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Abstract: Fuel power plants are one of the main sources of pollutant emissions, so special attention
should be paid to improving the efficiency of the fuel combustion process. The mathematical
modeling of processes in the combustion chamber makes it possible to reliably predict and find the
best dynamic characteristics of the operation of a power plant, in order to quantify the emission of
harmful substances, as well as the environmental and technical and economic efficiency of various
regime control actions and measures, and the use of new types of composite fuels. The main
purpose of this article is to illustrate how machine learning methods can play an important role
in modeling and predicting the performance and control of the combustion process. The paper
proposes a mathematical model of an unsteady turbulent combustion process, presents a model of a
combustion chamber with a combined burner, and performs a numerical study using the STAR-CCM+
multidisciplinary platform. The influence of various input indicators on the efficiency of burner
devices, which is evaluated by several parameters at the output, is investigated. In this case, three
possible states of the burners are assumed: optimal, satisfactory and unsatisfactory.

Keywords: mathematical modeling; combustion; emission; combustion chambers; burners; multiclass
classification; random forest; aggregated methods; F-measure

MSC: 76F80; 80A25; 80M12; 80M50

1. Introduction

When burning fuel in combustion devices, it is necessary to ensure that the most
economical mode is maintained to reduce the emission of pollutants. When organizing the
operation mode of the combustion devices of power plants, it is required to organize the
influence of heat and mass transfer processes and aerodynamics on the ongoing chemical
reactions in such a way as to ensure the most complete and environmentally friendly fuel
combustion [1,2]. At high temperatures, a certain amount of toxic nitrogen oxides is formed
in the combustion chamber in the form of NO, NO2, N2O4, N2O5, etc., along with emissions
of SO2, CO2 [3,4]. In calculations, it is conditionally assumed that nitrogen oxides emitted
into the atmosphere consist only of NO2.

An increase in the installed unit capacity of the boilers makes it necessary to speed up
the combustion processes in order to reduce the structural dimensions of the boiler. The
main pollutant during the combustion of natural gas in power plants are thermal nitrogen
oxides, the main indicator of the formation intensity of which is the temperature in the
zone of active combustion [5,6]. To reduce NOX emissions with flue gases, a number of
measures are used, including furnace sectioning, flue gas recirculation, air temperature
reduction, moisture injection into the combustion zone, staged combustion, etc. It will be
20 °C by 2050 by limiting the growth of global energy consumption to no more than 25%
and doubling harmful emissions; experts of the International Energy Agency indicate, to a
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large extent with the improvement of fuel energy technologies, an increase in the share of
energy production from renewable sources and the development of distributed energy.

The furnace device is a complex gas–steam–water heat exchange device. The basis of
the combustion process in the furnace is the chemical reactions of oxygen with combustible
fuel elements. These processes take place under difficult conditions, creeping up on chemi-
cal processes [7]. The modeling of furnace processes has been carried out for more than half
a century, while it is practically impossible to conduct direct furnace simulation of furnace
processes due to the need for simultaneous simulation of combustion, aerodynamics, heat
and mass transfer processes [8]. Secondary vortex currents may occur in the combustion
chamber. For more accurate modeling, it is necessary to take into account the turbulent and
molecular diffusion of the initial components and reaction products in the gas flow. In this
regard, approximate modeling is possible. In furnace devices, the process of convective
mixing is decisive, and is largely determined by the design of the burners.

The study of the combustion process and heat transfer in the furnace space is an
extremely important task, which is the subject of many works by such authors as Bin Xu,
Dewallefa P., Domoto K., Hidetoshi A., June Wang, Rezwanul K. and Sartor K. [9–11].

The processes of chemical kinetics determine the rate of the reaction at which the
formation of combustion products occurs, as described by the Arrhenius equation. For
the calculated reaction rate in the framework of the turbulent vortex decay model, the
Eddy Dissipation Model takes the minimum of them. However, since all reactions are
characterized by the same mixing rate, this model can only be used with a single-stage
(reagent-product) or two-stage (reagent-intermediate-product) global reaction [12].

An alternative approach to describing the combustion process of swirling flows is
the simulation of transport equations (convection, diffusion), which makes it possible to
perform calculations for multicomponent fuel mixtures with acceptable accuracy. Kül-
sheimer C. investigates the effect of periodic excitation of a mass flow rate variable in
frequency and amplitude on the isothermal flow field and the characteristics of the flame of
swirl burners with different swirling intensity. The results demonstrate that the minimum
level of excitation of the mass flow rate for the formation of vortices decreases hyperboli-
cally with an increase in the pulsation frequency and the characteristic Strouhal number,
respectively [13].

Galley D. proposed a mathematical model, with the help of which he conducted a
study of an unsteady turbulent gas flow, followed by combustion in a combustion chamber.
For the completeness of fuel combustion and to achieve maximum efficiency during fuel
combustion, the flow swirl was modeled [14].

To obtain accurate results of aerodynamic and thermochemical processes in the furnace
space with calculations of turbulent, reactive and heat flows for various boiler operating
modes, CFD modeling is used, which allows for optimizing operating modes [15–17].
Gianmarco Aversano, Marco Ferrarotti and Alessandro Parente developed a reduced order
model based on CFD simulations and performed 3D simulations with detailed chemistry
covering a wide range of operating conditions in terms of fuel composition (methane
hydrogen mixtures from pure methane to pure hydrogen) [18].

Power boilers must be characterized by high flexibility and, when operating at a
technical minimum, the combustion process must be stable. Thus, Henrik B. obtained
a fairly good agreement between the values obtained for the power boiler using CFD
simulations with the values obtained using analytical models. He demonstrated the stability
of combustion at the minimum load of the boiler and analyzed the value of NOX emission
when the flame moved upwards [19]. Currently, to improve the technical and economic
indicators and environmental characteristics of power boilers, efficient furnace devices are
being developed based on low-temperature vortex fuel combustion technology, as well as
vortex combustion in boiler furnaces with advanced supercritical steam parameters [20].

A number of authors have carried out studies of the influence of the design of burners
on the emission of pollutants using mathematical modeling, which confirmed the effect
of changing the supply of oxidizer and nozzle geometry on the intensity of the mixing of
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gaseous media and the formation of emissions. M. Rimar, Jan Kizek and Andrii Kulikov,
using computer simulation, confirmed the effect of changing the supply of oxidizer and the
geometry of air nozzles on the intensity of the mixing of gaseous media and the formation
of emissions. The introduction of a separating insert into the air nozzle made it possible to
intensify the mixing of gaseous media. Zheltukhina E. considered the formation of toxic
compounds and the possibility of modeling combustion processes to reduce them [21,22].
NOX emissions can be controlled by limiting the amount of available oxygen that can com-
bine with nitrogen to form nitric oxide (NO). The optimum operating point for minimizing
NOX emissions may vary depending on the combustion process, including load conditions,
equipment condition, fuel type and process conditions. The design of the burner and its
modes of operation largely determine the intensity of flame ignition, the conditions and
rate of mixing of the fuel with the oxidizer and the maximum temperature level in the
combustion core. By changing the design of the burner, it is possible to influence these
parameters and, thereby, reduce the formation of NOX from 30 to 60% without worsening
the combustion process at reduced capital and operating costs [23].

Another widely used method of combating the emission of harmful substances is flue
gas recirculation (FGR) [24–26]. The main share of NOX is formed in the area of a high
temperature of the combustion flame (more than 1500 °C), and then, under the action of
a vortex gas flow, it moves throughout the entire furnace volume. When about 10% of
the flue gases are added to the flame, the temperature is reduced by about 7%. It is noted
that recirculating the flue gas in the fuel stream, i.e., fuel-induced recirculation (FIR), can
improve significantly improved NOX reduction per unit mass of recycled gas compared to
conventional recirculation. The effect of internal flue gas recirculation on NOX andSOX
emissions from boilers was also considered. When studying the operation of a low-emission
burner, a number of researchers found that despite the fact that 1% flue gas recirculation
reduces the boiler efficiency by 0.03–0.06%, at maximum boiler load and 13% recirculation,
a reduction in NOX emissions by 44.5% can be achieved, up to 90 mg/m3 [27–29]. Jun Li
and Xiaolei Zhang et al. considered the effect of internal flue gas recirculation on NOX
and SOX emissions in a co-firing boiler. Internal flue gas recirculation is an effective way
to reduce SOX emissions, and an increase in the recirculation ratio leads to a significant
reduction in NOX emissions; however, SOX increased slightly [30]. Mohsen Abdelaal and
Medhat El-Riedy et al. found that the flame remains stable up to a recirculation level of
40%, but the temperature decreases by about 25%, and the SOX content decreases from
90 to 5 ppm [31]. In this case, combustion instability can be associated with the level of
NOX emissions in premix burners [32]. Ehsan Houshfar and colleagues used two different
compositions of recirculating flue gases: CO2 and CO2 + NO [33].

FGR is being actively introduced to reduce emissions in biofuel boilers of various
capacities [34–36]. Much attention is currently paid to the use of hydrogen, methane-
hydrogen fractions, fuel mixtures based on landfill gases and thermal decomposition
products of industrial and municipal waste as fuel in power plants [37–39]. Thus, Yue
Xin, Ke Wang and colleagues found that the optimal proportion of mixing natural gas and
hydrogen is 24.7% [40].

Simulation and study of the processes of the combined combustion of composite fuels
will make it possible to become closer to the transition to environmentally friendly and
resource-saving energy. Composite fuel is a mechanical mixture of combustibles (including
organic fuels), and in some cases combustible and non-combustible substances, which
has new thermal properties compared to the properties of the original combustibles [41].
Known low-emission combustion technologies are based on the use of synthesis gas as a
fuel. J. Sidey, in his study, considered the structure and stability of the flame of a dual-fuel
flame and the analysis of experimental data to verify the model. Visualization results
demonstrate the structure of the internal flame along the jet in the form of a hollow cone
and the structure of the external flame in the shear layer between the ring oxidizer and the
internal recirculation zone above the shedder [42].



Mathematics 2022, 10, 2143 4 of 24

The processes of the combined combustion of natural gas mixed with synthesis gas
largely depend on the preparation of the air-fuel mixture in the burner and directly in the
flame. The preparation of the air-fuel mixture is especially relevant in connection with the
phenomena of the breakdown and flashback of the flame. To ensure a stable position in
the combustion space of the ignition zone, i.e., flame front, the mixture to the ignition zone
should be supplied at a speed equal to the speed of flame propagation [43].

Considering this review, we come to the conclusion that, due to the complexity of the
mathematical formulation of the turbulent combustion problem, which includes a system
of coupled nonlinear non-stationary differential equations of motion, energy and chemical
kinetics equations, the solution to the problem of high-precision modeling and prediction
of physical and chemical processes in combustion chambers can only be obtained based on
mathematical modeling [44]. At the same time, the methodological aspect of the problem
is associated with the development of effective mathematical methods for modeling the
processes of turbulent exchange and chemical kinetics in the combustion chamber, which
ensure the convergence and sufficient accuracy of the obtained numerical solution at an
acceptable cost of computer time. Solving the problem of high-temperature gas motion is a
labor-intensive task that requires significant computational resources. One of the problems
of solvers in a high-fidelity simulation can be resource intensive. Such tasks require the use
of modern computing systems and machine learning technologies that optimize the cost of
resources for the implementation of computational experiments [45].

The novelty of this work in machine learning is as follows: In testing several different
methods for classifying the condition of the burners in order to select the best one; in the ag-
gregation of these methods—in binary classification problems, this approach demonstrated
a significant increase in the quality of training; in the study of the influence of various
factors (the influence of correlation and the presence of outliers, the influence of random
scattering, the share of the test sample, the influence of the number of cross-validation
blocks on the quality of training (similar studies were carried out earlier, but to increase the
efficiency of the burners, it is carried out for the first time).

2. Mathematical Modeling of the Efficiency of Burners
2.1. 3D Model of the Burner

The multidisciplinary platform STAR-CCM+ was chosen for the numerical simulation
of hydrocarbon fuel combustion, since it allows for solving problems of modeling turbulent
flows, taking into account the chemical kinetics of reacting flows. This makes it possible to
identify and analyze the relationship between the performance of the boiler plant and the
emission of pollutants under various operating conditions. As a representative prototype
for building a 3D model of the burner device (Figure 1), a modernized oil-gas burner based
on GMU-45 (Figure 2) was selected.

To ensure acceptable air speeds when the burner is operating at low loads, the air
channel in the outlet part is divided into internal and peripheral flows. Air flows before
entering the burner embrasure pass swirling devices. The twisting of the air flow in the
internal channel is carried out by an axial device. This unit has 18 fixed blades at an angle
of 20° to the burner axis. The twisting of the air flow in the peripheral channel is carried
out by a tangential swirler with 24 fixed blades set at an angle of 60° to the radius.

The burner has a central gas supply. Gas is supplied to the space between the central
diameter of 219 × 6 mm and the outer diameter of 325 × 9 mm pipes. On the side of the
furnace, the gas collector ends with a truncated cone, in which holes are drilled. The gas
exits the holes at an angle to the axis of the air flow.

When constructing a 3D model of the burner, the design parameters of the prototype
were used, including overall dimensions, the number of elements of the swirling apparatus,
flow swirl angles, rows and the number of gas outlets.
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(a) (b)

(c)

(d)

Figure 1. Three dimensional model of the burner in the STAR-CCM+ environment: (a) gas inlet;
(b) primary air inlet; (c) secondary air inlet; (d) combustion area in the combustion chamber.

(a) (b)

Figure 2. Operating burner device type GMU-45 boiler type E-500-13.8-560GMN: (a) general view;
(b) enlarged view of the blades.
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2.2. Mathematical Model of Gas Dynamics

To simulate the combustion process of a swirling fuel-air unsteady flow, a mathemati-
cal model is proposed, including:

Continuity equation:

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂r
(ρυ) +

1
r

∂

∂θ
(ρw) = 0. (1)

Motion equation:

• x-component

∂

∂t
(ρu) + u

∂

∂x
(ρu) + υ

∂

∂r
(ρu) +

w
r

∂
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=− ∂P
∂x

+ µ[
∂2 u
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1
r

∂

∂r
(r

∂u
∂r

+
1
r2

∂2 u
∂θ2 ]

+

−∂
(

ρu′2
)

∂x
−

∂
(

ρu′υ′
)

∂r
− 1

r

∂
(

ρu′w′
)

∂θ

 (2)
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where u, v, w—velocity components in the x, r, θ directions, respectively; ρ—density
[kg/m3]; P—pressure [Pa]; µ—dynamic viscosity [Pa · s]; Reynolds stress – (–ρu′2,
–ρυ′2, –ρw′2, –ρu′, –ρυ′, –ρw′); t—time [c]; x, r, θ—cylindrical coordinates.

Energy equation:

ρ cp

(
∂T
∂t

+ υ
∂T
∂r

+
w
r

∂T
∂θ

+ u
∂T
∂x

)
= div

[(
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gradT −∑

j
hj Jj

]
+ Sh, (5)

where
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∂

∂x
+

∂

∂r
+

1
r

∂

∂θ
, (6)

h = ∑
j

Yjhj +
P
ρ

, hj =
∫ T

Tre f

cp,jdT, Tre f = 298.15 K. (7)
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where µT—coefficient turbulent viscosity [Pa · s]; T—temperature [K]; λ—coefficient of
thermal conductivity [W/m · K]; Sh—includes the heat of the chemical reaction, and any
other volumetric heat sources are specified; cp—specific heat (J/kg · k); PrT—turbulent
Prandtl number; Yj—mass fraction of the species j.

Mass diffusion Jj is calculated using the following form:

Jj = −
(

ρDi,m +
µT
ScT

)
divYj. (8)

where Di,m—mass diffusion coefficient for type i in the mixture; ScT—the turbulent Schmidt
number is 0.7.

Let us express the turbulent Prandtl number PrT by the dependence:

PrT =
u′υ′

du/dr
dT/dr

T′υ′
=

u′

T′
Ruυ

RTυ

dT
dr
du
dr

(9)

where T′—RMS flow temperature ripple; T′υ′, u′υ′—correlation functions; Ruυ, RTυ—
correlation coefficients between pulsations u′, υ′ and T′, υ′ respectively. Pulsations u′, T′ at
an arbitrary point of a thermally unsteady boundary layer, in accordance with the mixing
path model, are expressed by the relations:

u′ = l
du
dr

, T′ = lT
dT
dr

(10)

where l, lT—the length of the mixing path for velocity and temperature fluctuations, respec-
tively.

For combustion modeling, the basis of the non-premix combustion approach is that the
instantaneous thermochemical state of the flow is related to a conservative scalar variable
called the mixture fraction. The mixture fraction f can be written as follows:

f =

[
Yg − ŝ YO2

]
−
[
Yg − ŝ YO2

]
2[

Yg − ŝ YO2

]
1 −

[
Yg − ŝ YO2

]
2

(11)

where ŝ—mass ratio of fuel to air (ŝ=
(mCH4

)

(mO2
)

); Yg and YO2 represent, respectively, the values

of the mass fractions of fuel and O2 at the outlet of the fuel injectors (indicated by number 1)
and air (indicated by number 2).

The species conservation equations solved for each chemical reduce to a single mixture
fraction conservation equation:

∂

∂t

(
ρ f̃
)
+

∂

∂xi

(
ρui f̃

)
=

∂

∂xi

(
µT
σt

∂ f̃
∂xi

)
, (12)

where ui—corresponding velocity component [m/s]; xi—corresponding coordinate compo-
nent [m].

Moreover, the resolution of the additional equation for the variance of the mixture
fraction f̃ ′2:

∂

∂t

(
ρ f̃ ′2

)
+

∂

∂xi

(
ρui f̃ ′2

)
=

∂

∂xi

(
µt

0.85
∂ f̃ ′2

∂xi

)
+ 2.86 µt

(
∂ f̃
∂xi

)2

− 2 ρ
ε

k
f̃ ′2, (13)

where k, ε—turbulence kinetic energy [m2/s2] and its dissipation rate [m2/s3].
The k-ε (Realizable) turbulence model was used to describe turbulence. The turbulence

kinetic energy k and its dissipation rate ε for an unsteady flow satisfy the following transfer
equations:
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∂

∂t
(ρk) +

∂

∂xi
(ρk ui) =

∂

∂xi

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk + Gb − ρε−YM + Sk, (14)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xi

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ ρC1Sε − ρC2

ε2

k +
√

νε
+ C1ε

ε

k
C3εGb + Sε, (15)

where

C1 = max
[

0.43,
η

η + 5

]
, C3ε = tanh

∣∣∣ υ
u

∣∣∣,
eta = S

k
ε

, σk = 1, σε = 1.2, C1ε = 1.44, C2 = 1.9, (16)

where σk, σε—are the reciprocal effective Prandtl numbers for k and ε, respectively; Gk—
source due to the mean velocity gradient; Gb—generation of kinetic energy of turbulence
due to buoyancy; YM- represents the contribution of oscillating dilatation in compressible
turbulence to the total scattering velocity; Sk, Sε—user-defined sources; C3ε—degree of
buoyancy; u, υ—velocity components along the x, y axes, respectively; η—dimensionless
coordinate; S—mean strain rate tensor.

To simulate turbulent viscosity in the core, the following expression is defined:

µT = ρ Cµ
k2

ε
, (17)

where Cµ—empirical coefficient equal to Cµ=0.09.

2.3. Border Conditions

The boundary conditions were set as follows:

- On the walls:

x ∈ (0, L) : u(x, R, θ) = 0; υ(x, R, θ) = 0; w(x, R, θ) = 0; T(x, R, θ) = Tw.

R∗ ∈ (rB, R) : u(x0, R∗, θ) = 0; υ(x0, R∗, θ) = 0; w(x0, R∗, θ) = 0; T(x0, R∗, θ) = Tw. (18)

- Inlet:

r ∈ (0, rB) : u(x0, r∗, θ) = Uair + U f uel ; υ(x0, r∗, θ) = 0; w(x0, r∗, θ) = ωair;

P(x0, r∗, θ) = Pair + Pf uel ; T(x0, r∗, θ) = Tair + Tf uel . (19)

- Outlet:

p(L, r, θ) = 0, r ∈ (0, R). (20)

2.4. Mesh Selection and Mesh Convergence Analysis

Using the 3D-CAD Models module, a combustion chamber with one combined burner
was modeled. The generation of the computational grid was carried out using the Mesh
module, a conformal grid was applied with the use of zonal thickening of grid elements.

Figures 3 and 4 show examples of the computational grid for the burner and combus-
tion zone. At this stage of research, the grid is divided into three zones: the first zone is a
burner device in which mixing and swirling of methane-air mixture flows is carried out;
the second zone is the most efficient zone in the center of the combustion chamber after
exiting the burner, where the temperature and flame propagation speed are the highest
compared to other areas; the third zone is the least effective zone compared to the others.
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Figure 3. Calculation grid of the study area of the simulated combustion chamber with one burner
device type, GMU-45.

(a) (b)

Figure 4. Calculation grid of the study area of the simulated burner: (a) burner cut; (b) front view.

At the first stage, a study was carried out to select the required number of grid
elements based on test calculations of the methane-air mixture. The simulated natural
gas flow Q = 3936 nm3/h, which corresponds to 80% of the steam load of the E-500-13.8-
560GMN (the other name TGME-464) type boiler. Figure 5 shows the results of a numerical
calculation of the developed model at an air temperature at the burner inlet T = 477 K and
an excess air coefficient α = 1.02.

As can be observed from Figure 5, as the base grid size increases, the calculation error
increases. Additionally, it is necessary to pay attention to the machine resource spent when
calculating on a computer, so for the “base” size of 0.5 m, more than 28 h of time were spent
for 10 thousand iterations to calculate the combustion chamber with only one combined
burner device. In this regard, for further calculations, we use a grid of the “basic” size of
0.5 m with the number of cells 2,787,464.
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(a) (b)

Figure 5. Comparison of test calculations for the combustion of a methane-air mixture with a “basic”
size of cells of the computational grid of 0.4–1.0 m: (a) comparison of temperature; (b) comparison
of NOx emissions. With a “basic” size of 0.4 m, the number of cells of the computational grid was
5,192,600; with a “base” size of 0.5 m–2,787,464; with a “base” size of 0.75 m–951,840; with a “base”
size of 1.0 m–456,125.

2.5. Choice of Combustion Model

At the second stage, a test study was carried out to select a model for a numerical
experiment. The multidisciplinary STAR-CCM+ platform provides a wide range of such
tools for modeling premixed methane-air mixtures.

As can be observed from Figure 6, with a change in the combustion model at the
basic grid size determined in the previous step, the maximum temperature level remains at
the same level, while the active combustion zone is shifting along the flame front of the
simulated combustion chamber. At the same time, in each of the models, the condition
for finding the maximum NOX content in the zone of maximum temperatures is observed.
The choice of the Flamelet Generated Manifold (FGM) model is based on the possibility of
using a pre-mixed flame.

2.6. Some of the Obtained Results of Forecasting Emissions of Harmful Substances

For the development of new technical and regime measures aimed at reducing C for
the existing GMU-45 burner used in power boilers E-500-13.8-560GMN, it is important
to have theoretical data for different steam loads. During computational experiments to
study the emission of harmful substances, steam loads of 315 tons per hour (63%), 400 tons
per hour (80%) and 470 tons per hour (94%) of the E-500-13.8-560GMN power boiler were
simulated. Figure 7, shows the results of computational experiments with the excess air
coefficient α = 1.06–1.03, and gas flow rate through one burner 2985–4550 m3/h. To obtain
adequate results, the regime map of the operating power boiler E-500-13.8-560GMN was
used as the initial data.

It can be observed from the figures that as the load increases, the temperature in the
core of the flare and CO2 increases, but at the same time, NOX emission turned out to be
the maximum at a load of 315 tons per hour, which is explained by a large air excess factor.
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(a) (b)

Figure 6. Comparison of test calculations of the methane–air mixture for different combustion models
of the STAR-CCM+ multidisciplinary platform: (a) temperature comparison; (b) comparison of
NOX emissions.

In steam boilers of this type, one of the main methods for reducing NOX emissions
is implemented–flue gas recirculation. The recirculation of combustion products into the
combustion chamber leads to a decrease in the temperature of the torch and the alignment
of the temperature fields in the furnace, which leads to an intensive suppression of the
formation of thermal NOX . There are several basic ways to supply recirculated gas to air
ducts. The first method is the selection of flue gases in front of the regenerative air heater
at temperatures above 300 °C and their introduction into the hot air box. In this case, the
recirculating gases are transported by a special exhaust gas recirculation fan, which allows
one to adjust the degree of recirculation gases supply within 0–25%, depending on the
boiler load. The second method involves the selection of flue gases after the regenerative air
heater at temperatures of 130–160 °C, and the cost of servicing the flue gas recirculation fan
and its cost is less compared to the first method. Sometimes, due to the lack of free space
for installing a flue gas recirculation smoke exhauster and additional gas ducts, a jumper is
installed between the flue behind the smoke exhauster and the air duct in front of the blower
fan. This recirculation method is the cheapest, but the degree of recirculation, as a rule,
does not exceed 12–15% due to the additional load on the blower fan and smoke exhauster.

The limited use of flue gas recirculation is associated with a decrease in the economic
performance of the boiler. The efficiency of the boiler is reduced by 0.01 ÷ 0.03% for every
1% of the degree of recirculation due to an increase in heat loss with flue gases due to an
increase in flue gas temperature. Moreover, the consumption of electricity for the drive of
the blower fan, the smoke exhauster and the flue gas recirculation smoke exhauster are
growing. Figure 8 shows an example of a general reduction in the efficiency of a steam
boiler from its load when implementing flue gas recirculation.

To organize the process of flue gas recirculation to reduce NOX , it is important to have
theoretical data on the change in the environmental performance of the boiler at different
steam loads at different degrees of gas recirculation into the combustion zone. Figure 9
shows the results of a study of the emission of harmful substances from the E-500-13.8-
560GMN power boiler at a steam load of 400 tons per hour. It is important to note the
limited performance of E-500-13.8-560GMN blowers, due to which the maximum possible
degree of recirculating gas supply decreases with increasing steam load.
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(a) (b)

Figure 7. The study of the release of harmful substances at various steam loads of the E-500-13.8-
560GMN type boiler: (a) comparison of temperatures; (b) comparison of NOX emissions.

Figure 8. Influence of flue gas recirculation on the efficiency of a power boiler E-500-13.8-560GMN.

From the analysis of Figure 9, with an increase in the degree of recirculation gas supply
(r = 0 ÷ 15%), the NOX content decreases along the flame profile, which is explained by
a decrease in the maximum temperature, which is the main indicator of the formation of
thermal NOX . The decrease in temperature in the zone of active combustion is explained
by the increase in the volume of triatomic gases in the zone of natural gas combustion.
At the same time, maximum efficiency is achieved at the maximum possible degree of
recirculation gas supply (for this type of boiler, limited by the capacity of the blower fan).
Figure 10 shows the results of a study of the emission of harmful substances from the
E-500-13.8-560GMN power boiler at a steam load of 315 tons per hour.

From the analysis of Figure 10, it can be observed that with the supply of 15% flue
gas recirculation, the decrease in the maximum temperature in the core of the flare is up
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to 250 °C. A further increase in the efficiency of NOX emission suppression is possible by
lowering the local temperature due to the reorganization of the degree of recirculation
(without changing its total share) along the tiers of burners of power boilers, with most of
them directed to the zone of maximum temperatures. The implementation of this technical
solution can additionally neutralize one of the significant disadvantages of this method
of reducing NOX—reducing the efficiency of a power boiler: reorganization of the degree
of recirculation allows, without loss of technology efficiency, to reduce the total share of
flue gas recirculation, which will reduce heat losses with exhaust gases (due to flue gas
temperature reduction) and the power expended on the drive of the blower fan and flue
gas recirculation smoke exhauster [46].

(a) (b)

Figure 9. Study of the influence of the degree of recirculation during the combustion of a methane-
air mixture of the type of power boiler E-500-13.8-560GMN (steam load of 400 tons per hour):
(a) temperature comparison; (b) comparison of NOX emissions.

(a) (b)

Figure 10. Study of the influence of the degree of recirculation during the combustion of a methane–
air mixture of the type of power boiler E-500-13.8-560GMN (steam load of 315 tons per hour):
(a) temperature comparison; (b) comparison of NOX emissions.
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3. Application of Machine Learning to Improve the Efficiency of Burners
3.1. Machine Learning Problem Statement

The influence of various indicators on the efficiency of burner devices (load, air
flow, methane and biogas, fuel and oxidizer compositions, and others) is investigated.
The efficiency of the burner is evaluated by the content of NOX, CO, as well as by the
temperature of the flue gases and the temperature in the core of the torch; in this case, three
states of the device are assumed: optimal, satisfactory, and unsatisfactory.

There are known precedents in the form of the results of computational experiments
to simulate the operation of the burner device: the values of the performance indicators
and the corresponding performance characteristics.

This is a machine learning task: multiclass classification of the states of the burner
device based on the results of the analysis of the received data (learning by precedents:
“supervised”).

The purpose of this study is to develop a learning algorithm that provides the necessary
accuracy of predicting the state of the device when setting new values of performance
indicators (Figure 11).

Figure 11. Flowchart to present the proposed approach.

3.2. Basic Machine Learning Methods

Many different methods can be used for multiclass classification. First, there are
statistical methods of Fisher’s discriminant analysis. Many other algorithms are also based
on the methods of probability theory and mathematical statistics. These are the naive
Bayes classifier, logistic regression, support vector machines, nearest neighbor methods
and others. Decision trees are often used in classification problems.

Of the intelligent methods, the main one is the method of artificial neural networks:
the best results are obtained using deep learning, but a large amount of initial data is
required: tens of thousands of observations or more. Since it seems unrealistic to obtain
such a volume of data in the problem under consideration, this method is not used.

All these methods are described in detail in the literature [47–51].
A special group consists of compositional methods, which represent an ensemble of

individual algorithms. The two main compositional methods–bagging and boosting–give
higher accuracy on a specific data set compared to separate algorithms. Compositional
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methods use the same classification method, built either on different subsets of the sample,
or compensating for the errors of the previous iteration at each step.

Let us consider in more detail one of the variants of compositional methods, which
turned out to be the best in the problem under consideration—“random forest”. Random
forest is a machine learning algorithm proposed by L. Breiman [51]; it uses an ensemble
(committee) of decision trees. The algorithm combines bagging (random selection with
return) and the random subspace method. It consists of many independent decision trees,
using a random sample of observations from the training set and a random set of metrics
to make node split decisions. The random forest is used to solve problems of classification,
regression and clustering.

The classification of objects is carried out by voting: each tree of the committee assigns
the object being classified to one of the classes, and the one with the most trees wins. The
optimal number of trees is selected in such a way as to minimize the classifier error on the
test sample.

The method has high prediction accuracy, is insensitive to monotonic transformations
of indicator values, rarely retrains: adding trees almost always only improves the composi-
tion, but after reaching a certain number of trees, the learning curve reaches an asymptote.
The disadvantages include the fact that, unlike a single tree, the results of random forests
are harder to interpret; in addition, it is difficult to save the result due to the too large
memory size of the final models.

Exactly this method turned out to be the best in solving the problem of estimating the
efficiency of burners.

When using the aggregated approach [52–54], various classification methods based
on the training set are used together. To achieve the best result, a full enumeration of sets
from all basic methods can be applied. However, studies have demonstrated that the use of
more than two basic classifiers in the aggregate does not provide a significant increase in
accuracy. At the same time, the aggregation method (by the mean, by the median, or by
voting) also does not have a significant impact on the quality of the classification. In this
regard, the aggregation of two classifiers by the average value was used.

For example, for the support vector machine, the probability that the state of the object
belongs to the k-th class is:

P(Y = k|X) =

exp

(
p
∑

j=1
wkjxj + wk,o

)
m
∑

i=1

(
p
∑

j=1
wijxj + wi,o

) (21)

where wij—support vector machine parameters determined using the Lagrange multiplier
method for each of the m classes.

For boosting methods, this probability is defined as:

P(Y = k|X) =

exp
(

T
∑

t=1
αktht

)
m
∑

i=1

(
T
∑

j=1
αitht

) (22)

where ht(x)—basic boosting classifiers; T—number of base classifiers, αit—weighted voting
coefficient for the corresponding classifier ht(x). The mathematical model of the aggregated
mean value classification method for two basic methods—support vectors and boosting–
will take the form:
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P̂(Y = k|X) =
1
2


exp

(
p
∑

j=1
wkjxj + wk,o

)
m
∑

i=1

(
p
∑

j=1
wijxj + wi,o

) +

exp
(

T
∑

t=1
αktht

)
m
∑

i=1

(
T
∑

j=1
αitht

)
 (23)

The expediency of using aggregated classifiers is such that when conducting a binary
classification, this approach led to a significant increase in the quality of training [52]. In a
number of cases, aggregation according to Formula (23) led to an increase in the value of
the F-measure when solving the problem of estimating the efficiency of burners.

3.3. Criteria for the Quality of Education

To assess the quality of machine learning, three different criteria are most often used:
the average error on the test sample (or vice versa, the proportion of correct answers),
AUC—area under ROC curve—the area under the ROC curve (error curve) and F-measure.

The F-score is calculated based on two metrics, precision and recall. The precision is
the percentage of correctly identified objects of one class among all objects assigned by the
system to this class. The recall is the percentage of correctly identified objects of one class
among all objects of this class in the test sample.

P =
TP

TP + FP
; (24)

R =
TP

TP + FN
, (25)

where TP (true-positive) is the number of true-positive decisions (for example, the number
of objects of the 1st class assigned to the 1st class), FP (false-positive) is a false positive
decision (for example, the number of objects of the 2nd class, assigned to the 1st class), FN
(false-negative)—a false negative decision (the number of objects of the 1st class assigned
to the 2nd class). The F-measure is determined by the formula:

F =
2PR

P + R
, (26)

it is the harmonic mean between precision and recall. Such a measure is the most informa-
tive quality indicator for unbalanced classes: the closer the F value is to one, the higher the
classification quality.

A useful quality characteristic of a multiclass classification is the confusion matrix.
The confusion matrix is an m*m matrix, where m is the number of classes. The matrix
shows how many examples from each class were identified correctly (diagonal values)
and how many observations from each class were incorrectly identified as the kth class
(k = 1, . . . , m). Each row of the matrix represents instances in the predicted class, and each
column represents instances in the actual class. The sum of all off-diagonal values of the
matrix shows the number of errors made by the classifier.

3.4. Burner Performance Indicators Obtained from the Results of a Computational Experiment

Based on the results of a series of 309 computational experiments, using the complex
of models presented in Section 2, 20 factors that affect the efficiency of the burner device
were identified (Table 1).

The efficiency of the burner is evaluated by the following indicators: NOX content
(Y1), CO content (Y2), flue gas temperature (Y3) and flame core temperature (Y4); in this
case, three possible states of the device are assumed: optimal (class 1), satisfactory (class 2)
and unsatisfactory (class 3).
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The optimal state of the burner is considered when Y1 < 125, Y2 < 100, Y3 = 343–381,
Y4 = 1600–1700; satisfactory—with Y1 = 125–290, Y2 = 100–300, Y3 = 381–393, Y4 = 1700–2100;
unsatisfactory—with Y1 > 290, Y2 > 300, Y3 > 393, Y4 > 2100.

Taking into account these ratios, it was found that out of 309 observations, 31 (10%)
belong to class 1, 164 (53%) belong to class 2 and 114 (37%) belong to class 3. There is a
significant imbalance in the data: observations belonging to class 1 are much less than to
classes 2 or 3. This means that in practical calculations, the F-measure will be the main
criterion for the quality of machine learning.

Table 1. Indicators affecting the efficiency of the burner.

Symbol Name Unit of Measure Minimum Maximum

X1 Steam load tons/h 170 500

X2 Air consumption m3/h 4847 61,152

X3
Methane

consumption m3/h 0 5375

X4
Biogas

consumption m3/h 0 5000

X5 CH4 % 30.41 98

X6 C2H6 % 0 14.58

X7 C3H8 % 0 9.09

X8 CO2 % 0 31.75

X9 N2 % 0 1.05

X10 H2S % 0 0.11

X11 H2, % 0 50.1

X12 O2 % 0.179 0.232

X13 N2 % 0.750 0.768

X14 CO2 % 0 0.023

X15 H2O % 0 0.048

X16
Inlet air

temperature K 446 533

X17 Fuel temperature K 10 25

X18 Swirler blade angle degrees 0 50

X19 Grid size m 0.1 1

X20 Excess air ratio 0.88 1.5

4. Results and Discussion of a Computational Experiment

The presence of correlations between indicators was investigated. The correlation
matrix showed a linear relationship between the pairs of indicators X7 (C3H8) and X11 (H2),
as well as between X8 (CO2) and X10 (H2S). When conducting machine learning, the X10
and X11 indicators were excluded from the feature matrix. A strong correlation (sample
correlation coefficient r > 0.9) takes place between the pairs of indicators X4–X5, X4–X9,
X5–X9, X6–X7, X6–X11. At the same time, a weak but significant (according to the Student’s
t-test) correlation of indicators with class numbers (r < 0.4) was found. For example, for
the X1 indicator, the correlation coefficient is r = 0.34; for the indicator X19 − r = 0.36. The
presence of outliers in the data was estimated from scatterplots between pairs of indicators.
Figure 12 shows the outlier at the point with coordinates (400; 4896). The corresponding
rows of the feature matrix and the response vector (xi, yi) were removed from the sample:
a total of nine outliers were found.
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To build a multiclass classification, a special program was developed in the Python
programming language. It used the Sklearn library (scikit-learn) from which constructors
for classification algorithms are imported: LogisticRegression, LinearDiscriminantAnalysis,
KNeighborsClassifier, DecisionTreeClassifier, GaussianNB, SVC—support vector machine,
RandomForestClassifier and AdaBoostClassifier. Moreover, ready-made modules for calcu-
lating multiclass classification metrics are imported from the Sklearn library.

The mean aggregation method was programmed by hand but using a Python function
to find the probabilities that each object belongs to the corresponding class: predict_proba.

Figure 12. Scatterplot between indicators X1 and X2.

The program provides input of the initial data file, splitting it in each ratio into training
and test parts in a random way, conducting cross-validation with a user-specified number
of blocks.

The result of the program is the calculation of three measures of classification quality
for the test sample (the proportion of correct answers, F-measures, and confusion matrices)
for basic, combined, and aggregated classifiers. The user, depending on the nature of
the initial data, selects the best criterion, which is used to predict the state of the object.
According to the newly set (found) indicators of the functioning of the object, it is predicted
to which class its state belongs.

When starting the program, the initial data file is first requested (we have a table of
300 rows and 19 columns, of which 18 are indicators, the 19th column is the class to which
the corresponding row belongs), then the volume of the test sample in percent (we take
initially K = 20) and the number of cross-validation blocks (assuming N = 4). The division
of the initial data into training and test parts is conducted randomly. The program displays
the percentage of correct answers and the value of the F-measure on the test set for various
algorithms, as well as the confusion matrix for the best classifier.

Comparison of the effectiveness of various methods for solving the tasks set is pre-
sented in Tables 2–4.
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Table 2. Percentage of correct answers on the test set for various basic machine learning methods.

Method Percentage of Correct Answers, %

Logistic regression 73.33%

Discriminant Function Analysis 71.67%

K-Nearest Neighbors Algorithm 80.00%

Support vector machine 56.67%

Naive Bayes classifier 21.67%

Decision tree 90.00%

Random forest 91.67%

AdaBoost 70.00%

Table 3. F-measure values on a test set under various basic machine learning methods.

Method F-Measure

Logistic regression 0.713

Discriminant Function Analysis 0.700

K-Nearest Neighbors Algorithm 0.802

Support vector machine 0.490

Naive Bayes classifier 0.206

Decision tree 0.898

Random forest 0.916

AdaBoost 0.691

Table 4. F-measure values on the test sample with different aggregation methods.

Method F-Measure

Random forest + Support vector machine 0.898

Random forest + K-Nearest Neighbors Algorithm 0.882

Random forest + AdaBoost 0.882

Random forest + Logistic regression 0.866

Support vector machine + K-Nearest Neighbors Algorithm 0.830

Support vector machine + AdaBoost 0.844

Support vector machine + Logistic regression 0.640

Support vector machine + Discriminant Function Analysis 0.710

K-Nearest Neighbors Algorithm + AdaBoost 0.867

K-Nearest Neighbors Algorithm + Logistic regression 0.799

K-Nearest Neighbors Algorithm + Discriminant Function Analysis 0.758

AdaBoost + Logistic regression 0.867

AdaBoost + Discriminant Function Analysis 0.805

Logistic regression + Discriminant Function Analysis 0.713

In the above example, the best classifier was a random forest with F-measure of 0.916.
The confusion matrix shows that the algorithm correctly assigned six observations out of
sixty contained in the test sample (20% of 300) to the first class, while there are no errors.
Thirty observations were assigned to the second class (with two observations of the second
class mistakenly taken for the third class). Nineteen observations were correctly assigned
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to the third class, in three cases the algorithm made a mistake: observations of the third
class were assigned to the second.

Since the formation of the test sample is conducted randomly, the results will be
slightly different each time the program is run. It is of interest to estimate the dispersion
of the F-measure values. For this purpose, the sample was launched several times. The
result is shown in Figure 13, where a distribution histogram is shown using the Statistica
system with a normal distribution curve plotted on it. The Shapiro-Wilk test for testing
the normality hypothesis for small samples confirms the normality of the distribution of
the F-measure. The mean value turned out to be 0.9167, standard deviation 0.0067. The
95 confidence interval of the F-measure was (0.914; 0.920).

Figure 13. F-measure distribution histogram.

When assessing the impact of the test sample share on the quality of education, the
values of the percentage of this sample were entered from 10% to 30% with a step of 5%.
The test results are presented in Table 5.

Table 5. F-measure value for different test sample sizes.

Share of the Test Sample 10% 15% 20% 25% 30%

F-measure value 0.901 0.910 0.917 0.881 0.900

It can be seen that the proportion of the test sample has an ambiguous effect on the
value of the F-measure. At the same time, a change in this proportion can increase or
decrease the value of the measure by several percent (in the tests carried out, up to 4%).
When testing burner devices, the best option turned out to be the one in which the test
sample is 20% of all initial data. Note that in all tests, the random forest turned out to be
the best algorithm.

It is also of interest to assess the impact of the number of cross-validation blocks on the
quality of training. Table 6 shows the results of the corresponding tests with a test sample
of 20%.

Table 6. F-measure value for different number of cross-validation blocks.

Number of Blocks 4 5 6 10

F-measure value 0.915 0.899 0.878 0.883
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The discrepancy in the values of the F-measure was about 4%. The results for classifi-
cation using a random forest are given, although, unlike the previous experience, where
the random forest turned out to be the best algorithm in all tests, here, with N = 6, the
aggregate classifier turned out to be the best, including the support vector machine and
boosting (AdaBoost), for which F = 0.903.

So, the best values of the studied parameters turned out to be the size of the test
sample K = 20%) and the number of cross-validation blocks N = 4. The developed program
allows predicting the state of the burner device using the resulting classifier. We enter new
values of eighteen indicators, and as a result, we get a predicted state (class) at the output.

Figure 14 shows the ranking of indicators by significance (the Statistica system was
used), which allows, with a large number of them, to reduce the least significant indicators.

Figure 14. Histogram of the significance of indicators.

As follows from Figure 14, in our study, the most significant indicators were X14 (CO2,
its significance is taken as 1), X1 (load, its significance is 0.99) and X2 (air consumption, its
significance is 0.93), the least significant—X10 (H2S, its significance is 0.18).

5. Conclusions

The paper proposes a mathematical model of a non-stationary turbulent combustion
process, which takes into account the swirl of the flow. As a result of the performed
mathematical modeling and numerical study of a non-stationary turbulent gas flow with
flue gas recirculation on the STAR-CCM+ multidisplinary platform, it was found that the
greatest reduction in emissions is achieved at a recirculation degree of 15%, and a variant
of further reduction of the local temperature, which is the main indicator of the formation
of thermal NOX , was also proposed.

Based on the data obtained, several different machine learning methods were tested to
classify the state of the burners in order to select the best one. The aggregation of machine
learning methods was performed—in binary classification problems, this approach showed
a significant increase in the quality of training. A study of the influence of various factors
on the quality of education was carried out (similar studies were carried out earlier, but for
burners it is carried out for the first time).



Mathematics 2022, 10, 2143 22 of 24

Author Contributions: Conceptualization, V.K. (Vladislav Kovalnogov), R.F. and V.K. (Vladimir
Klyachkin); methodology, V.K. (Vladislav Kovalnogov), R.F. and V.K. (Vladimir Klyachkin); software,
D.G. and Y.K.; validation, D.G., Y.K. and S.B.; investigation, V.K. (Vladislav Kovalnogov), R.F. and
V.K. (Vladimir Klyachkin); writing—original draft preparation, V.K. (Vladislav Kovalnogov), R.F. and
V.K. (Vladimir Klyachkin); writing—review and editing, V.K. (Vladislav Kovalnogov), R.F. and V.K.
(Vladimir Klyachkin); visualization, D.G., Y.K. and S.B.; supervision, V.K. (Vladislav Kovalnogov);
project administration, R.F.; funding acquisition, V.K. (Vladislav Kovalnogov) and R.F. All authors
have read and agreed to the published version of the manuscript.

Funding: The research was supported by a Mega Grant from the Government of the Russian
Federation within the framework of federal project No. 075-15-2021-584. Part of the research related
to the creation of machine learning models is supported by a grant from the President of the Russian
Federation under the project NSh-28.2022.4.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
AI Artificial Intelligence
CFD Computational Fluid Dynamics
FGM Flamelet Generated Manifold
FGR Flue Gas Recirculation
FIR Fuel-Induced Recirculation
GMU-45 Unified oil and gas burner, installed heat output 52.335 MW (45 Gcal/h)

E-500-13.8-560GMN
The other name TGME-464,Taganrog oil and gas natural circulation boiler,
steam capacity 500 t/h, steam parameters 13.8 MPa, 560 °C
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