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Abstract: In this paper, our first purpose is to describe a class of phenomena involving the growth
in the Hadamard–Kong product of several Dirichlet series with different growth indices. We prove
that (i) the order of the Hadamard–Kong product series is determined by the growth in the Dirichlet
series with smaller indices if these Dirichlet series have different growth indices; (ii) the q1-type of
the Hadamard–Kong product series is equal to zero if p Dirichlet series are of qj-regular growth, and
q1 < q2 < · · · < qp, qj ∈ N+, j = 1, 2, . . . , p. The second purpose is to reveal the properties of the
growth in the Hadamard–Kong product series of two Dirichlet series—when one Dirichlet series
is of finite order, the other is of logarithmic order, and two Dirichlet series are of finite logarithmic
order—and obtain the growth relationships between the Hadamard–Kong product series and two
Dirchlet series concerning the order, the logarithmic order, logarithmic type, etc. Finally, some
examples are given to show that our results are best possible.

Keywords: Dirichlet series; Hadamard–Kong product; growth

MSC: 30B50; 30D15

1. Introduction

The following series

∞

∑
n=0

aneλns = a0eλ0s + a1eλ1s + · · ·+ aneλns + · · · , s = σ + it, (1)

is usually called the Dirichlet series, where sequence {an} is a complex number,
0 < λ1 < · · · < λn → +∞ and σ and t are real variables.

If we take eλn = n, s = −z and an = 1, then series (1) becomes the famous Riemann ζ
function ζ(z) = ∑∞

n=1
1
nz , which is useful in analytic number theory to study the properties

of prime numbers. If we take es = z and λn = n, then this series (1) becomes a basic
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power series f (z) = ∑∞
n=0 anzn. If we take σ = 0 and λn = n, then this series (1) could be a

complex Fourier series. It is widely known that the Dirichlet series can be used in many
fields of mathematics, such as analytic number theory, functional equations, and certain
areas of theoretical and applied probability (see [1–5]).

In the past 80 years, many mathematicians have paid considerable attention to the
growth and the value distribution of entire functions representend by Dirichlet series
that are convergent in the whole complex plane (see [6–9]). For example, Doi and Na-
ganuma [10] studied the properties of Dirichlet series, satisfying a certain functional equa-
tion, and analytical support of the problem was given by G. Shimura [7]; X. Q. Ding, D. C.
Sun, J. R. Yu explored the singular points and deficient functions of random Dirichlet series,
and reveal the relationships between these Singularities and the growth of the Dirichlet
series (see [11–13]); S. M. Daoud, Z. S. Gao, Y. Y. Huo, M. L. Liang discussed the growth in
multiple Dirichlet series, and provided some results of the linear order, the lower order of
multiple Dirichlet series (see [14–17]); M. M. Sheremeta, A. R. Reddy, C. F. Yi, J. H. Ning,
H. Y. Xu explored the approximation of the Dirichlet series, and established some results
regarding the relationship between error and growth (see [18–21]); H. M. Srivastava, D.
Sato, S. M. Shah, S. Owa, A. R. Reddy, O.P. Juneja, D. C. Sun, Z. S. Gao investigated the
Hadamard product of analytic functions and the growth in the Dirichlet series, and ob-
tained some theorems involving the concepts of zero-order, finite p-order, and (p, q)-order,
etc. (see [22–38]).

2. Some Definitions and Basic Results

Let Dirichlet series (1) satisfy

lim sup
n→+∞

log n
λn

= E < +∞, lim sup
n→+∞

log |an|
λn

= −∞, (2)

then, in view of Refs. [6,9], we can conclude that the series (1) converges on the whole plane.
Thus, the sum function f (s) of (1) is an entire function. For convenience, allow D to denote
the set of all functions f (s) with the form (1), which is analytic in the region <s < +∞ and
the sequence {λn} satisfy (2).

Usually, we utilize the order and type to estimate the growth in f (s), which are defined
as follows.

Definition 1 (see [22]). Let f (s) ∈ D. The q-order ρ[q] and lower q-order χ[q] of f (s) are
defined by

ρ[q] = lim sup
σ→+∞

log[q] M(σ, f )
σ

, χ[q] = lim inf
σ→+∞

log[q] M(σ, f )
σ

,

where M(σ, f ) = sup
−∞<t<+∞

| f (σ + it)|. Here and below, unless otherwise specified, q is a positive

integer and q = 2, 3, . . .
Furthermore, if ρ ∈ (0,+∞), the q-type T[q] and the lower q-type τ[q] of f (s) are defined by

T[q] = lim sup
σ→+∞

log[q−1] M(σ, f )
eρσ , τ[q] = lim inf

σ→+∞

log[q−1] M(σ, f )
eρσ ,

where log[−1] x = ex, log[0] x = x, log[1] x = log+ x, log[k] x = log+ log[k−1] x, k ∈ Z+.

Remark 1. It is said that f (s) has the growth index q, if ρ[q−1]( f ) = ∞ and ρ[q] ∈ [0,+∞).

Remark 2. Generally, 2-order is always called an order, that is, ρ[2] = ρ. Similarly, for the lower
2-order, 2-type and lower 2-type, we have χ[2] = χ, T[2] = T and τ[2] = τ.

Remark 3. We say that f (s) is of q-regular growth if ρ[q] = χ[q], f (s) is of q-irregular growth if
ρ[q] 6= χ[q]. Further, f (s) is of perfectly q-regular growth if ρ[q] = χ[q] and T[q] = τ[q].
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To describe the growth in f (s) when ρ[2] = 0, the definitions, including the logarith-
mic order, logarithmic type, lower logarithmic order and lower logarithmic type, can be
introduced as follows

Definition 2 (see [30,39]). If f (s) ∈ D, and is of zero-order ρ[2] = 0, then we define the
logarithmic order and lower logarithmic order of f (s) as follows

ρl = lim sup
σ→+∞

log+ log+ M(σ, f )
log σ

, χl = lim inf
σ→+∞

log+ log+ M(σ, f )
log σ

.

Furthermore, if 1 ≤ ρl < +∞, the logarithmic type Tl and lower logarithmic type τl of f (s)
are defined by

Tl = lim sup
σ→+∞

log+ M(σ, f )
σρl

, τl = lim inf
σ→+∞

log+ M(σ, f )
σρl

.

Remark 4. We say that f (s) is of logarithmic regular growth if ρl = χl , while f (s) is of logarithmic
irregular growth if ρl 6= χl . Further, f (s) is of perfectly logarithmic regular growth if ρl = χl and
Tl = τl .

We will then list some results of the q-order, q-type, lower q-order, lower q-type, . . . of
Dirichlet series, which are used in this paper.

Theorem 1 (see [22]). If f (s) ∈ D, and is of q-order ρ[q] and q-type T[q], then

ρ[q] = lim sup
n→+∞

λn log[q−1] λn

− log |an|
,

T[q] = lim sup
n→+∞

|an|
ρ[q]
λn log[q−2]

(
λn

ρ[q]e

)
.

Theorem 2 (see [22]). Let f (s) ∈ D, and be of lower q-order χ[q], then

χ[q] ≤ lim inf
n→∞

λn log[q−1] λn−1

log |an|−1 ,

the equal sign in the above inequality holds if, and only if,

ψ(n) =
log |an| − log |an+1|

λn+1 − λn

is a non-decreasing function of n.

Theorem 3 (see [8,22]). Let f (s) ∈ D; then

τ[q] ≤ lim inf
n→+∞

|an|
ρ

λn log[q−2](
λn−1

eρ
),

the equal sign in the above inequality holds if, and only if, ψ(n) is a non-decreasing function of n
and log[q−2] λn−1 ∼ log[q−2] λn(n→ ∞).

Theorem 4 (see [30]). If f (s) ∈ D, and is of zero-order and finite-logarithmic order ρl , then

ρl = 1 + lim sup
n→+∞

log λn

log
(

1
λn

log 1
|an |

) .
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Theorem 5 (see [30]). Let f (s) ∈ D, and is of zero-order and finite-lower-logarithmic order
χl , then

χl ≤ 1 + lim inf
n→+∞

log λn−1

log
(

1
λn

log 1
|an |

) ,

the equal sign in the above inequality holds, if and only if, ψ(n) is a non-decreasing function of n.

Theorem 6 (see [39]). Let f (s) ∈ D, be of zero-order, logarithmic order ρl(1 < ρl < +∞), and
logarithmic type Tl ; then

Tl = lim sup
n→+∞

λn

ρl
[
− ρl

ρl−1
1

λn
log |an|

]ρl−1
,

and for λn ∼ λn−1,

τl ≥ lim inf
n→+∞

λn−1

ρl
[
− ρl

ρl−1
1

λn
log |an|

]ρl−1
.

Further, if ψ(n) is a non-decreasing function of n, then

τl = lim inf
n→+∞

λn

ρl
[
− ρl

ρl−1
1

λn
log |an|

]ρl−1
.

Based on the conclusions of Theorems 1–3, Kong [40], in 2009, studied the growth in
rhw Dirichlet–Hadarmard product function defined by two Dirichlet series, and provided
an estimation of the (lower) q-order and the (lower) q-type of this product function. To
provide related results, we first define the Dirichlet–Hadamard product function as follows.

Definition 3 (see [40], Definition 2). Let f1(s) = ∑∞
n=1 aneγns, f2(s) = ∑∞

n=1 bneξns and
f1(s), f2(s) ∈ D, then the Dirichlet–Hadamard product function of f1(s) and f2(s) are defined by

G(s) = ( f1∆ f2)(u, v; s) =
∞

∑
n=1

cneλns, cn = au
nbv

n, λn =
γn + ξn

2
,

where u, v are positive numbers and {an}, {bn} ⊂ C.

In view of this definition, Kong [40] obtained

Theorem 7 (see [40], Theorems 1–4). Let f j(s) ∈ D be of q-order ρj and lower q-order χj,
j = 1, 2, and if

γn ∼ ξn, (n→ +∞),

and ψ1(n) =
log |an |−log |an+1|

γn+1−γn
, ψ2(n) =

log |bn |−log |bn+1|
ξn+1−ξn

are two non-decreasing functions of n.
(i) Then the (lower) q-order ρ(χ) of Dirichlet-Hadarmard product G(s) satisfy

χ1χ2

vχ1 + uχ2
≤ χ ≤ ρ ≤ ρ1ρ2

vρ1 + uρ2
,

(ii) if f j(s)(j = 1, 2) are of q-regular growth, then the Dirichlet–Hadarmard product function
G(s) is of q-regular growth, and the q-order ρ of G(s) satisfies

ρ =
ρ1ρ2

vρ1 + uρ2
, ρ1, ρ2 ∈ [0,+∞).



Mathematics 2022, 10, 2220 5 of 26

(iii) if ρ1, ρ2 ∈ (0,+∞), then the q-type of G(s) satisfies

T ≤

 T
uρ
ρ1

1 T
vρ
ρ2

2 , q = 3, 4, 5, . . .
1
ρ [ρ1T1]

uρ
ρ1 [ρ2T2]

vρ
ρ2 , q = 2.

Remark 5. We can see that the conclusions of Theorem 7 were obtained under the conditions E = 0
in (2).

From Theorem 7, we can see that the author only discussed the growth in the Dirichlet–
Hadamard product function, which is constructed by two Dirichlet series and f1(s) and
f2(s) have the same growth index q, that is, f1(s), f2(s) of finite q-order. Following this,
there have been few references focusing on the properties of the Dirichlet–Hadamard
product functions. However, the following interesting questions are naturally raised:

Question 1. Could the condition “E = 0” in (2) be relaxed to “E < +∞” in Theorem 7?

Question 2. What can be said about the growth in the Dirichlet–Hadamard product function of
p(≥2) Dirichlet series with the different growth indices?

Question 3. What can be said about the growth in the Dirichlet–Hadamard product function
of several Dirichlet series with the logarithmic growth, and the case for some of them being of
logarithmic growth and the others being of finite growth?

Motivated by Questions 1–3, we will further explore the properties of the Dirichlet–
Hadamard product function of several Dirichlet series that are convergent in the whole
plane concerning the logarithmic growth and q-th growth. The paper is organized as
follows. In Section 2, we will provide a definition of the Dirichlet–Hadamard product of p
Dirichlet series, and describe our main results regarding the growth in Dirichlet–Hadamard
product functions. After that, some examples are given in Section 3 to show that our
results are correct to some extent. The details of the proofs of Theorems 8–15 are given
in Sections 5–7. Finally, we provide our conclusions and some open questions in the
last section.

3. Our Main Results

We first introduce the following definition of the Dirichlet–Hadamard–Kong product
of a finite Dirichlet series, which is more general than the Dirichlet–Hadamard shown in
Definition 3.

Definition 4. Let f j(s) = ∑∞
n=1 an,je

λn,js ∈ D, j = 1, 2, . . . , p, (p ≥ 2, p ∈ N+), then the
Hadamard–Kong product function of f j(s) is defined by

G(s) = ( f1∆ f2∆ · · ·∆ fp)(u1, . . . , up; v1, . . . , vp; s) =
∞

∑
n=1

bneλns,

where
bn = au1

n,1au2
n,2 · · · a

up
n,p, λn = v1λn,1 + v2λn,2 + · · ·+ vpλn,p,

and u1, u2, . . . , up, v1, v2, . . . , vp are positive numbers.

Based on Definition 4, we obtain

Theorem 8. Let f j(s) = ∑∞
n=1 an,je

λn,js(∈ D) have the growth index qj, and be of qj-order
ρj(∈ [0, ∞)), j = 1, 2, . . . , p, and

λn,i ∼ λn,j, (n→ +∞, i 6= j, i, j = 1, 2, . . . , p). (3)



Mathematics 2022, 10, 2220 6 of 26

If there is a positive integer m(1 ≤ m ≤ p) such that

q1 = q2 = · · · = qm < qm+1 ≤ · · · ≤ qp, (4)

then Hadamard–Kong product G(s) has the growth index q1 and the q1-order ρ of G(s), satisfying

ρ ≤ V
(

u1

ρ1
+

u2

ρ2
+ · · ·+ um

ρm

)−1
, (5)

where V = v1 + v2 + · · ·+ vp.

Remark 6. ρ ≤ ρ1
u1

∑
p
j=1 vj if m = 1; ρ ≤ (v1 + v2)

(
u1
ρ1

+ u2
ρ2

)−1
if m = p = 2.

Remark 7. Here and below, unless otherwise specified, we always assume qj, j = 1, 2, . . . , p are
positive integers and qj ≥ 2.

Theorem 9. Let f j(s) = ∑∞
n=1 an,je

λn,js(∈D) have the growth index qj, and be of a lower qj-order
χj, j = 1, 2, . . . , p. If f j(s) satisfy (3), (4),

λn+1,j − λn,j = ηj(λn+1,1 − λn,1), ηj > 0, j 6= 1, (6)

and

ψj(n) =
log |an,j| − log |an+1,j|

λn+1,j − λn,j
, j = 1, 2, . . . , p, (7)

are non-decreasing functions of n. Then Hadamard-Kong product G(s) has the growth index q1,
and the lower q1-order χ of Hadamard–Kong product G(s) satisfy

χ ≥ V
(

u1

χ1
+

u2

χ2
+ · · ·+ um

χm

)−1
. (8)

Remark 8. χ ≥ χ1
u1

∑
p
j=1 vj if m = 1; and χ ≥ (v1 + v2)

[
u1
χ1

+ u2
χ2

]−1
if m = p = 2.

Theorem 10. Let f j(s) = ∑∞
n=1 an,je

λn,js(∈ D) be of qj-regular growth, qj-order ρj and qj-type
Tj, j = 1, 2, . . . , p. If f j(s) satisfy (3), (4), (6) and (7) are non-decreasing functions of n.

(i) Then, Hadamard–Kong product G(s) is of q1-regular growth, and the q1-order ρ of
G(s) satisfy

ρ = V
(

u1

ρ1
+

u2

ρ2
+ · · ·+ um

ρm

)−1
;

(ii) If there is a positive integer m(1 ≤ m < p) satisfying (4) and 0 < ρj < +∞,
j = 1, 2, . . . , p, then the q1-type T[q1](G) of G(s) is equal to zero, that is, T[q1](G) = 0;

(iii) If m = p, that is, q1 = q2 = · · · = qp = q, then the q-type T of G(s) satisfy

T ≤

 T
u1ρ
Vρ1

1 T
u2ρ
Vρ2

2 · · · T
upρ

Vρp
p , q = 3, 4, 5, . . .

V
ρ (ρ1T1)

u1ρ
Vρ1 (ρ2T2)

u2ρ
Vρ2 · · ·

(
ρpTp

) upρ

Vρp , q = 2.

Furthermore, if f j(s), j = 1, . . . , p are of perfectly q-regular growth and

log[q−2] λn−1,j ∼ log[q−2] λn,j, n→ ∞, j = 1, 2, . . . , p, (9)

and
V = v1 + v2 + · · ·+ vp = 1, (10)
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then G(s) is of perfectly q-regular growth, and the q-type T of G(s) satisfy

T =

 T
u1ρ
ρ1

1 T
u2ρ
ρ2

2 · · · T
upρ
ρp

p , q = 3, 4, 5, . . .
1
ρ (ρ1T1)

u1ρ
ρ1 (ρ2T2)

u2ρ
ρ2 · · ·

(
ρpTp

) upρ
ρp , q = 2.

Remark 9. Obviously, our results are some improvements to Theorem 7, since the results in [40]
are the special case of Theorems 8–10 for p = 2, q1 = q2 = q and V = 1.

Remark 10. By observing Theorems 8–10, for simplicity, we allow(
u1

ρ1
+

u2

ρ2
+ · · ·+ um

ρm

)−1
= 0,

if ρj = 0 for j ∈ J ⊆ {1, 2, . . . , m}. In fact, it should be noted that

u1

ρ1
+

u2

ρ2
+ · · ·+ um

ρm
→ +∞,

if ρj = 0 for j ∈ J ⊆ {1, 2, . . . , m}. Thus, it follows that(
u1

ρ1
+

u2

ρ2
+ · · ·+ um

ρm

)−1
→ 0.

Similarly, let (
u1

χ1
+

u2

χ2
+ · · ·+ um

χm

)−1
= 0,

if χj = 0 for j ∈ J ⊆ {1, 2, . . . , m}.

Now, we will state the results of the growth in Dirichlet–Hadamard–Kong product
function G(s) of several Dirichlet series with the logarithmic growth.

Theorem 11. Let f j(s) = ∑∞
n=1 an,je

λn,js(∈ D) be of zero-order and the logarithmic order ρl
j,

j = 1, 2, . . . , p. If f j(s), j = 1, 2, . . . , p satisfy (3), then G(s) is of zero-order and the logarithmic
order ρl , such that

ρl ≤ ρl
min =: min{ρl

1, ρl
2, . . . , ρl

p}.

Theorem 12. Let f j(s) = ∑∞
n=1 an,je

λn,js(∈ D) be of zero-order and a lower logarithmic order χl
j,

j = 1, 2, . . . , p. If f j(s) satisfy (3), (4), (6) and (7) are non-decreasing functions of n. Then, the
lower logarithmic order χl of G(s) satisfies

χl ≥ χl
min =: min{χl

1, χl
2, . . . , χl

p}.

Remark 11. In view of Theorems 11 and 12, the logarithmic growth in Dirichlet–Hadamard–Kong
product G(s) is determined by the Dirichlet series with the minimum logarithmic growth.

Theorem 13. Let f j(s) = ∑∞
n=1 an,je

λn,js(∈ D) be of logarithmic regular ρl
j and logarithmic type

Tl
j , j = 1, 2, . . . , p. If f j(s) satisfy (3), (4), (6) and (7) are non-decreasing functions of n.

(i) Then Dirichlet–Hadamard–Kong product G(s) is of logarithmic regular growth, and the
logarithmic order ρl of G(s) satisfies

ρl = min{ρl
1, ρl

2, . . . , ρl
p} := ρl

min;
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(ii) If k is a positive integer and ρl
j(0 < ρl

j < +∞), j = 1, 2, . . . , p satisfies

ρl
1 = ρl

2 = · · · = ρl
k = ρl

min,

then the logarithmic type Tl of G(s) satisfies

Tl ≤ Vρl

 k

∑
j=1

uj

(Tl
j )

(ρl−1)−1

1−ρl

= Vρl

[
u1

(Tl
1)

(ρl−1)−1 +
u2

(Tl
2)

(ρl−1)−1 + · · ·+ uk

(Tl
k)

(ρl−1)−1

]1−ρl

.

Furthermore, if f j(s), j = 1, . . . , p are of perfectly logarithmic regular growth and satisfy (10)
and λn,j ∼ λn−1,j, j = 1, . . . , p, then G(s) is of perfectly logarithmic regular growth, and the
logarithmic type Tl of G(s) satisfies

Tl =

 k

∑
j=1

uj

(Tl
j )

(ρl−1)−1

1−ρl

=

[
u1

(Tl
1)

(ρl−1)−1 +
u2

(Tl
2)

(ρl−1)−1 + · · ·+ uk

(Tl
k)

(ρl−1)−1

]1−ρl

.

Finally, we will pay attention to the growth in Dirichlet–Hadamard–Kong product
function G(s) of two Dirichlet series when one Dirichlet series is of logarithmic growth,
and the other is of finite growth.

Theorem 14. Let f j(s) = ∑∞
n=1 an,je

λn,js, j = 1, 2 ∈ D satisfy λn,1 ∼ λn,2 as n→ ∞. If f1(s) is
of zero-order and the logarithmic order ρl

1(1 ≤ ρl
1 < ∞), and f2(s) is of the order ρ2(0 ≤ ρ2 < ∞).

Then G(s) is of zero-order and the logarithmic order ρl , such that

ρl ≤ ρl
1.

Furthermore, if f1(s) is of a lower logarithmic order χl
1, and f2(s) is of lower order χ2. If

f1(s), f2(s) satisfies (6), and (7) are non-decreasing functions of n. Then, the lower logarithmic
order χl of G(s) satisfies

χl ≥ χl
1.

Remark 12. In view of the processing of the proof of Theorem 14, we can see that the conclusions
still hold if the condition regarding f2(s) being of order ρ2 is replaced by the condition of f2(s)
having the growth index q(≥3).

Theorem 15. Let f j(s) = ∑∞
n=1 an,je

λn,js, j = 1, 2 ∈ D satisfy (6), and (7) be non-decreasing
functions of n, and λn,1 ∼ λn,2 as n → ∞. If f1(s) is of logarithmic regular growth, logarithmic
order ρl

1 and logarithmic type Tl
1, and f2(s) is of regular growth, order ρ2 and type T2.

(i) Then Dirichlet–Hadamard–Kong product G(s) is of zero-order and logarithmic regular
growth, and the logarithmic order ρl of G(s) satisfies

ρl = ρl
1;

(ii) If ρl
1, ρ2 satisfy 1 < ρl

1 < +∞, 0 < ρ2 < +∞, then the logarithmic type Tl of
G(s) satisfies

Tl ≤ (v1 + v2)
ρl

1

(u1)
ρl

1−1
Tl

1.
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Furthermore, if f1(s) is of perfectly logarithmic regular growth, f2(s) is of perfectly regular
growth and satisfies v1 + v2 = 1 and λn−1,j ∼ λn,j, j = 1, 2, then G(s) is of perfectly logarithmic
regular growth, and the logarithmic type Tl of G(s) satisfies

Tl =
Tl

1

(u1)
ρl

1−1
.

Remark 13. In view of the processing of the proof of Theorem 15, we can obtain that the conclusions
still hold if the condition of f2(s) being of regular growth is replaced by the condition of f2(s) having
the growth index q(≥3).

Remark 14. Similar to Theorems 8–13, one can easily obtain the corresponding results if the
Dirichlet–Hadamard–Kong product G(s) is structured by m1 Dirichlet series of logarithmic growth,
and m2 Dirichlet series being growth indexes q, where m1, m2, q are positive integers.

4. Examples

In this section, some examples are given to show that our results are correct and precise
to some extent.

Example 1. Let q1 = q2 = 4, q3 = 5, mj, uj, vj, j = 1, 2, 3 be positive numbers, and let

G1(s) = ( f1∆ f2∆ f3)(u1, u2, u3; v1, v2, v3; s) =
∞

∑
i=1

bneλns,

where f j(s) = ∑∞
n=1 an,je

λn,js, j = 1, 2, 3, and

bn = au1
n,1au2

n,2au3
n,3, λn =

3

∑
j=1

vjλn,j, λn,1 = λn,2 = λn,3 =
n
2

,

and

an,1 =

(
m1

log[2] n

) n
u1

, an,2 =

(
m2

log[2] n

) n
u2

, an,3 =

(
m3

log[3] n

) n
u3

.

Thus, it follows that

ρ
[4]
1 = lim sup

n→∞

λn,1 log[3] λn,1

− log |an,1|
= lim sup

n→∞

n
2 log[3] n

2
− n

u1
log m1

log[2] n

=
u1

2
, (11)

and

T[4]
1 = lim sup

n→∞
|an,1|

ρ
[4]
1

λn,1 log[2](
λn,1

eρ
[4]
1

) = lim sup
n→∞

∣∣∣∣∣ m1

log[2] n

∣∣∣∣∣ log[2]
(

n/2
eu1/2

)
= m1. (12)

Similarly, we have

χ
[4]
1 =

u1

2
, ρ

[4]
2 = χ

[4]
2 =

u2

2
, ρ

[5]
3 = χ

[5]
3 =

u3

2
, (13)

and
τ
[4]
1 = m1, T[4]

2 = τ
[4]
2 = m2, T[5]

3 = τ
[5]
3 = m3. (14)
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Now, in view of the definition of G1(s), we can deduce that

ρ[4](G1) = lim supn→∞
λn log[3] λn
− log |bn |

= lim supn→∞
(v1+v2+v3)

n
2 log[3] [(v1+v2+v3)

n
2 ]

−u1 log |an,1|−u2 log |an,2|−u3 log |an,3|
= v1+v2+v3

4 ,

(15)

and

T[4](G1) = lim supn→∞ |bn|
ρ[4] (G1)

λn log[2]( λn
eρ[4](G1)

)

= lim supn→∞

∣∣∣∣∣ (m1m2)
1
2

log[2] n

(
m3

log[3] n

)1/2
∣∣∣∣∣ log[2]

(
(v1+v2+v3)n/2
e(v1+v2+v3)/4

)
= 0.

(16)

In view of (11)–(16), we have

ρ[4](G1) =
v1 + v2 + v3

4
= (v1 + v2 + v3)

[
u1

ρ
[4]
1

+
u2

ρ
[4]
2

]−1

.

Therefore, this example shows that the conclusions (i) and (ii) of Theorem 10 are precise.

Example 2. Let

G2(s) = ( f1∆ f2)(u1, u2; v1, v2; s) =
∞

∑
n=1

cneλns,

where f1, f2 are stated as in Example 1. By using the same argument as in Example 1, we have

ρ[4](G2) = lim sup
n→∞

λn log[3] λn

− log |cn|

= lim sup
n→∞

(v1 + v2)
n
2 log[3][(v1 + v2)

n
2 ]

−u1 log |an,1| − u2 log |an,2|

=
v1 + v2

4
= (v1 + v2)

(
u1

ρ
[4]
1

+
u2

ρ
[4]
2

)−1

,

and

T[4](G2) = lim sup
n→∞

|cn|
ρ[4] (G2)

λn log[2](
λn

eρ[4](G2)
)

= lim sup
n→∞

∣∣∣∣∣
(

m1m2

log[2] n

)∣∣∣∣∣ log[2]
(
(v1 + v2)n/2
e(v1 + v2)/4

)

= (m1m2)
1/2 = (T[4]

1 )

u1ρ

Vρ
[4]
1 (T[4]

2 )

u2ρ

Vρ
[4]
2 .

Therefore, this example shows that the equal sign can occur in the conclusion (iii) of Theorem 10.

Example 3. Let uj, vj, j = 1, 2, 3 be positive numbers, and let

G3(s) = ( f1∆ f2∆ f3)(u1, u2, u3; v1, v2, v3; s) =
∞

∑
i=1

bneλns,

where f j(s) = ∑∞
n=1 an,je

λn,js, j = 1, 2, 3, and

bn = au1
n,1au2

n,2au3
n,3, λn = v1λn,1 + v2λn,2 + v3λn,3,
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and
λn,1 = λn,2 = λn,3 = n, an,1 = e−n2

, an,2 = e−2n2
, an,3 = e−n

3
2 .

Thus, in view of Theorems 11–13, it follows that

ρl
1 = ρl

1( f1) = 1 + lim sup
n→∞

log λn,1

log
(

1
λn,1

log 1
|an,1|

)
= 1 + lim sup

n→∞

log n
log( 1

n · n2)
= 2,

and

Tl
1 = Tl

1( f1) = lim sup
n→+∞

λn,1

ρl
1

[
− ρl

1
ρl

1−1
1

λn,1
log |an,1|

]ρl
1−1

= lim sup
n→∞

n
2[−2 1

n (−n2)]
=

1
4

.

Similarly, we have

χl
1 = 2, ρl

2 = χl
2 = 2, ρl

3 = χl
3 = 3, τl

1 =
1
4

, Tl
2 = τl

2 =
1
8

, Tl
3 = τl

3 =
4

27
.

In view of the definition of G3(s), we have

ρl = ρl(G3) = 1 + lim supn→∞
log λn

log
(

1
λn log 1

|bn |

)
= 1 + lim supn→∞

log(v1+v2+v3)n
log( 1

(v1+v2+v3)n
(u1n2+2u2n2+u3n3/2))

= 2,

(17)

and
Tl = Tl(G3) = lim supn→+∞

λn

ρl
[
− ρl

ρl−1
1

λn log |bn |
]ρl−1

= lim supn→∞
(v1+v2+v3)n

2[ 2
(v1+v2+v3)n

(u1n2+2u2n2+u3n3/2)]

= (v1+v2+v3)
2

4u1+8u2
.

(18)

Equations (17) and (18) reveal the fact that

ρl = min{ρl
1, ρl

2, ρl
3}, Tl = (v1 + v2 + v3)

ρl

[
u1

(Tl
1)

(ρl−1)−1 +
u2

(Tl
2)

(ρl−1)−1

]1−ρl

.

This shows that the conclusions of Theorems 11–13 are precise to some extent.

Example 4. Let uj, vj, j = 1, 2 be positive numbers, and let

G4(s) = ( f1∆ f2)(u1, u2; v1, v2; s) =
∞

∑
i=1

bneλns,

where f j(s) = ∑∞
n=1 an,je

λn,js, j = 1, 2, and

bn = au1
n,1au2

n,2, λn = v1λn,1 + v2λn,2,

and
λn,1 = λn,2 = n, an,1 = e−n3/2

, an,2 = n−
1
2 n.
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By simple calculation, f1 is of zero-order and (lower) logarithmic order ρl
1 = 3(χl

1 = 3),
(lower) logarithmic type Tl

1 = 4
27 (χ

l
1 = 4

27 ), and f2 is of (lower) order ρ2 = 2(χ2 = 2), (lower)
type T2 = 1

2e (τ2 = 1
2e ). On the other hand, we can deduce that

ρ = ρ(G4) = lim sup
n→∞

λn log λn

− log |bn|
= lim sup

n→∞

(v1 + v2)n log[(v1 + v2)n]
u1n3/2 + u2

2 n log n
= 0,

ρl = ρl(G4) = 1 + lim sup
n→∞

log λn

log( 1
λn

log 1
|bn | )

= 1 + lim sup
n→∞

log[(v1 + v2)n]
log 1

(v1+v2)n

[
u1n3/2 + u2

2 n log n
] = 3,

and

Tl = Tl(G4) = lim sup
n→∞

(v1 + v2)n
3[ 3

2(v1+v2)n
(u1n3/2 + u2

2 n log n)]2

=
(v1 + v2)

3

u2
1

4
27

.

This implies that

ρ(G4) = 0, ρl(G4) = ρl
1, Tl(G4) =

(v1 + v2)
ρl

1

(u1)
ρl

1−1
Tl

1.

Therefore, Example 4 shows that the conclusions of Theorems 14 and 15 are the best possible to
some extent.

5. Some Lemmas

To prove Theorems 8–15, we require the following lemmas.

Lemma 1. Let f j(s) ∈ D, j = 1, 2, . . . , p, and satisfy (3). Then G(s) ∈ D, where G(s) is stated
as in Definition 4.

Proof. Assume that f j(s) satisfies

lim sup
n→+∞

log n
λn,j

= Ej, j = 1, 2, . . . , p,

where Ej < +∞, j = 1, 2, . . . , p. Thus, we have

lim sup
n→∞

log n
λn

= lim sup
n→∞

log n
v1λn,1 + v2λn,2 + · · ·+ vpλn,p

≤ lim sup
n→∞

log n
λn,1

λn,1

v1λn,1 + v2λn,2 + · · ·+ vpλn,p

=
E1

V
< +∞,

and

lim sup
n→∞

log |bn|
λn

= lim sup
n→∞

u1 log |an,1|+ u2 log |an,2|+ · · ·+ up log |an,p|
v1λn,1 + v2λn,2 + · · ·+ vpλn,p

≤ lim sup
n→∞

[
1

∑
p
j=1 vj

p

∑
j=1

uj log |an,j|
λn,j

]
≤ −∞.
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Thus, it follows that G(s) ∈ D. Therefore, this completes the proof of Lemma 1.

Lemma 2. Let f j(s) ∈ D, j = 1, 2, . . . , p, satisfy (6), and ψj(n), j = 1, 2, . . . , p be non-decreasing
functions of n, where ψj(n) is stated as in (7). Then

ψ(n) =
log |bn| − log |bn+1|

λn+1 − λn

is also a non-decreasing function of n, where bn, λn are stated as in Definition 4.

Proof. From the definition of ψ(n), we have

ψ(n) =
log |bn| − log |bn+1|

λn+1 − λn

=

[
p

∑
j=1

vj(λn+1,j − λn,j)

]−1( p

∑
j=1

uj log

∣∣∣∣∣ an,j

an+1,j

∣∣∣∣∣
)

=
p

∑
j=1

uj(log |an,j| − log |an+1,j|)

(λn+1,j − λn,j)
[
vj + ∑

p
i 6=j,i=1 vi

ηi
ηj

] ,

where η1 = 1. By combining this with ψj(n) being non-decreasing functions of n, and
uj, vj, ηj > 0, j = 1, 2, . . . , p, we obtain the idea that ψ(n) is a non-decreasing function of n.

Therefore, we complete the proof of Lemma 2.

6. Proofs of Theorems about the Finite Growth Indices

In this section, we will provide the proofs of Theorems 8–10, regarding the growth
in Dirichlet–Hadamard–Kong product function when Dirichlet series have the finite
growth indexes.

Proof of Theorem 8. From Theorem 8, and by Lemma 1, we have G(s) ∈ D. Due to
Theorem 1, we can see that

ρj = lim sup
n→∞

λn,j log[qj−1] λn,j

− log |an,j|
, j = 1, 2, . . . , p. (19)

Here, we only prove the case 0 < ρj < ∞, j = 1, 2, . . . , m. For ρj = 0, one can easily
prove the conclusion of Theorem 8. By virtue of (19), for any small number ε > 0, there
are p positive integers Nj ∈ N+, j = 1, 2, . . . , p such that n > N = max{N1, N2, . . . , Np},
(it should be noted that the positive integer N, here and below, may not be the same
every time)

λn,j log[qj−1] λn,j

− log |an,j|
< ρj + ε, j = 1, 2, . . . , p,

that is,
λn,j log[qj−1] λn,j

ρj + ε
< − log |an,j|, j = 1, 2, . . . , p. (20)

From the definition of G(s), for n > N, we have that

− log |bn| = −
p

∑
j=1

uj log |an,j| >
p

∑
j=1

ujλn,j log[qj−1] λn,j

ρj + ε
. (21)
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Thus, it follows from (21) that

λn log[q1−1] λn

− log |bn|
< λn log[q1−1] λn

(
p

∑
j=1

ujλn,j log[qj−1] λn,j

ρj + ε

)−1

. (22)

In view of (3), (4) and qj ≥ 2, j = 1, . . . , p, we have

lim
n→∞

λn,j log[qj−1] λn,j

λn,1 log[q1−1] λn,1
= 1, lim

n→∞

λn,j log[qj−1] λn,j

λn,1 log[q1] λn,1
= ∞, j = 1, 2, . . . , m, (23)

and

lim
n→∞

λn,j log[qj−1] λn,j

λn,1 log[q1−1] λn,1
= 0, j = m + 1, m + 2, . . . , p. (24)

Since λn = v1λn,1 + v2λn,2 + · · ·+ vpλn,p, it thus follows from (22)–(24) that

ρ = ρ[q1] ≤ lim sup
n→∞

λn log[q1−1] λn

λn,1 log[q1−1] λn,1

[
p

∑
j=1

ujλn,j log[qj−1] λn,j

(ρj + ε)λn,1 log[q1−1] λn,1

]−1

,

By combining with the arbitrariness of ε, we have

ρ = ρ[q1] ≤ V
(

u1

ρ1
+

u2

ρ2
+ · · ·+ um

ρm

)−1
,

which shows that the q1-order ρ of G(s) satisfies (5).

On the other hand, since f j(s) has the growth index qj; that is, ρ
[qj−1]
j ( f j) = ∞,

j = 1, 2, . . . , p. Thus, for any large number M > 0, there is a positive integer N′, such that

λn,j log[qj−2] λn,j

− log |an,j|
> M, j = 1, 2, . . . , p, (25)

and

− log |bn| = −
p

∑
j=1

uj log |an,j| <
p

∑
j=1

ujλn,j log[qj−2] λn,j

M
. (26)

Thus, we can deduce from (25) and (26) that

ρ[q1−1](G) ≥ lim sup
n→∞

λn log[q1−2] λn

λn,1 log[q1−2] λn,1

(
p

∑
j=1

ujλn,j log[qj−2] λn,j

Mλn,1 log[q1−2] λn,1

)−1

=
MV

u1 + u2 + · · ·+ um
,

which implies that ρ[q1−1](G) = ∞. This means that G(s) has the growth index q1.
Therefore, we complete the proof of Theorem 8.

Proof of Theorem 9. From Theorem 8, and by Lemma 1, this yields G(s) ∈ D. By virtue of
Theorem 2, we can obtain that

χj ≤ lim inf
n→∞

λn,j log[qj−1] λn−1,j

− log |an,j|
, j = 1, 2, . . . , p. (27)

If there exists one j ∈ {1, 2, . . . , m} such that χj = 0, the conclusion of Theorem 9
holds. Hence, we only prove the case 0 < χj < ∞, j = 1, 2, . . . , p. Due to (27), for any small
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number ε > 0 satisfying 0 < ε < min{χ1, . . . , χp}, there is a positive integer N such that
n > N,

λn,j log[qj−1] λn−1,j

− log |an,j|
> χj − ε, j = 1, 2, . . . , p,

that is,
λn,j log[qj−1] λn−1,j

χj − ε
> − log |an,j|, j = 1, 2, . . . , p. (28)

Thus, noting with the definition of G(s), for n > N, we can obtain that

− log |bn| = −
p

∑
j=1

uj log |an,j| <
p

∑
j=1

ujλn,j log[qj−1] λn−1,j

χj − ε
. (29)

Similar to the argument in the proof of Theorem 8, by combining this with the assump-
tions of Theorem 9, it follows from (23), (24) and (28) that

χ = χ[q1] ≥ lim inf
n→∞

λn log[q1−1] λn−1

λn,1 log[q1−1] λn−1,1

[
p

∑
j=1

ujλn,j log[qj−1] λn−1,j

(χj − ε)λn,1 log[q1−1] λn,1

]−1

.

By combining this with the arbitrariness of ε, we have

χ = χ[q1] ≥ V
(

u1

χ1
+

u2

χ2
+ · · ·+ um

χm

)−1
,

which implies that the lower q1-order χ of G(s) satisfies (8). By combining this with
Theorem 8, we can obtain the conclusions of Theorem 9.

Therefore, we complete the proof of Theorem 9.

Proof of Theorem 10. (i) In view of (4) in Theorem 8 and (8) in Theorem 9, it follows that
Dirichlet–Hadamard–Kong product G(s) has the growth index q1 and the q1-order ρ of
G(s) satisfies

V
(

u1
χ1

+ u2
χ2

+ · · ·+ um
χm

)−1
≤ χ ≤ ρ

≤ V
(

u1
ρ1

+ u2
ρ2

+ · · ·+ um
ρm

)−1
.

(30)

Since f j(s), (j = 1, . . . , p) be of qj-regular growth, that is, χj = ρj, j = 1, . . . , p, thus we
have

V
(

u1

χ1
+

u2

χ2
+ · · ·+ um

χm

)−1
= V

(
u1

ρ1
+

u2

ρ2
+ · · ·+ um

ρm

)−1
,

This implies from (30) that

χ = ρ = V
(

u1

ρ1
+

u2

ρ2
+ · · ·+ um

ρm

)−1
. (31)

Therefore, this completes the proof of Theorem 10(i).
(ii) Since f j(s) is of qj-order ρj(0 < ρj < +∞) and of qj-type Tj, j = 1, 2, . . . , p, in view

of Theorem 1, then, for any small ε > 0, there exists a positive integer N, such that

|an,j|
ρj

λn,j ≤
Tj + ε

log[qj−2]
(

λn,j
eρj

) , j = 1, 2, . . . , p, (32)

hold for n > N. Now, we will divide into two cases below.
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Case (ii1) q1 ≥ 3. In view of the fact that (4) holds for the positive integer m(1 ≤ m < p),
it thus follows that qj ≥ 3, j = 1, 2, . . . , p. By combining with λn,i ∼ λn,j, i, j = 1, 2 . . . , p, we
have that

log[qj−2]
(

λn,i

K

)
∼ log[qj−2]

(
λn,j

K

)
, i, j = 1, 2 . . . , p, (33)

holds for any positive constant K. From Theorem 10(i), we have that G(s) is of q1-order ρ.
Thus, in view of (1) and the definition of bn, we can deduce that

T[q1](G) = lim supn→∞ |bn|
ρ

λn log[q1−2]( λn
eρ )

≤ lim supn→∞ log[q1−2]( λn
eρ )

( T1+ε

log[q1−2](
λn,1
eρ1

)

) u1λn,1
ρ1

· · ·
(

Tm+ε

log[qm−2](
λn,m
eρm )

) umλn,m
ρm

×
(

Tm+1+ε

log[qm+1−2](
λn,m+1
eρm+1

)

) um+1λn,m+1
ρm+1

· · ·
(

Tp+ε

log[qp−2](
λn,p
eρp )

) upλn,p
ρp


ρ

λn

≤ lim supn→+∞ log[q1−2]( λn
eρ )∏

p
j=1(Tj + ε)

ρujλn,j
ρjλn

[
∏m

j=1

(
log[qj−2] λn,j

) ujρλn,j
λnρj

]−1

×

×
[

∏
p
j=m+1

(
log[qj−2] λn,j

) ujρλn,j
λnρj

]−1

.

(34)

In view of (31) and λn,i ∼ λn,j for i, j = 1, 2, . . . , p, we have that

lim
n→∞

m

∑
j=1

ujρλn,j

λnρj
= 1,

p

∏
j=m+1

(
log[qj−2] λn,j

) ujρ

Vρj −→ ∞, n→ ∞. (35)

Thus, we can deduce from (32)–(35) that

T[q1](G) ≤ lim sup
n→+∞

p

∏
j=1

(Tj + ε)

ρuj
ρjV

[
p

∏
j=m+1

(
log[qj−2] λn,j

) ujρ

Vρj

]−1

, (36)

In view of the arbitrariness of ε, it follows that T[q1](G) ≤ 0, by combining with the fact
that T[q1](G) ≥ 0, we have T[q1](G) = 0.

Case (ii2). q1 = 2. In view of (4) and (30), for any small ε > 0, there is a positive
integer N, such that

|an,j|
ρj

λn,j ≤
eρj(Tj + ε)

λn,j
, j = 1, 2, . . . , m, (37)

and

|an,j|
ρj

λn,j ≤
Tj + ε

log[qj−2]
(

λn,j
eρj

) , j = m + 1, . . . , p, (38)
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hold for n > N. From Theorem 10(i), we have that G(s) is of 2-order ρ. Similar to the
argument in (35), we can see from (37) and (38) that

T[2](G) = lim sup
n→∞

|bn|
ρ

λn (
λn

eρ
)

≤ lim sup
n→∞

(
λn

eρ
)

( eρ1(T1 + ε)

λn,1

) u1λn,1
ρ1 · · ·

(
eρm(Tm + ε)

λn,m

) umλn,m
ρm

×

 Tm+1 + ε

log[qm+1−2](
λn,m+1
eρm+1

)


um+1λn,m+1

ρm+1

· · ·

 Tp + ε

log[qp−2](
λn,p
eρp

)


upλn,p

ρp


ρ

λn

≤ lim sup
n→+∞

V
ρ

p

∏
j=1

[ρj(Tj + ε)]

ρuj
Vρj

[
p

∏
j=m+1

(
log[qj−2] λn,j

) ρuj
Vρj

]−1

.

In view of the arbitrariness of ε, it follows that T[2](G) ≤ 0, by combining this with the
fact that T[2](G) ≥ 0, we can obtain T[2](G) = 0. In view of Case (ii1) and Case (ii2), we
have T[q1](G) = 0 for q1 = 2, 3, 4, . . ..

Therefore, this completes the conclusion of Theorem 10(ii).
(iii) Since m = p and q1 = q2 = · · · = qp = q, it follows that G(s) is of q-order ρ

χ = ρ = V
(

u1

ρ1
+

u2

ρ2
+ · · ·+

up

ρp

)−1
. (39)

If q ≥ 3, q ∈ N+, similar to the argument in Case (ii1), we can deduce that

T = T[q](G) = lim sup
n→∞

|bn|
ρ

λn log[q−2](
λn

eρ
)

≤ lim sup
n→∞

log[q−2] λn

[
(

T1 + ε

log[q−2] λn,1
)

u1λn,1
ρ1 · · · (

Tp + ε

log[q−2] λn,p
)

upλn,p
ρp

] ρ
λn

≤ lim sup
n→+∞

log[q−2] λn

p

∏
j=1

(Tj + ε)

ρuj
Vρj

[
p

∏
j=1

(
log[q−2] λn,j

) ρuj
Vρj

]−1

.

In view of the arbitrariness of ε, and by combining this with the equality (39), we have

T ≤ T
u1ρ
Vρ1

1 T
u2ρ
Vρ2

2 · · · T
upρ

Vρp
p . (40)

If q = 2, similar to the argument in Case (ii2), we can deduce that

T =T[2](G) = lim sup
n→∞

(
λn

eρ
)|bn|

ρ
λn

≤ lim sup
n→∞

(
λn

eρ
)

( eρ1(T1 + ε)

λn,1

) u1λn,1
ρ1 · · ·

(
eρp(Tp + ε)

λn,p

) upλn,p
ρp


ρ

λn

≤V
ρ

p

∏
j=1

[ρj(Tj + ε)]

ρuj
Vρj .

In view of the arbitrariness of ε, it follows that

T ≤ V
ρ
(ρ1T1)

u1ρ
Vρ1 (ρ2T2)

u2ρ
Vρ2 · · ·

(
ρpTp

) upρ

Vρp . (41)
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Since f j(s), j = 1, . . . , p are of perfectly qj regular growth, by combining this with
Theorems 3 and 10, we have Tj = τj, j = 1, 2, . . . , p. Thus, for any small ε > 0, there is a
positive integer N, such that

|an,j|
ρj

λn,j ≥
τj − ε

log[q−2]
(

λn−1,j
eρj

) , j = 1, 2, . . . , p,

hold for n > N.
In view of the conclusion of Theorem 10(i), it follows that G(s) is of q-regular growth.

In view of (9) and (10), it follows that λn ∼ λn−1 as n→ ∞. Assuming that G(s) is of lower
q-type τ, similar to the argument in the above, then we can deduce from Theorem 3 that

τ =τ[q](G) = lim inf
n→∞

|bn|
ρ

λn log[q−2]
(

λn−1

eρ

)

≥ lim inf
n→∞

log[q−2] λn−1

[
(

τ1 − ε

log[q−2] λn−1,1
)

u1λn,1
ρ1 · · · (

τp − ε

log[q−2] λn−1,p
)

upλn,p
ρp

] ρ
λn

≥ lim inf
n→+∞

log[q−2] λn−1

p

∏
j=1

(τj − ε)

ρuj
ρj

[
p

∏
j=1

(
log[q−2] λn−1,j

) ρuj
ρj

]−1

holds for q ≥ 3, q ∈ N+. In view of (9) and (39), and by combining this with the arbitrariness
of ε, we can see that

τ ≥ τ

u1ρ
ρ1

1 τ
u2ρ
ρ2

2 · · · τ
upρ
ρp

p (42)

holds for q ≥ 3, q ∈ N+. Similarly, for q = 2, in view of (9) and (39), it follows that

τ =τ[2](G) = lim inf
n→∞

(
λn−1

eρ

)
|bn|

ρ
λn

≥ lim inf
n→∞

(
λn−1

eρ

)( eρ1(τ1 − ε)

λn−1,1

) u1λn,1
ρ1 · · ·

(
eρp(τp − ε)

λn−1,p

) upλn,p
ρp


ρ

λn

≥1
ρ

p

∏
j=1

[ρj(τj − ε)]

ρuj
ρj .

Based on the arbitrariness of ε, we can see that

τ ≥ 1
ρ
(ρ1τ1)

u1ρ
ρ1 (ρ2τ2)

u2ρ
ρ2 · · ·

(
ρpτp

) upρ
ρp , q = 2. (43)

By combining this with the fact that (10), T ≥ τ and Tj = τj, j = 1, . . . , p, we can easily
obtain the conclusions of Theorem 10(iii) from (40)–(43).

Therefore, we can complete the proof of Theorem 10.

7. Proofs of Theorems about the Logarithmic Growth

In this section, we will provide details of the proof of Theorems 11–13, which are
related to the growth in Dirichlet–Hadamard–Kong product function when Dirichlet series
are of logarithmic growth.

Proof of Theorem 11. Since f j(s) ∈ D, j = 1, 2, . . . , p, we have G(s) ∈ D by Lemma 1.
Since f j(s) is of zero-order and logarithmic order ρl

j, j = 1, . . . , p, we find that G(s) is
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of zero-order from the conclusions of Theorem 8. Moreover, in view of Theorem 4, it
follows that

ρl
j = 1 + lim sup

n→∞

log λn,j

log
(
− 1

λn,j
log |an,j|

) , j = 1, 2, . . . , p. (44)

Due to (44) and ρl
j ≥ 1, j = 1, . . . , p, for any small number ε > 0, there are p positive

integers Nj ∈ N+, j = 1, 2, . . . , p such that n > N = max{N1, N2, . . . , Np},

log |an,j| < −(λn,j)

ρl
j+ε

ρl
j−1+ε , j = 1, . . . , p. (45)

Without losing generality, we can assume that there exists a positive integer m1, such
that 1 ≤ m1 ≤ p and

ρl
1 = ρl

2 = · · · = ρl
m1

< ρl
m1+1 ≤ · · · ≤ ρl

p. (46)

Thus, it follows that

ρl
j + ε

ρl
j − 1 + ε

<
ρl

1 + ε

ρl
1 − 1 + ε

, j = m1 + 1, . . . , p. (47)

In view of (45) and the fact that bn = ∏
p
j=1(an,j)

uj , it follows that

log λn

log(− 1
λn log |bn |)

=
log λn

log(− 1
λn ∑

p
j=1 uj log |an,j |)

≤ log λn

log( 1
λn ∑

p
j=1 uj(λn,j)

(ρl
j+ε)/(ρl

j−1+ε)
)

< log λn

log

 (λn,1)

ρl
1+ε

ρl
1−1+ε

λn

[
∑

p
j=1

uj(λn,j)
(ρl

j+ε)/(ρl
j−1+ε)

(λn,1)
(ρl

1+ε)/(ρl
1−1+ε)

]

−1

.

(48)

Based on the condition λn,i ∼ λn,j as n → ∞, and combining with (47), we have
log λn,i ∼ log λn,j ∼ log λn as n→ ∞, i, j = 1, . . . , p and

lim
n→∞

(λn,j)
(ρl

j+ε)/(ρl
j−1+ε)

(λn,1)
(ρl

1+ε)/(ρl
1−1+ε)

= 0, j = m1 + 1, . . . , p. (49)

Thus, by applying Theorem 4, we can deduce from (48) and (49) that

ρl = ρl(G) = 1 + lim supn→∞
log λn

log(− 1
λn log |bn |)

≤ 1 + lim supn→∞
log λn

1
ρl

1−1+ε
log λn+log ∑

m1
j=1 uj

= ρl
1 + ε,

(50)

In view of the arbitrariness of ε, we can obtain the conclusion of Theorem 11 from (50).
Therefore, we complete the proof of Theorem 11.

Proof of Theorem 12. Similar to the argument in the proof of Theorem 9, and combining
this with the conclusion of Theorem 5, one can easily prove Theorem 12.
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Proof of Theorem 13. (i) From the assumptions of Theorem 13, by combining with the
conclusions of Theorems 11 and 12, we find that G(s) is of zero-order and the (lower)
logarithmic order ρl(χl) satisfy

χl
min =: min{χl

1, χl
2, . . . , χl

p} ≤ χl ≤ ρl ≤ ρl
min =: min{ρl

1, ρl
2, . . . , ρl

p}. (51)

Since f j(s), j = 1, . . . , p are of logarithmic regular growth, that is, ρl
j = χl

j, j = 1, . . . , p,
it follows from (51) that

χl = ρl = ρl
min =: min{ρl

1, ρl
2, . . . , ρl

p}.

Therefore, this completes the proof of Theorem 13(i).
(ii) Since f j(s) is of zero-order and logarithmic order ρl

j(1 ≤ ρj < +∞) and of logarith-

mic type Tl
j , j = 1, 2, . . . , p, in view of Theorem 6, for any small ε > 0, there is a positive

integer N, such that

log |an,j| ≤ −
ρl

j−1

ρl
j

λn,j

(
λn,j

ρl
j(T

l
j +ε)

) 1
ρl

j−1

≤ −(ρl
j − 1)

[
(ρl

j)
ρl

j(Tl
j + ε)

]− 1
ρl

j−1 (
λn,j
) ρl

j
ρl

j−1

(52)

hold for n > N and j = 1, 2, . . . , p. From the conclusion of Theorem 13(i), it follows that
G(s) is of logarithmic order ρl . By applying Theorem 6, we have

λn

ρl
[
− ρl

ρl−1
1

λn log |bn |
]ρl−1

= λn
ρl

[
− ρl

λn(ρl−1) ∑
p
j=1 u1 log |an,j|

]−(ρl−1)

≤ λn
ρl

 ρl

λn(ρl−1) ∑
p
j=1

uj(ρ
l
j−1)

[(ρl
j)

ρl
j (Tl

j +ε)]
(ρl

j−1)−1

(
λn,j
) ρl

j
ρl

j−1


−(ρl−1)

≤ λn
ρl

 ρl(λn,j)

ρl
1

ρl
1−1

λn(ρl−1)
Ψ(n)


−(ρl−1)

,

(53)

where

Ψ(n) =
p

∑
j=1

uj(ρ
l
j − 1)

[(ρl
j)

ρl
j(Tl

j + ε)]
(ρl

j−1)−1

(
λn,j
) ρl

j
ρl

j−1
−

ρl
1

ρl
1−1 .

In view of the conclusion of Theorem 13(i), it follows that ρl = ρl
1 and

ρl
j

ρl
j − 1

−
ρl

1

ρl
1 − 1

≤ 0 (54)

hold for j = k + 1, . . . , p. Thus, we obtain

lim
n→∞

Ψ(n) = (ρl)
− ρl

ρl−1 (ρl − 1)
k

∑
j=1

uj

(Tl
j + ε)(ρ

l−1)−1 . (55)
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Due to (53), (55) and Theorem 6, and by combining this with the arbitrariness of ε, we
can deduce that

Tl = Tl(G) ≤ lim supn→∞
λn

ρl
[
− ρl

ρl−1
1

λn log |bn |
]ρl−1

≤ Vρl

[
∑k

j=1
uj

(Tl
j )

(ρl−1)−1

]1−ρl

= Vρl
[

u1

(Tl
1)

(ρl−1)−1 + u2

(Tl
2)

(ρl−1)−1 + · · ·+ uk

(Tl
k)

(ρl−1)−1

]1−ρl

.

(56)

Since f j(s), j = 1, . . . , p are of perfectly logarithmic regular growth, by combining this
with the conclusion of Theorem 6 and the assumptions of Theorem 13, we have Tl

j = τl
j ,

j = 1, 2, . . . , p. Thus, for any small ε > 0, there is a positive integer N, such that

log |an,j| ≥ −(ρl
j − 1)

[
(ρl

j)
ρl

j(τl
j − ε)

]− 1
ρl

j−1 (
λn,j
) ρl

j
ρl

j−1 (57)

hold for n > N.
In view of the conclusion of Theorem 13(i), it follows that G(s) is of logarithmic regular

growth. In view of (9) and (10), it follows that λn ∼ λn−1 as n→ ∞. Assume that G(s) is of
lower logarithmic type τl , similarly to the argument in the above, then we can deduce that

λn−1

ρl
[
− ρl

ρl−1
1

λn log |bn |
]ρl−1

= λn−1
ρl

[
− ρl

λn(ρl−1) ∑
p
j=1 u1 log |an,j|

]−(ρl−1)

≥ λn−1
ρl

[
ρl(λn,j)

ρl
1/(ρl

1−1)

λn(ρl−1)
Φ(n)

]−(ρl−1)

,

(58)

where

limn→∞ Φ(n) = limn→∞ ∑
p
j=1

uj(ρ
l
j−1)

[(ρl
j)

ρl
j (τl

j−ε)]
(ρl

j−1)−1

(
λn,j
) ρl

j
ρl

j−1
−

ρl
1

ρl
1−1

= ∑k
j=1

uj(ρ
l
j−1)

[(ρl
j)

ρl
j (τl

j−ε)]
(ρl

j−1)−1 .

(59)

Thus, in view of Theorem 13 and (58) and (59), and by combining with the arbitrariness
of ε, we have

τl = τl(G) = lim infn→∞
λn−1

ρl
[
− ρl

ρl−1
1

λn log |bn |
]ρl−1

≥
[

∑k
j=1

uj

(τl
j )

(ρl−1)−1

]1−ρl

=

[
u1

(τl
1)

(ρl−1)−1 + u2

(τl
2)

(ρl−1)−1 + · · ·+ uk

(τl
k)

(ρl−1)−1

]1−ρl

.

(60)

And since Tl
j = τl

j , j = 1, 2, . . . , p and Tl ≥ τl , from (10), (56) and (60), we obtain that
G(s) is of perfectly logarithmic regular growth and

τl = Tl =

[
u1

(Tl
1)

(ρl−1)−1 +
u2

(Tl
2)

(ρl−1)−1 + · · ·+ uk

(Tl
k)

(ρl−1)−1

]1−ρl

.
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This completes the proof of Theorem 13.

8. Proofs of Theorems about the Mixed Case

In this section, we will provide details of proof of Theorems 14 and 15 regarding the
growth in Dirichlet–Hadamard–Kong product function under the mixed case that one
Dirichlet series is of logarithmic growth and the other is of a finite order.

Proof of Theorem 14. Firstly, we only prove the case ρl
1 > 1 and ρ2 > 0. For the case

ρl
1 = 1 or ρ2 = 0, using the same argument, one can easily obtain the conclusions. Since

f j(s) = ∑∞
n=1 an,je

λn,js, j = 1, 2 ∈ D satisfy λn,1 ∼ λn,2 as n → ∞, it follows that G(s) ∈ D.
Since f1(s) is of zero-order and the logarithmic order ρl

1, and f2(s) is of order ρ2, for any
small ε > 0, there is a positive integer N, such that for n > N,

log |an,1| < −(λn,1)

ρl
1+ε

ρl
1−1+ε , log |an,2| < −

λn,2 log+ λn,2

ρ2 + ε
. (61)

Thus, we can deduce from (61) that

λn log λn
− log |bn | =

λn log λn
−u1 log |an,1|−u2 log |an,2|

<
λn log λn

u1(λn,1)
(ρl

1+ε)/(ρl
1−1+ε)+

u2λn,2 log λn,2
ρ2+ε

(62)

and
log λn

log(− 1
λn log |bn |)

=
log λn

log[− 1
λn (u1 log |an,1|+u2 log |an,2|)]

<
log λn

log[ 1
λn (u1(λn,1)

(ρl
1+ε)/(ρl

1−1+ε)+u2
λn,2 log+ λn,2

ρ2+ε )]
. (63)

By combining with λn,1 ∼ λn,2 as n → ∞, we have log λn,1 ∼ log λn,2 ∼ log λn as
n→ ∞. Applying this for (62) and (63), we obtain

ρ(G) = lim supn→∞
λn log λn
− log |bn |

≤ lim supn→∞
(λn log λn)/(λn,1 log λn,1)

u1(λn,1)
(ρl

1−1+ε)−1
/ log λn,1+

u2λn,2 log λn,2
(ρ2+ε)λn,1 log λn,1

→ 0, (64)

and
ρl = ρl(G) = 1 + lim supn→∞

log λn

log(− 1
λn log |bn |)

≤ 1 + lim supn→∞
log λn

log[(λn,1)
(ρl

1+ε)/(ρl
1−1+ε)(λn)−1K]

≤ ρl
1 + ε,

(65)

since
lim

n→∞
(λn,1)

(ρl
1−1+ε)−1

/ log λn,1 = ∞,

and

lim
n→∞

K = lim
n→∞

(
u1 +

u2

ρ2 + ε
× λn,2 log λn,2

(λn,1)
(ρl

1+ε)/(ρl
1−1+ε)

)
= u1.

In view of (64) and (65), and by combining this with the arbitrariness of ε, we find that
ρ(G) = 0 and ρl(G) ≤ ρl

1.
Furthermore, if f1(s) is of lower logarithmic order χl

1, and f2(s) is of lower order χ2, we
can only prove the conclusions for the case χl

1 > 1 and χ2 > 0. By using the same argument,
one can easily prove the same conclusion. In view of the assumptions of Theorem 14 and
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the conclusions of Theorems 2 and 5, for any small ε(0 < ε < min{χl
1 − 1, χ2}, there is a

positive integer N, such that, for n > N,

log |an,1| > −λn,1(λn−1,1)
1

χl
1−1−ε , log |an,2| > −

λn,2 log+ λn−1,2

χ2 − ε
. (66)

In view of (66), by using the same argument as in the above, we have

χl = χl(G) = 1 + lim inf
n→∞

log λn−1

log(− 1
λn

log |bn|)

≥ 1 + lim inf
n→∞

log λn−1

log
(
(λn)−1[u1λn,1(λn−1,1)

1/(χl
1−1−ε) +

u2λn,2 log λn−1,2
χ2−ε ]

)
≥ χl

1 − ε,

by combining this with the arbitrariness of ε, we have that χl ≥ χl
1.

Therefore, this completes the proof of Theorem 14.

Proof of Theorem 15. (i) From the conclusions of Theorem 14, we find that G(s) is of zero
order and the (lower) logarithmic order ρl(χl) satisfies

χl
1 ≤ χl ≤ ρl ≤ ρl

1. (67)

Thus, by combining this with the condition that f1 is of logarithmic regular growth, it
follows from (67) that

χl = ρl = ρl
1,

which means that G(s) is also of logarithmic regular growth.
This completes the proof of Theorem 15(i).
(ii) Since ρl

1, ρ2 satisfy 1 < ρl
1 < +∞, 0 < ρ2 < +∞, in view of Theorems 1 and 6, for

any small ε(0 < ε < min{χl
1 − 1, χ2}), there is a positive integer N, such that, for n > N,

log |an,1| ≤ −(λn,1)

ρl
1

ρl
1−1 ρl

1 − 1
ρl

1
[ρl

1(T
l
1 + ε)]

− 1
ρl

1−1 , log |an,2| ≤ −
λn,2

ρ2
log

λn,2

eρ2(T2 + ε)
. (68)

Since G(s) is of logarithmic regular growth, we have

λn

ρl
[
− ρl

ρl−1
1

λn log |bn |
]ρl−1

= λn

ρl
[
− ρl

ρl−1
1

λn (u1 log |an,1|+u2 log |an,2|)
]ρl−1

≤ λn

ρl
[

Υ1(n)
ρl

ρl−1
1

λn (λn,1)
ρl

1/(ρl
1−1)

]ρl−1

(69)

where

Υ1(n) = u1
ρl

1 − 1
ρl

1
[ρl

1(T
l
1 + ε)]

− 1
ρl

1−1 + u2
λn,2

ρ2
log

λn,2

eρ2(T2 + ε)
(λn,1)

−ρl
1/(ρl

1−1).

In view of ρl
1 > 1 and λn,1 ∼ λn,2 as n→ ∞, it follows

lim
n→∞

Υ1(n) = u1
ρl

1 − 1
ρl

1
[ρl

1(T
l
1 + ε)]

− 1
ρl

1−1 . (70)
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In view of (69) and (70), and combining this with ρl = ρl
1, λn = v1λn,1 + v2λn,2 and

the arbitrariness of ε, we can deduce that

Tl = lim sup
n→∞

λn

ρl
[
− ρl

ρl−1
1

λn
log |bn|

]ρl−1
≤ (v1 + v2)

ρl

(u1)ρl−1
Tl

1. (71)

On the other hand, from the assumptions of Theorem 15, we know that f1 satisfies the
conditions of Theorem 6 and f2 satisfies the conditions of Theorem 3. Thus, for any small
ε(0 < ε < min{τl

1, τ2}), there is a positive integer N, such that, for n > N,

log |an,1| ≥ −λn,1
ρl

1 − 1
ρl

1

(
λn−1,1

ρl
1(τ

l
1 − ε)

)(ρl
1−1)−1

, log |an,2| ≥ −
λn,2

ρ2
log

λn−1,2

eρ2(τ2 − ε)
.

Since G(s) is of logarithmic regular growth, we have

λn−1

ρl
[
− ρl

ρl−1
1

λn
log |bn|

]ρl−1
>

λn−1

ρl
[
Υ2(n)

ρl

ρl−1
λn,1
λn

(λn−1,1)
1/(ρl

1−1)
]ρl−1

(72)

where

Υ2(n) = u1
ρl

1 − 1
ρl

1
[ρl

1(τ
l
1 − ε)]

− 1
ρl

1−1 + u2(λn−1,1)
−1/(ρl

1−1) λn,2

ρ2λn,1
log

λn−1,2

eρ2(τ2 − ε)
.

In view of ρl
1 > 1 and λn,1 ∼ λn,2 as n→ ∞, it follows

lim
n→∞

Υ2(n) = u1
ρl

1 − 1
ρl

1
[ρl

1(τ
l
1 − ε)]

− 1
ρl

1−1 . (73)

Due to v1 + v2 = 1 and λn−1,j ∼ λn,j, j = 1, 2, as n→ ∞, and combining with ρl = ρl
1,

λn = v1λn,1 + v2λn,2 and the arbitrariness of ε, it follows from (72) and (73) that

τl = τl(G) = lim inf
n→∞

λn−1

ρl
[
− ρl

ρl−1
1

λn
log |bn|

]ρl−1
≥

τl
1

(u1)ρl−1
.

In view of Tl
1 = τl

1, and combining this with the fact Tl(G) ≥ τl(G), we have

τl = Tl =
Tl

1

(u1)
ρl−1

.

Therefore, we complete the proof of Theorem 15.

9. Conclusions

In this paper, our main aims are to supplement and improve the article by Kong [40]
on entire functions represented by the Hadamard product of Dirichlet series in three ways.
Firstly, the condition that lim sup

n→∞

log n
λn

= E < +∞ is more relaxed than lim sup
n→∞

log n
λn

= 0

given by Kong [40]. Secondly, the form of the Dirichlet–Hadamard product in Definition 4 is
more general than the form in Definition 3, since the form in Definition 3 is a special case of
p = 2 and v1 = v2 = 1

2 in Definition 4. Thirdly, the results of this article are more abundant,
including the Dirichlet–Hadamard–Kong product of some Dirichlet series, which have
different growth indexes (see Theorems 8–10), logarithmic growths (see Theorems 11–13),
or the mixed case of logarithmic growth and finite growth (see Theorems 14 and 15).

In view of Theorems 8–15 and Examples 1–4, some demonstrate that the growth in the
Dirichlet–Hadamard–Kong product series may be determined by the Dirichlet series with
smaller growth (see Theorems 8, 9, 11, 12 and 14), and the others show that the growth in



Mathematics 2022, 10, 2220 25 of 26

Dirichlet–Hadamard–Kong product series could be algebraic expressions of the growth
indexes of some Dirichlet series (see Theorems 10, 13 and 15).

By observing the results in this paper, we can see that these conclusions hold under
the condition that λn,i ∼ λn,j and Dirichlet series f j(s) converge on the whole plane; that is,
f j(s) ∈ D for i, j = 1, 2, . . . , p. In fact, many Dirichlet series convergent at the half complex
plane, such as f (s) = ∑∞

n=1(log n)ens, f (s) = ∑∞
n=1 nens, . . . Thus, the following questions

can be raised:

Question 4. What would happen to the growth in the Hadamard–Kong product series of the
Dirichlet series when some of them converge in the whole plane and the others converge at the
half-complex plane, or all series converge at the half-complex plane?

Question 5. What can be said regatding the properties of the Hadamard–Kong product series of
the Dirichlet series if the exponents λn,j have other relationships, such as: (i) λn,1 = ξ jλn,j, (ii)
log λn,1 = ξ j log λn,j, . . . , where ξ j > 0, j = 2, 3, . . . , p?
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