finding fixed points and their applications by many mathematicians, see [1–3]. One of the
most famous is the S-iteration method introduced by Agarwal et al. [4] for some operators in
norm linear spaces. Recently, Suparatulatorn et al. [2] used the S-iteration method for finding
a fixed point of three different G-nonexpansive mappings Θ1, Θ2, Θ3 with directed graphs.
The weak convergence was proved under some conditions on the parameters in Hilbert
spaces endowed with graphs. This modified S-iteration method is defined as Algorithm 1:
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Algorithm 1: Choose s1 ∈ C, and {αn}, {βn} are real sequences in [0, 1].
(STEP 1) Compute

un = (1− βn)sn + βnΘ1sn.

(STEP 2) Construct sn+1 by

sn+1 = (1− αn)Θ1sn + αnΘ2un, ∀n ≥ 1.

(STEP 3) Set n := n + 1, and go to (Step 1).

In 2017, Sridarat et al. [5] studied the convergence analysis of SP-iteration in Hilbert
spaces endowed with graphs. A weak convergence theorem was proved. The following
iteration in Algorithm 2 is known as SP-iteration:

Algorithm 2: Choose s1 ∈ C, and {αn}, {βn}, {γn} are real sequences in [0, 1].
(STEP 1) Compute

un = (1− γn)sn + γnΘ3sn.

(STEP 2) Compute
tn = (1− βn)un + βnΘ2un.

(STEP 3) Construct sn+1 by

sn+1 = (1− αn)tn + αnΘ1tn, ∀n ≥ 1.

(STEP 4) Set n := n + 1, and go to (Step 1).

In studying fixed-point algorithms, the rate of convergence is very important to show
the efficiency of an algorithm. Recently, Yambangwai et al. [6] introduced a new modified
three-step iteration method for three different G-nonexpansive mappings in Banach spaces
with a graph and showed a better rate of convergence compared with Sridarat et al. [5].
The algorithm also gets a weak convergence theorem under some suitable conditions. This
algorithm is defined as Algorithm 3:

Algorithm 3: Choose s1 ∈ C, and {αn}, {βn}, {γn} are real sequences in [0, 1].
(STEP 1) Compute

un = (1− γn)sn + γnΘ3sn.

(STEP 2) Compute
tn = (1− βn)un + βnΘ2un.

(STEP 3) Construct sn+1 by

sn+1 = (1− αn)Θ2un + αnΘ1tn, ∀n ≥ 1.

(STEP 4) Set n := n + 1, and go to (Step 1).

For obtaining strong convergence theorems, Nakajo and Takahashi [7] proposed the
following hybrid projection algorithm which is well-known as the CQ projection algorithm
for finding a fixed point of a nonexpansive mapping in a real Hilbert space H. For each
t ∈ H, argmaxs∈H ‖s− t‖ = {x ∈ H : ‖s− t‖ ≤ ‖x− t‖ for all s ∈ H} They investigated
the sequence {sn} generated by Algorithm 4 as follows:
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Algorithm 4: Choose s1 ∈ C, Q1 = C = C1 and {αn} ⊂ [0, a] for some a ∈ [0, 1).
(STEP 1) Set

tn = αnsn + (1− αn)Θnsn.

(STEP 2) Compute

t̄n = argmax{‖ti
n − sn‖ : i = 1, 2, . . . , N}.

(STEP 3) Compute

Cn = {z ∈ C : ‖t̄n − z‖ ≤ ‖sn − z‖}

and
Qn = {z ∈ C : 〈z− sn, s1 − sn〉 ≤ 0}.

(STEP 4) Construct sn+1 by

sn+1 = PCn∩Qn(s1), ∀n ≥ 1.

(STEP 5) Set n := n + 1, and go to (Step 1).

In 2005, Anh and Hieu [8,9] introduced a projection method which is called the parallel
monotone hybrid algorithm for solving common fixed point problems of a finite family of
quasi φ-nonexpansive mappings {Θi}N

i=1 in a Banach space. This algorithm is presented in
a real Hilbert space as Algorithm 5:

Algorithm 5: Choose s1 ∈ C, C1 = C and {αn} is a sequence in [0, 1].
(STEP 1) Set

ti
n = αnsn + (1− αn)Θisn, i = 1, 2, . . . , N.

(STEP 2) Compute

t̄n = argmax{‖ti
n − sn‖ : i = 1, 2, . . . , N}.

(STEP 3) Compute

Cn+1 = {v ∈ Cn : ‖v− t̄n‖ ≤ ‖v− sn‖}.

(STEP 4) Construct sn+1 by

sn+1 = PCn+1(s1), n ≥ 1.

(STEP 5) Set n := n + 1, and go to (Step 1).

A strong convergence theorem has been proved under a condition on the parameter αn
with lim sup

n→∞
αn < 1. Recently, there have been some works involving the parallel method

for solving the fixed point problem (see [2,10,11]).
In this work, we wish to study the parallel monotone hybrid algorithm for a finite

family of G-nonexpansive mappings in Hilbert spaces and introduce algorithms, based
on the hybrid projection method. We then prove the strong convergence theorems of the
proposed methods using the parallel monotone hybrid algorithm. Finally, some numerical
experiments in signal recovery are provided to show the efficiency and implementation of
our algorithms.
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2. Main Results

In this section, we prove strong convergence theorems for a finite family of G-
nonexpansive mappings and propose a projection Algorithm 6 for finding a common
fixed point.

Assume that six below conditions hold.

(1) The mappings Θi : C → C are G-nonexpansive for all i = 1, 2, . . . , N.
(2) The solution set F :=

⋂N
i=1 F(Θi) 6= ∅.

(3) F is closed and F(Θi)× F(Θi) ⊆ E(G) for all i = 1, 2, . . . , N.
(4) {sn} dominates p for all p ∈ F and if there exists a subsequence {snk} of {sn} such

that snk ⇀ w ∈ C, then (snk , w) ∈ E(G).
(5) The sequence {αi

n} ⊂ [0, 1] and lim inf
n→∞

αi
n(1− αi

n) > 0 for all i = 1, 2, . . . , N.

(6) lim inf
n→∞

α0
nαi

n > 0 for all i = 1, 2, . . . , N.

Algorithm 6: Choose s1 ∈ C, Q1 = C and {αi
n} is a sequence in [0, 1].

(STEP 1) Set
ti
n = (1− αi

n)sn + αi
nΘisn, i = 1, 2, . . . , N.

(STEP 2) Compute

t̄n = argmax{‖ti
n − sn‖ : i = 1, 2, . . . , N}.

(STEP 3) Compute

Cn = {v ∈ C : ‖t̄n − v‖2 ≤ ‖sn − v‖2}

and
Qn = {v ∈ Qn−1 : 〈s1 − sn, sn − v〉 ≥ 0}.

(STEP 4) Construct sn+1 by

sn+1 = PCn∩Qn(s1).

(STEP 5) Set n := n + 1, and go to (Step 1).

Theorem 1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let
G = (V(G), E(G)) be a directed graph such that V(G) = C and E(G) be convex. Assume
that {sn} is generated by Algorithm 6. Then under conditions (1)–(5), {sn} strongly converges to
w = PF(s1).

Proof. We divide the proof in five steps.
Claim 1: PCn∩Qn is well-defined for every s1 ∈ H. By Theorem 3.2 of Tiammee et al. [12],

we obtain that F is closed and convex, and F(Θi) is convex for all i = 1, 2, . . . , N. From defi-
nitions of Cn and Qn, and from Lemma 2.2 in [13] that Cn ∩Qn is closed and convex. Let
p ∈ F. Since {sn} dominates p and Θi is edge-preserving, we have (Θisn, p) ∈ E(G) for all
i = 1, 2, . . . , N. This implies that (ti

n, p) = ((1− αi
n)sn + αi

nΘisn, p) ∈ E(G) ans as E(G) is
convex, we have

‖ti
n − p‖ = ‖(1− αi

n)sn + αi
nΘisn − p‖

≤ (1− αi
n)‖sn − p‖+ αi

n‖Θisn − p‖
≤ ‖sn − p‖. (1)

This implies that ‖t̄n − p‖ ≤ ‖sn − p‖. Thus, we have p ∈ Cn. Therefore F ⊂ Cn ∩Qn.
This implies that PCn∩Qn(s1) is well-defined.
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Claim 2: lim
n→∞

‖sn − s1‖ exists. By the definition of the metric projection PF, and since

F is a nonempty, closed and convex subset of H, we know that there exists a unique v ∈ F
such that v = PF(s1). From sn+1 = PCn∩Qn(s1), we get

‖sn+1 − s1‖ ≤ ‖z− s1‖, for all z ∈ Cn ∩Qn and n ∈ N. (2)

On the other hand, as F ⊂ Cn ∩Qn, we obtain

‖sn+1 − s1‖ ≤ ‖v− s1‖, for all n ∈ N. (3)

Thus, {sn} is bounded. Since sn = PQn(s1) and sn+1 ∈ Qn, we get

‖sn − s1‖ ≤ ‖sn+1 − s1‖, for all n ∈ N.

It follows that the sequence {‖sn − s1‖} is bounded and non-decreasing. Therefore
lim

n→∞
‖sn − s1‖ exists.

Claim 3: lim
n→∞

sn = w ∈ C. For m > n, by the definition of Cn, since sm = PCm(s1) ∈
Cm ⊂ Cn, it follows from the property of the metric projection PCm that

‖sm − sn‖2 ≤ ‖sm − s1‖2 − ‖sn − s1‖2.

Since ‖sn − s1‖ exists, therefore by Step 2, sm → sn as n→ ∞. From the completeness
of a Hilbert space, {sn} is a Cauchy sequence. Hence, there exists w ∈ C such that sn → w
as n→ ∞. In particular, we get

lim
n→∞

‖sn+1 − sn‖ = 0. (4)

Claim 4: w ∈ F. Since sn+1 ∈ Cn, therefore from (4), we have

‖t̄n − sn+1‖ ≤ ‖sn − sn+1‖ → 0 as n→ ∞.

Now, we obtain
‖t̄n − sn‖ ≤ ‖t̄n − sn+1‖+ ‖sn+1 − sn‖.

That is
lim

n→∞
‖t̄n − sn‖ = 0. (5)

We know that ‖ti
n − sn‖ ≤ ‖t̄n − sn‖. By (5), we obtain

lim
n→∞

‖ti
n − sn‖ = 0, (6)

for all i = 1, 2, . . . , N. It follows from the properties in a real Hilbert space, that

‖ti
n − p‖2 = ‖(1− αi

n)sn + αi
nΘisn − p‖2

= (1− αi
n)‖sn − p‖2 + αi

n‖Θisn − p‖2 − αi
n(1− αi

n)‖Θisn − sn‖2

≤ (1− αi
n)‖sn − p‖2 + αi

n‖sn − p‖2 − αi
n(1− αi

n)‖Θisn − sn‖2

= ‖sn − p‖2 − αi
n(1− αi

n)‖Θisn − sn‖2. (7)

By (7), we obtain

αi
n(1− αi

n)‖Θisn − sn‖2 ≤ ‖sn − p‖2 − ‖ti
n − p‖2. (8)

By our Assumption (5) and (8), we obtain

lim
n→∞

‖Θisn − sn‖ = 0.
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From sn → w as n→ ∞, the assumption (1) and Lemma 6 in [2], we have w ∈ F.
Claim 5: w = PF(s1). Since sn+1 = PCn∩Qn(s1) and w ∈ F ⊂ Cn ∩Qn, we have

〈s1 − sn, sn − p〉 ≥ 0, ∀p ∈ Cn ∩Qn. (9)

By taking the limit in (9), we obtain

〈s1 − w, w− p〉 ≥ 0, ∀p ∈ Cn ∩Qn.

Since F ⊂ Cn ∩ Qn, so we have 〈s1 − w, w − p〉 ≥ 0, for each p ∈ F, which gives
w = PF(s1). This completes the proof.

We know that if Θ is G-nonexpansive, that Θ is nonexpansive. From direct conse-
quences of Theorem 1, we have the following corollary.

Corollary 1. Assume that {sn} is a sequence generated by Algorithm 6. Let C be a nonempty
closed and convex subset of a real Hilbert space H, and let Θi : C → C be a nonexpansive mapping

for all i = 1, 2, . . . , N such that F :=
N⋂

i=1

F(Θi) 6= ∅. Then under conditions (3)–(5), {sn} strongly

convergence to w = PF(s1).

Next, we propose the following Algorithm 7:

Algorithm 7: Choose s1 ∈ C, Q1 = C and {αi
n} is a sequence in [0, 1] for all

i = 0, 1, . . . , N such that ∑N
i=0 αi

n = 1 for all n ≥ 1.
(STEP 1) Set

tn = α0
nsn +

N

∑
i=1

αi
nΘisn,

(STEP 2) Compute

Cn = {v ∈ Cn : ‖v− tn‖2 ≤ ‖v− sn‖2}

and
Qn = {v ∈ Qn−1 : 〈s1 − sn, sn − v〉 ≥ 0}.

(STEP 3) Compute
sn+1 = PCn∩Qn(s1).

(STEP 4) Set n := n + 1, and go to (Step 1).

Theorem 2. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let
G = (V(G), E(G)) be a directed graph such that V(G) = C and E(G) be convex. Assume
that {sn} is generated by Algorithm 7. Then under conditions (1)–(4) and (6), {sn} strongly
converges to w = PF(s1).

Proof. We shell show that PCn∩Qn is well-defined and F ⊆ Cn ∩ Qn, ∀n ≥ 0. Similar to
Step 1 in Theorem 1, we can show that Cn ∩Qn is closed and convex, ∀n ≥ 0. Also, we can
show that

‖tn − p‖ = ‖α0
nsn +

N

∑
i=1

αi
nΘisn − p‖

≤ α0
n‖sn − p‖+

N

∑
i=1

αi
n‖Θisn − p‖

≤ ‖sn − p‖. (10)
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Thus, we have p ∈ Cn. Therefore F ⊂ Cn ∩ Qn. This implies that PCn∩Qn(s1) is well-
defined. By the same proof of Step 2–3 in Theorem 1, we obtain lim

n→∞
‖sn− s1‖ exists. Hence,

there exists w ∈ C such that sn → w as n→ ∞. In particular, we have

lim
n→∞

‖sn+1 − sn‖ = 0. (11)

Next, we show that w ∈ F. By sn+1 ∈ Cn, it follows from (11) that

‖tn − sn‖ ≤ ‖tn − sn+1‖+ ‖sn+1 − sn‖ ≤ 2‖sn+1 − sn‖ → 0 (12)

as n→ ∞. For p ∈ Ω, it follows from Lemma 2.1 in [14] and since {sn} dominates p that

‖tn − p‖2 = ‖α0
nsn +

N

∑
i=1

αi
nΘisn − p‖2

≤ α0
n‖sn − p‖2 +

N

∑
i=1

αi
n‖Θisn − p‖2 −

N

∑
i=1

α0
nαi

n‖Θisn − sn‖2

≤ ‖sn − p‖2 −
N

∑
i=1

α0
nαi

n‖Θisn − sn‖2.

This implies that

N

∑
i=1

α0
nαi

n‖Θisn − sn‖2 ≤ ‖sn − p‖2 − ‖tn − p‖2.

By our assumption (3) and (12), we obtain

lim
n→∞

‖Θisn − sn‖ = 0

for all i = 1, 2, . . . , N. From the fact that sn → w as n→ ∞, the assumption (1) and Lemma
6 in [2], we have w ∈ F. By the same proof of Step 5 in Theorem 1, we obtain w ∈ PF(s1).
This completes the proof.

Corollary 2. Assume that {sn} is a sequence generated by Algorithm 7. Let C be a nonempty
closed and convex subset of a real Hilbert space H. Let Θi : C → C be a nonexpansive mapping for

all i = 1, 2, . . . , N such that F :=
N⋂

i=1

F(Θi) 6= ∅. Then under conditions (3), (4) and (6), {sn}

convergence strongly to w = PF(s1).

3. Numerical Experiments

In this section, we give numerical results to support our main theorem. We now
give an example in a Euclidean space R3 with a numerical experiment to support our
main results.

Example 1. Let H = R3 and C = [0, ∞)× [−10, 5] × [0, ∞). Assume that (s, t) ∈ E(G) if
and only if 1 ≤ s1, t1, −9 ≤ s2, t2 ≤ 1.5 and 0 ≤ s3, t3 ≤ 1.25 or s = t for all s = (s1, s2, s3),
t = (t1, t2, t3) ∈ C. Define mappings Θ1, Θ2, Θ3 : C → C by

Θ1s = (log
s1

2
+ 2,

arctan s2

4
, 1);

Θ2s = (2, 0,
tan(s3 − 1)

4
+ 1);

Θ3s = (2,
es2 − 1

2
, 1)
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for all s = (s1, s2, s3) ∈ C. It is easy to check that Θ1 and Θ2 are G-nonexpansive such that
F(Θ1)∩ F(Θ2) = {(2, 0, 1)}. On the other hand, Θ1 is not nonexpansive since for s = (0.31, 1, 7)
and t = (0.22, 1, 7), this implies that ‖Θ1s− Θ1t‖ > 0.1 > ‖s− t‖. Θ2 is not nonexpansive
since for s = (5,−0.5, 2.11) and t = (5,−0.5, 2.28), we have ‖Θ2s− Θ2t‖ > 0.3 > ‖s− t‖.
Moreover, Θ3 is not nonexpansive since for s = (1, 1.19, 0.2) and t = (1, 1.02, 0.2), we have
‖Θ3s−Θ3t‖ > 0.2 > ‖s− t‖. In this section, CPU and Iter are denoted by the time of CPU and
the number of iterations, respectively. All numerical experiments presented were obtained from
MATLAB R2019b running on the same laptop computer. In our experiment, we give three cases
as follows:

Case 1: Algorithm 6 with αn = 0.1 of the initial point (1.01, −0.02, 1.26) .
Case 2: Algorithm 6 with αn = 0.5 of the initial point (1.01, −0.02, 1.26).
Case 3: Algorithm 6 with αn = 0.9 of the initial point (1.01, −0.02, 1.26).
The numerical results are reported as follows:
From Table 1 and Figure 1, we see that in the case of two or more inputting Θi(i ≥ 2) of

the proposed parallel monotone hybrid Algorithm 6 achieves fewer iterations than the inputted
one. In the case of three inputting, a little more CPU time is required than in some cases of one or
two inputting.
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Figure 1. Graph of number of the iterations versus error.

Table 1. The convergence behavior of inputting Θi, i = 1, 2, 3, stop condition (Cauchy error) < 10−9.

Θ1 Θ2 Θ3 Θ1, Θ2 Θ1, Θ3 Θ2, Θ3 Θ1, Θ2, Θ3

Case 1 Iter 369 348 418 313 339 311 301
CPU 0.0192 0.0130 0.0113 0.0161 0.0192 0.0192 0.0166

Case 2 Iter 78 72 89 65 71 64 61
CPU 0.0194 0.0122 0.0101 0.0166 0.0166 0.0164 0.0209

Case 3 Iter 52 54 50 43 37 36 35
CPU 0.0223 0.0121 0.0109 0.0127 0.0181 0.0191 0.0199

Next, we give an experiment of Algorithm 7. We give 9 cases for parameter α as follows:
Case 1: α0 = 0.1, α1 = 0.9

3 , α2 = 0.9
3 and α3 = 0.9

3 .
Case 2: α0 = 0.5, α1 = 0.5

3 , α2 = 0.5
3 and α3 = 0.5

3 .
Case 3: α0 = 0.9, α1 = 0.1

3 , α2 = 0.1
3 and α3 = 0.1

3 .
Case 4: α0 = 0.1, α1 = 0.9

6 , α2 = 2( 0.9
6 ) and α3 = 3( 0.9

6 ).
Case 5: α0 = 0.1, α1 = 0.9

6 , α2 = 3( 0.9
6 ) and α3 = 2( 0.9

6 ).
Case 6: α0 = 0.1, α1 = 2( 0.9

6 ), α2 = 0.9
6 and α3 = 3( 0.9

6 ).
Case 7: α0 = 0.1, α1 = 2( 0.9

6 ), α2 = 3( 0.9
6 ) and α3 = 0.9

6 .
Case 8: α0 = 0.1, α1 = 3( 0.9

6 ), α2 = 0.9
6 and α3 = 2( 0.9

6 ).
Case 9: α0 = 0.1, α1 = 3( 0.9

6 ), α2 = 2( 0.9
6 ) and α3 = 0.9

6 .
For all cases, we choose the initial point (1.48, −0.06, 2.72).
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From Table 2, we see that the CPU time and the number of iterations of Algorithm 7 decrease
when the parameter α0 approaches 0 and the rate of αn, by 3 : 2 : 1 this has an effect on the CPU
time and the number of iterations for input many mappings Θi.

Table 2. The convergence behavior of inputting Θi, i = 1, 2, 3, stop condition (Cauchy error) < 10−9.

Θ1 Θ2 Θ3 Θ1, Θ2 Θ1, Θ3 Θ2, Θ3 Θ1, Θ2, Θ3

Case 1 Iter 43 42 60 37 44 44 37
CPU 0.01127 0.0081 0.0066 0.0061 0.0097 0.0087 0.0075

Case 2 Iter 73 81 103 68 104 70 68
CPU 0.0118 0.0063 0.0053 0.0075 0.0099 0.0073 0.0076

Case 3 Iter 357 419 448 335 365 340 324
CPU 0.0125 0.0085 0.0053 0.0075 0.0099 0.0073 0.0076

Case 4 Iter 43 42 60 35 51 53 40
CPU 0.0123 0.0061 0.0048 0.0084 0.0109 0.0060 0.0109

Case 5 Iter 43 42 60 35 51 37 36
CPU 0.0120 0.0062 0.0061 0.0061 0.0086 0.0087 0.0102

Case 6 Iter 43 42 60 40 47 38 41
CPU 0.0143 0.0089 0.0056 0.0070 0.0082 0.0078 0.0098

Case 7 Iter 43 42 60 35 47 37 49
CPU 0.0122 0.0067 0.0051 0.0053 0.0105 0.0085 0.0094

Case 8 Iter 43 42 60 40 43 38 41
CPU 0.0124 0.0071 0.0056 0.0062 0.0079 0.0088 0.0103

Case 9 Iter 43 42 60 35 43 53 34
CPU 0.00126 0.0057 0.0048 0.0065 0.0085 0.0075 0.0142

Next, we present some numerical examples of signal recovery. We provide a compari-
son between Algorithms 2, 3, 6 and 7. In this case, we set Θ(sn) = proxλg(sn − λ∇ f (sn)).
It is known that Θ is a nonexpansive mapping when λ ∈ (0, 2/L) and L is the Lipschitz
constant of ∇ f . Compressed sensing can be modeled as the following underdeterminated
linear equation system:

t = As + ε, (13)

where s ∈ RN is a original signal vector, t ∈ RM is the observed signal which disturbed by
filer operator A : RN → RM(M < N) and noisy ε. It is known that the solution of (13) can
be seen as solving the LASSO problem:

min
s∈RN

1
2
‖t− As‖2

2 + λ‖s‖1, (14)

where λ > 0. So we can apply our method for solving (14) in the case that f (s) = 1
2‖t−As‖2

2
and g(s) = λ‖s‖1. It is noted that ∇ f (s) = AT(As− t).

The goal of this paper is to remove noise without knowing the type of it. Thus, we
focus on the following problem:

min
s∈RN

1
2
‖A1s− t1‖2

2 + λ1‖s‖1,

min
s∈RN

1
2
‖A2s− t2‖2

2 + λ2‖s‖1,

...

min
s∈RN

1
2
‖ANs− tN‖2

2 + λN‖s‖1, (15)
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where s is the original signal, Ai is a bounded linear operator and ti is observed signal with
noisy for all i = 1, 2, . . . , N. We can apply the Algorithms 6 and 7 to solve the problem (15)
by setting Θis = proxλi gi

(sn − λi∇ fi(sn)).
In our experiment, the observations t1, t2, t3 are generated by different Gaussian noise

white signal-to-noise ratio SNR and normal distribution with zero mean and one invariance
matrix A1, A2, A3 ∈ RM×N , respectively. The initial point s1 is picked randomly. We use
the mean squared error (MSE) for showing the restoration accuracy. This MSE is defined by

MSE =
1
N
‖sn − s∗‖2

2 < 10−5,

where s∗ is an estimated signal of s.
In what follows, let αi

n = 0.5 for all i = 1, 2, 3 and let the step sizes λ1 = 1
‖A1‖2 ,

λ2 = 1
‖A2‖2 and λ3 = 1

‖A3‖2 . The numerical results are shown as follows:
The performance of the studied proposed Algorithm 6 with the following original

signal (Figure 2) is tested.

Original signal (N=1024, M=512, 20spikes)

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Figure 2. The original signal N = 1024, M = 512, and 20 spikes.

The different types of blurred matrices A1, A2 and A3 are shown in Figure 3.

Measured values with SNR=40

50 100 150 200 250 300 350 400 450 500

-10

0

10

Measured values with SNR=50

50 100 150 200 250 300 350 400 450 500

-20

0

20

Measured values with SNR=60

50 100 150 200 250 300 350 400 450 500

-20

0

20

Figure 3. Measured values with SNR = 40, 50, 60, respectively.

The results of the Algorithm 6 with (N = 1) by inputting Ai, i = 1, 2, 3 for the
following three cases:

Case 1.1: Inputting A1, SNR = 40 on the proposed algorithm;
Case 1.2: Inputting A2, SNR = 50 on the proposed algorithm;
Case 1.3: Inputting A3, SNR = 60 on the proposed algorithm;
Are shown in Figure 4 which are composed of the recovered signal.
Next, we present finding the common solutions to signal recovery problem (15) with

(N ≥ 2) by using the Algorithm 6. So, we can consider the results algorithm in the
following three cases:

Case 2.1: Inputting A1, SNR = 40 and A2, SNR = 50;
Case 2.2: Inputting A1, SNR = 40 and A3, SNR = 60;
Case 2.3: Inputting A2, SNR = 50 and A3, SNR = 60;
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Case 3.1: Inputting A1, SNR = 40, A2, SNR = 50 and A3, SNR = 60;
Are shown in Figure 5 which are composed of the recovered signal.

Recovered signal by Case 1.1 ( 8353 iterations, CPU=75.0882 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Recovered signal by Case 1.2 ( 7954 iterations, CPU=66.4315 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Recovered signal by Case 1.3 ( 8243 iterations, CPU=71.9116 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Figure 4. Recovered signal by Case 1.1, Case 1.2 and Case 1.3, respectively.

Recovered signal by Case 2.1 ( 1899 iterations, CPU=7.7874 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Recovered signal by Case 2.2 ( 2038 iterations, CPU=8.9414 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Recovered signal by Case 2.3 ( 2020 iterations, CPU=8.8009 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Figure 5. Recovered signal by Case 2.1, Case 2.2 and Case 2.3, respectively.

From Figures 4 and 5, we see that Case 2.1–2.3 has less number of iterations and CPU
time than Case 1.1–1.3 in all of the cases.

Finally, we present the common solution the signal recovery problem (15) with (N = 3)
of Case 3.1 and a comparison among Algorithms 2 and 3 shown in Figure 6.

From Figures 5 and 6, we see that Case 3.1 has a lower number of iterations and CPU
time than Case 2.1–2.3 all of the cases. This means that the efficiency of the proposed
Algorithm 6 is better when the number of subproblems is increasing. Moreover, we see
that our proposed Algorithm 6 gets less CPU time and fewer iterations than the other
two algorithms. The following Figure 7 shows the efficiency of our parallel Algorithm 6
in all cases and a comparison with the other two algorithms by MSE versus the number
of iterations.
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Recovered signal by Case 3.1 ( 490 iterations, CPU=2.1945 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Recovered signal by Algorithm 1.2 ( 681 iterations, CPU=2.7072 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Recovered signal by Algorithm 1.3 ( 1113 iterations, CPU=5.0812 )

100 200 300 400 500 600 700 800 900 1000
-1

0

1

Figure 6. Recovered signal by Algorithms 2, 3 and 6 inputting A1, A2 and A3, respectively.
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Algorithm 1.2

Algorithm 1.3

Figure 7. MSE versus number of iterations in case N = 1024 and M = 512.

Next, we analyze the convergence and the effects of {αn} in Algorithm 6 in each case.
From Table 3, we observe that the CPU time and the number of iterations of Algorithm 6

small reduction when the parameter {αn} approaches 1. The following Figures 8 and 9
show numerical results for each {αn} in Table 3.

Table 3. The convergence of Algorithm 6 with each {αn}.

Given: Random Initial Point, Stop Condition (Cauchy Error) < 10−9.

{αn} SNR
N = 512, M = 256 N = 1024, M = 512

m = 20 m = 20

Iter CPU Iter CPU

4n2 + 12
20n2 + 10

40 21,189 206.1261 32,906 1001.1
50 22,454 232.5960 34,356 1084.8

40, 50 5529 16.6651 8145 48,778

25n5 + 15
50n5 + 10

40 7360 27.2077 14,285 201.2996
50 7560 28.3236 13,531 182.0590

40, 50 2210 3.4878 3610 20.8226

81n9 + 19
90n9 + 10

40 5190 14.0915 8534 77.5054
50 4316 9.8401 7622 64.8060

40, 50 1301 1.5145 1660 6.7987
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Figure 8. Graph of number of iterations versus Error where N = 512 and M = 265.
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Figure 9. Graph of the number of iterations versus MSE where N = 1024 and M = 512.

Next, we provide a comparison between Algorithms 2, 3 and 7. For convenience, we
set all conditions as in the previous example.

The performance of the studied proposed Algorithm 7 with the following original
signal (Figure 10) is tested.

Original signal (N=1536, M=768, 40spikes)

200 400 600 800 1000 1200 1400
-1

0

1

Figure 10. The original signal N = 1024, M = 512 and 20 spikes.

The different types of blurred matrices A1, A2 and A3 are shown in Figure 11.

Measured values with SNR=40

100 200 300 400 500 600 700

-20
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Measured values with SNR=50
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Measured values with SNR=60
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20

Figure 11. Measured values with SNR = 40, 50, 60, respectively.

The results of the Algorithm 7 with (N = 1) by inputting Ai, i = 1, 2, 3 for the
following three cases:

Case 1.1: Inputting A1, SNR = 40 on the proposed algorithm;
Case 1.2: Inputting A2, SNR = 50 on the proposed algorithm;
Case 1.3: Inputting A3, SNR = 60 on the proposed algorithm.
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Figure 12 which are composed of the recovered signal.

Recovered signal by Case 1.1 ( 12685 iterations, CPU=312.7544 )

200 400 600 800 1000 1200 1400
-1

0

1

Recovered signal by Case 1.2 ( 12302 iterations, CPU=300.7270 )

200 400 600 800 1000 1200 1400
-1

0

1

Recovered signal by Case 1.3 ( 11975 iterations, CPU=287.9224 )

200 400 600 800 1000 1200 1400
-1

0

1

Figure 12. Recovered signal by Case 1.1, Case 1.2 and Case 1.3, respectively.

Next, we present the finding of the common solutions to the signal recovery problem
(15) with (N ≥ 2) by using the Algorithm 7. So, we can consider the results algorithm in
the following three cases:

Case 2.1: Inputting A1, SNR = 40 and A2, SNR = 50;
Case 2.2: Inputting A1, SNR = 40 and A3, SNR = 60;
Case 2.3: Inputting A2, SNR = 50 and A3, SNR = 60;
Case 3.1: Inputting A1, SNR = 40, A2, SNR = 50 and A3, SNR = 60;
Are shown in Figure 13 which are composed of the recovered signal.

Recovered signal by Case 2.1 ( 3258 iterations, CPU=40.6611 )

200 400 600 800 1000 1200 1400
-1

0

Recovered signal by Case 2.2 ( 3403 iterations, CPU=47.6165 )

200 400 600 800 1000 1200 1400
-1

0

1

Recovered signal by Case 2.3 ( 3354 iterations, CPU=40.7288 )

200 400 600 800 1000 1200 1400
-1

0

1

Figure 13. Recovered signal by Case 2.1, Case 2.2 and Case 2.3, respectively.

From Figures 12 and 13, we see that Case 2.1–2.3 has a lower number of iterations and
CPU time than Case 1.1–1.3 in all of the cases. Finally, we present the common solution
of signal recovery problem (15) with (N = 3) of Case 3.1 and a comparison between
Algorithms 2 and 3 which has been shown in Figure 14.
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Recovered signal by Case 3.1 ( 992 iterations, CPU=9.5164 )

200 400 600 800 1000 1200 1400
-1

0

1

Recovered signal by Algorithm 1.2 ( 1123 iterations, CPU=9.9758 )

200 400 600 800 1000 1200 1400
-1

0

1

Recovered signal by Algorithm 1.3 ( 1522 iterations, CPU=15.3774 )

200 400 600 800 1000 1200 1400
-1

0

1

Figure 14. Recovered signal by Algorithms 2, 3 and 7 inputting A1, A2 and A3, respectively.

Figure 15 shows the efficiency of our parallel Algorithm 7 in all cases and a comparison
with the other two algorithms by MSE versus the number of iterations.
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Algorithm 1.2

Algorithm 1.3

Figure 15. MSE versus number of iterations in case N = 1024 and M = 512.

From Figures 14 and 15, we see that Case 3.1 has a lower number of iterations and
CPU time than Case 2.1–2.3 all of the cases. This means that the efficiency of the proposed
Algorithm 7 is also better when the number of subproblems is increasing. Moreover, we
see that our proposed Algorithm 7 requires a lower CPU time and number of iterations
than the other two algorithms.

4. Conclusions

This paper proposes two parallel hybrid projection algorithms for finding a common
fixed point of a finite family of G-nonexpansive mappings in Hilbert spaces with a directed
graph. Under some suitable conditions on the update parameters generated in two different
algorithms, we obtain strong convergence theorems. We also give examples of numerical
experiments to support our main results and compare the rate between the proposed
and the existing two methods. It is found that our algorithms have a better convergence
behavior than these methods through experiments.
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