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Abstract: In this paper, we proposed a logistic regression model with lp,q regularization that could
give a group sparse solution. The model could be applied to variable-selection problems with sparse
group structures. In the context of big data, the solutions for practical problems are often group
sparse, so it is necessary to study this kind of model. We defined the model from three perspectives:
theoretical, algorithmic and numeric. From the theoretical perspective, by introducing the notion of
the group restricted eigenvalue condition, we gave the oracle inequality, which was an important
property for the variable-selection problems. The global recovery bound was also established for the
logistic regression model with lp,q regularization. From the algorithmic perspective, we applied the
well-known alternating direction method of multipliers (ADMM) algorithm to solve the model. The
subproblems for the ADMM algorithm were solved effectively. From the numerical perspective, we
performed experiments for simulated data and real data in the factor stock selection. We employed
the ADMM algorithm that we presented in the paper to solve the model. The numerical results were
also presented. We found that the model was effective in terms of variable selection and prediction.

Keywords: logistic regression; group sparse; oracle inequality; lp,q regularization; ADMM algorithm;
multi-factors stock selection

MSC: 62J07; 62J12

1. Introduction

For regression models, the categorical variables are important for applications and the
explanatory variables are always thought of as grouped. Considering the interpretability
and the accuracy of the models, the information regarding the group should be considered
for the modeling, especially for the high-dimensional settings where sparsity and variable
selection can play a very important role in estimation accuracy. Generally speaking, the
regression model with the penalized regularizations gives a good result for variable-
selection problems; we found lots of research in the literature for this kind of problem [1–12].
When the explanatory variables have a group structure, penalized regularization also plays
an important role, such as with group least absolute shrinkage and selection operators
(LASSOs) [13], the group smoothly clipped absolute deviation (SCAD) penalty [14] and the
group minimax concave penalty (MCP) [15] models.

As we all know, the lp(0 < p < 1) norm is seen as a good approximation of the
l0 norm, and it can recover a more sparse solution than the l1 norm [16]. For the group
sparsity of variables with a group structure, the lp,q norm plays an important role in the
sparse aspect. The lp,q norm with a group structure is described as follows:

‖β‖p,q :=

(
r

∑
i=1
‖βGi‖

q
p

) 1
q

, (1)
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where β := (βT
G1

, · · · , βT
Gr
)T , and {βGi ∈ Rni : i = 1, · · · , r} is the grouping of the variable

β. Here
r
∑

i=1
ni = d + 1, and Gi denotes the index set corresponding to the i-th group. We

denote S ,N to be the index sets, and GS is to denote the index set {Gi : i ∈ S}.
For the linear regression problem with lp,q regularization, the oracle inequality and

the global recovery bound were established in the paper [17]. The goodness of lp,q regu-
larization was very obvious. For the logistic regression model, we employed penalized
regularization in the variable-selection problems.

We assume that β = (β0, β1, · · · , βd)
T ∈ Rd+1 are the coefficients of the explanatory

variables. The matrix X denotes the explanatory variables, and it is given as follows:

X =


1 X11 · · · X1d
1 X21 · · · X2d
...

...
. . .

...
1 Xn1 · · · Xnd

 ∈ Rn×(d+1).

Xi denotes the i−th row of the matrix X, y = (y1, · · · , yn)T are the categorical variables
and yi ∈ {0, 1}.

In this paper, we considered the logistic regression model with the lp,q norm, described
as follows:

min
β

f (β) + λ‖β‖q
p,q, (2)

where f (β) := − 1
n yTXβ + 1

n

n
∑

i=1
ln(1 + exp(Xiβ)) is the loss function and ‖ · ‖p,q is defined

by formulation (1). Moreover, we know f (β) > 0 from the properties of the logistic

regression model, and ‖β‖q
p,q =

r
∑

i=1
‖βGi‖

q
p, p ≥ 1, 0 < q < 1 and λ is the penalized

parameter.
The group LASSO for the logistic regression model [18] is able to perform variable

selection on groups of variables, and the model has the following form:

min
β

f (β) + λ
r

∑
i=1

s(d fGi )‖βGi‖2, (3)

where λ ≥ 0 controls the amount of penalization, and s(d fGi ) is used to rescale the penalty
with respect to the dimensionality of the parameter vector βGi .

Moreover, a quite general composite absolute penalty for the group sparsity problem
is considered in [19], and this model includes the group LASSO as a special case. The group
LASSO is an important extension of regularization, and it proposes an l2 regularization
for each group and, ultimately, gives the sparsity in a group manner. This property can be
found in the numerical experiments.

We found that models (2) and (3) were logistic regression models with different
penalized regularizations. They aimed to give a solution with group sparsity. The logistic
regression model with lp,q regularization is different with the LASSO logistic regression,
and it can give a more sparse solution within a group or between groups by adjusting the
values of p and q. This could be found in the numerical experiments.

To illustrate the goodness of model (2), we also introduced the logistic regression
problem with the elastic net penalty that could give a sparse solution of the problem, and it
is described as follows:

min
β

f (β) + λ1‖β‖1 + λ2‖β‖2
2, (4)
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where λ1 > 0 and λ2 > 0 are the penalized parameters. Model (4) was not good at group
sparsity, and we showed this in the numerical parts.

This paper is organized as follows. In Section 2, we introduce the inequalities of
lp,q regularization, the properties of the loss function for the logistic regression model,
the (p, q)-group restricted eigenvalue condition relative to (S, N) ((p, q)-GREC(S,N)) and
establish the oracle inequality and the global recovery bound for model (2). In Section 3, we
apply the ADMM to solve model (2), and we found that the subproblems of the algorithm
could be solved efficiently. In Section 4, we employ two numerical experiments that are
always used for variable-selection problems to show the goodness of model (2) and the
ADMM algorithm. The results for the LASSO logistic regression model (3) and the logistic
regression model with the elastic net penalty (4) are compared with those of model (2),
and we determine the advantages of model (2). We also give the results for model (2),
which produced the real data in Section 5, and the results showed the effectiveness of the
model and the algorithm that we gave in the paper. The last section draws conclusions and
presents future work.

We introduce some notations that we will use in the following analysis. Let
S := {i ∈ {1, · · · , r} : βGi 6= 0} be the index set of nonzero groups of β, S c := {1, · · · , r} \S
be the complement of S , S := |S| be the group sparsity of β. For a variable β ∈ Rd+1 and
S ⊆ {1, · · · , d + 1}, we employ βS to denote the subvector of β corresponding to S . For a
group βGi , we employ βGi = 0 to describe a zero group, where βGi = 0 means that β j = 0
for all j ∈ Gi. We give S ≤ N � r, β ∈ Rd+1 and J ⊆ {1, · · · , r}, and we use ranki(β) to
denote the rank of ‖βGi‖p among {‖βGj‖p : j ∈ J c} (in a decreasing order). We employ
J (β; N) to denote the index set of the first N largest groups in the value of ‖βGi‖p among
{‖βGj‖p : j ∈ J c}, which means

J (β; N) := {i ∈ J c : ranki(β) ∈ {1, · · · , N}}.

Moreover, we let R := d r−|J |
N e, and we denote

Jk(x; N) :=
{
{i ∈ J c : ranki(β) ∈ {kN + 1, · · · , (k + 1)N}}, k = 1, · · · , R− 1,
{i ∈ J c : ranki(β) ∈ {RN + 1, · · · , r− |J |}}, k = R.

(5)

2. Theoretical Analysis

In this section, we analyze the oracle property and the global recovery bound of the
penalized regression model (2). Firstly, we introduce the following inequalities of the lp,q
norm and the properties of the loss function f (β).

Lemma 1 ([17], p. 8). Let 0 < q ≤ p ≤ 2, β ∈ Rd+1 and K be the smallest integer such that
2K−1q ≥ 1. Then the following relation holds:

‖β‖q
p,q ≤ r1−2−K‖β‖q

p,2.

Lemma 2 ([17], p. 9). Let 0 < q ≤ 1 ≤ p and β1, β2 ∈ Rd+1. Then we have

‖β1‖
q
p,q − ‖β2‖

q
p,q ≤ ‖β1 − β2‖

q
p,q.

Lemma 3 ([17], p. 13). Let 0 < q ≤ 1 ≤ p, τ ≥ 1 and β ∈ Rd+1, N := J (β; N)
⋃J and

Jk := Jk(β; N) for k = 1, · · · , R. Then the following inequalities hold:

‖βGN c ‖p,τ ≤
R

∑
k=1
‖βGJk

‖p,τ ≤ N
1
τ−

1
q ‖βGJ c ‖p,q.

Moreover, the following properties are about the Lipschitz continuity and the convexity
of the loss function f (β).
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Proposition 1. For β1, β2 ∈ Rd+1, we have

| f (β1)− f (β2)| ≤ 2n‖X‖2‖β1 − β2‖2. (6)

Proof. For β1, β2, β̃ ∈ Rd+1, based on the differential mean value theorem and the proper-
ties of the norms we can get

| f (β1)− f (β2)| = | − 1
n

yTX(β1 − β2) +
1
n

n

∑
i=1

(ln(1 + exp(Xiβ1))− ln(1 + exp(Xiβ2)))|

= | − 1
n

yTX(β1 − β2) +
1
n

n

∑
i=1

exp(Xi β̃)XT
i

1 + exp(Xi β̃)
(β1 − β2)|

≤ | − 1
n

yTX(β1 − β2)|+ |
1
n

n

∑
i=1

XT
i (β1 − β2)| (7)

≤ (n + ‖y‖2)‖X‖2‖β1 − β2‖2

≤ 2n‖X‖2‖β1 − β2‖2.

Hence, we obtain our desirable result.

Proposition 2. For β ∈ Rd+1, the function f (β) is convex.

Proof. From the definition of the function f (β), we know the Hessian matrix of the function
f (β) is

H f (β) =
1
n

n

∑
i=1

XT
i Xi

exp(Xiβ)

(1 + exp(Xiβ))2 .

Here, we find for i = 1, · · · , n the matrix XT
i Xi � 0 and exp(Xi β)

(1+exp(Xi β))2 > 0. Thus,
the Hessian matrix H f (β) is a positive semi-definite matrix. Hence, the function f (β)
is convex.

The above lemmas and properties state the inequalities for lp,q regularization, and
they will help the proof of the oracle inequality and the global recovery bound. The
oracle inequalities for predicition error were discussed in [20,21], and they were derived
without restricted eigenvalue conditions for LASSO-type estimators or sparsity. Morever,
for the group LASSO problems, the oracle inequalities were discussed in [22–24] under the
restricted eigenvalue assumption. For linear regression with lp,q regularizaiton, the oracle
inequality was established in [17] with the help of the (p, q)-GREC(S,N).

Moreover, the (p, q)-GREC(S,N) was very important for the analysis of the oracle
property and the global recovery bound of the lp,q norm. We define γ to be the smallest
non-zero eigenvalue of the Hessian matrix of the function f (β). We introduce it in the
following definition.

Definition 1. Let 0 < q ≤ p ≤ 2. The (p, q)-GREC(S,N) is said to be satisfied if

φp,q(S, N) := min
{

γ‖β‖2

‖βGN ‖p,2
: |J | ≤ S, ‖βGc

J
‖p,q ≤ ‖βGJ ‖p,q,N = J (β, N)

⋃
J
}

> 0.

The oracle property is an important property for the variable selection, and it gives an
upper bound on the square error of the logistic regression problem and the violation of the
true nonzero groups for each point in the level set of the objective function of problem (2).

For β̄ ∈ Rd+1, the level set is given as follows:

LevF(β̄) := {β ∈ Rd+1 : f (β) + λ‖β‖q
p,q ≤ λ‖β̄‖q

p,q}.
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From the definition of the level set in ([25], p. 8), we know that many properties of the
optimization problem (2) relate to the level set LevF(β̄).

Theorem 1. Let 0 < q ≤ 1 ≤ p, S > 0 and let the (p, q)-GREC(S, S) hold. Let β̄ be the unique
solution of min

β
f (β) at a group sparsity level S, and S be the index set of nonzero groups of β̄. Let

K be the smallest integer such that 2K−1q ≥ 1. Then, for any β∗ ∈ levF(β̄), which means that
f (β∗) + λ‖β∗‖q

p,q ≤ λ‖β̄‖q
p,q, the following oracle inequality holds:

f (β∗)− f (β̄) + λ‖β∗GSc ‖
q
p,q ≤ 2

q
2−q λ

2
2−q γ

q
2−q S

2(1−2−K )
2−q /φ

2q
2−q
p,q (S, S). (8)

Moreover, letting N∗ := S ⋃ S(β∗; S), we have

‖β∗GN∗ − β̄GN∗ ‖
2
p,2 ≤ 2

2
2−q γ

2
2−q λ

2
2−q S2(1−2−K)/(2−q)/φ

4
2−q
p,q (S, S).

Proof. Let β∗ ∈ LevF(β̄), and by the definition of the level set LevF(β̄) we have

f (β∗) + λ‖β∗‖q
p,q ≤ λ‖β̄‖q

p,q.

Then by Lemmas 1 and 2 and the fact f (β̄) > 0, one has the following formulation:

f (β∗)− f (β̄) + λ‖β∗GSc ‖
q
p,q ≤ f (β∗) + λ‖β∗GSc ‖

q
p,q

≤ λ(‖β̄GS ‖
q
p,q − ‖β∗GS ‖

q
p,q) (9)

≤ λ‖β̄GS − β∗GS ‖
q
p,q

≤ λS1−2−K‖β̄GS − β∗GS ‖
q
p,2.

Moreover, we find

‖β∗GSc − β̄GSc ‖
q
p,q − ‖β∗GS − β̄GS ‖

q
p,q ≤ ‖β∗GSc ‖

q
p,q − (‖β̄GS ‖

q
p,q − ‖β∗GS ‖

q
p,q) = ‖β∗‖

q
p,q − ‖β̄‖

q
p,q ≤ 0.

Then, the (p, q)-GREC(S, S) implies the following:

‖β̄GS − β∗GS ‖p,2 ≤ (γ‖β∗ − β̄‖2)/φp,q(S, S).

From the expansion of the Taylor formulation, we obtain the following relationship:

f (β∗)− f (β̄) = ∇ f (β̄)T(β∗ − β̄) +
1
2
(β∗ − β̄)T∇2 f (β̃)(β∗ − β̄)

≥ 1
2
(β∗ − β̄)T∇2 f (β̃)(β∗ − β̄) (10)

≥ 1
2

γ‖β∗ − β̄‖2
2,

where β̃ ∈ {β̃ : ‖β̃− β̄‖2 ≤ ‖β∗ − β̄‖2}. The first inequality of formulation (10) is based
on the fact that β̄ is the unique optimal solution of minβ f (β) at group sparsity level S .
Moreover, because of the uniqueness of β̄, we obtain that the smallest eigenvalue of the
Hessian matrix of the function f (β) is positive. Hence, we obtain the second inequality.

Then, we get

γ‖β∗ − β̄‖2
2 ≤ 2( f (β∗)− f (β̄)). (11)

Combining this with formulation (9), we get

f (β∗)− f (β̄) + λ‖β∗GSc ‖
q
p,q ≤ 2

q
2 λγ

q
2 S1−2−K

( f (β∗)− f (β̄))
q
2 /φ

q
p,q(S, S). (12)
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Thus, we have

f (β∗)− f (β̄) ≤ 2
q

2−q γ
q

2−q λ
2

2−q S2(1−2−K)/(2−q)/φ
2q

2−q
p,q (S, S). (13)

Hence, by formulations (12) and (13), we obtain the oracle inequality (8). Moreover,
from the definition of N∗, the (p, q)-GREC(S, S) implies that

‖β∗GN∗ − β̄GN∗ ‖
2
p,2 ≤ 2γ( f (β∗)− f (β̄))/φ2

p,q(S, S) ≤ 2
2

2−q γ
2

2−q λ
2

2−q S2(1−2−K)/(2−q)/φ
4

2−q
p,q (S, S).

Thus, the proof is complete.

In the following, we established the global recovery bound for the lp,q regularization
problem (2). The global recovery bound shows that the sparse solution β̄ could be recovered
by any point β∗ in the level set levF(β̄). Here β∗ is a global optimal solution of problem (2)
when the penalized parameter λ is small enough. We show the global recovery bound for
the lp,q regularization problem (2) in the next theorem.

Theorem 2. Let 0 < q ≤ 1 ≤ p ≤ 2, S > 0 and suppose the (p, q)-GREC(S,S) holds. Let β̄ be
the unique solution of min

β
f (β) at group sparsity level S, and S be the index set of nonzero groups

of β̄. Let K be the smallest integer such that 2K−1q ≥ 1. Then, for any β∗ ∈ levF(β̄), the following
global recovery bound for problem (2) holds:

‖β∗ − β̄‖2
2 ≤ 2 ∗ 2

2
2−q λ

4
q(2−q) γ

2
2−q S

q−2
q + 4(1−2−K )

q(2−q) /φ
4

2−q
p,q (S, S). (14)

More precisely,

‖β∗ − β̄‖2
2 ≤

 O(λ
4

q(2−q) γ
2

2−q S), 2K−1q = 1,

O(λ
4

q(2−q) γ
2

2−q S
4−q
2−q ), 2K−1q > 1.

(15)

Proof. We suppose N∗ := S ⋃ S(β∗; S) as defined in Theorem 1. Since p ≤ 2, from
Lemma 3 and Theorem 1, we get

‖β∗GN c∗
‖2

2 ≤ ‖β∗GN c∗
‖2

p,2 ≤ S1−2/q‖β∗GSc ‖
2
p,q ≤ 2

2
2−q λ

4
q(2−q) γ

2
2−q S

q−2
q + 4(1−2−K )

q(2−q) /φ
4

2−q
p,q (S, S).

Furthermore, from Theorem 1 and the fact 2K−1q ≥ 1, we get

‖β∗ − β̄‖2
2 = ‖β∗GN∗ − β̄∗GN∗

‖2
2 + ‖β∗GN c∗

‖2
2

≤ 2
2

2−q γ
2

2−q λ
2

2−q S2(1−2−K)/(2−q)/φ
4

2−q
p,q (S, S) + 2

2
2−q λ

4
q(2−q) γ

2
2−q S

q−2
q + 4(1−2−K )

q(2−q) /φ
4

2−q
p,q (S, S) (16)

≤ 2 ∗ 2
2

2−q λ
4

q(2−q) γ
2

2−q S
q−2

q + 4(1−2−K )
q(2−q) /φ

4
2−q
p,q (S, S).

Hence, formulation (14) holds.
Moreover, if 2K−1q = 1, we have q−2

q + 4(1−2−K)
q(2−q) = 1 and we get

‖β∗ − β̄‖2
2 ≤ O(λ

4
q(2−q) γ

2
2−q S).

If 2K−1q > 1, we know q > 21−K. Hence q−2
q + 4(1−2−K)

q(2−q) ≤
4−q
2−q , and we get

‖β∗ − β̄‖2
2 ≤ O(λ

4
q(2−q) γ

2
2−q S

4−q
2−q ).

Thus, formulation (15) holds.
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Remark 1. From Proposition 2, we know that f (β) is convex. By the convexity of the function
f (β), we know it is suitable for the assumption for the variable β̄. The conditions of the variable β̄
help us to obtain desirable results for Theorems 1 and 2.

3. ADMM Algorithm

In this section, we give an algorithm based on the ADMM algorithm [26,27] for solving
the logistic regression model with lp,q regularization (2). The ADMM algorithm performs
very well for problems where the variables can be separated. Model (2) can be equivalently
described as follows:

min
β

f (β) + λ‖r‖q
p,q,

s.t. β = r. (17)

The augmented Lagrange function of the above model is as follows:

Lρ(β, r, u) = f (β) + λ‖r‖q
p,q + uT(β− r) +

ρ

2
‖β− r‖2

2, (18)

where u ∈ Rd+1 is the dual variable, and ρ > 0 is the augmented Lagrange multiplier.
Generally speaking, the structure of the ADMM algorithm is given as follows:

βk+1 = argminβ f (β) + (β− rk)Tuk +
ρ

2
‖β− rk‖2

2, (19)

rk+1 = argminrλ‖r‖q
p,q + (βk+1 − r)Tuk +

ρ

2
‖βk+1 − r‖2

2, (20)

uk+1 = uk + ρ(βk+1 − rk+1). (21)

Based on the above structure and Propositions 1 and 2, the subproblem (19) is an
unconstrained convex optimization problem and the objective function is Lipschitz con-
tinuous. Based on these good properties of the subproblem (19), we found that it could
be effectively solved by many optimal algorithms, such as the trust region algorithm,
the sequential quadratic programming algorithm, the algorithm based on the gradient
and so on. Moreover, the first order optimal conditions of problem (19) are given by the
following formulation:

∂
(

f (β) + ukT(β− rk) + ρ
2‖β− rk‖2

2

)
∂β

= 0d+1.

Thus, we obtain the optimal solution for subproblem (19) by solving the following
nonlinear equations:

nρβ−
n

∑
i=1

XT
i

1 + exp(Xiβ)
= nρrk − nuk + XT(y− en), (22)

where en = (1, 1, · · · , 1︸ ︷︷ ︸
n

)T ∈ Rn.

From this fact we know that the variable β is group sparse. Hence, we can divide the
variables βk+1 and uk by the group structure. βk+1

Gi
and uk+1

Gi
denote the Gith group variables

of βk+1 and uk, respectively. Subproblem (20) is solved by employing a group structure.
Then, for i = 1, · · · , r, rk+1

Gi
can be given by solving the following optimization problem:

rk+1
Gi

= argminrm λ‖rGi‖
q
p,q + (βk+1

Gi
− rGi )

Tuk
Gi
+

ρ

2
‖βk+1
Gi
− rGi‖

2
2. (23)
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We can then obtain the solution for subproblem (20) by the following:

rk+1 = (rk+1T
G1

, · · · , rk+1T
Gr

)T . (24)

Moreover, we find that the problem (23) can be equivalently solved by the following one:

(rGi )
k+1 = argminrGi

‖rGi − (βk+1
Gi

+
uk
Gi

ρ
)‖2

2 +
2λ

ρ
‖rGi‖

q
p,q. (25)

The proximal gradient method given in [17] has proven very useful for solving (25).
Based on the above analysis, we found that the ADMM algorithm was effective for solving
the logistic regression problem with lp,q regularization, and we describe the structure of
Algorithm 1 in the following.

Algorithm 1 ADMM algorithm for solving (2).

Step 1: Initialization: give β0, u0, r0, ρ > 0, λ > 0, and set k = 0;
Step 2: for k = 0, 1, · · · , if the stop criteria is satisfied, the algorithm is stopped; otherwise
go to Step 3;
Step 3: Update βk+1: βk+1 is given by solving nonlinear Equation (22);
Step 4: Update rk+1: for i = 1, · · · , r, we employ the proximal gradient method to solve
the optimization problem (25) and give rk+1

Gi
. Then, we have

rk+1 = (rk+1T
G1

, · · · , rk+1T
Gr

)T .

Step 5: Update uk+1: uk+1 = uk + ρ(βk+1 − rk+1).

4. Simulation Examples

In this section, we employ the simulation data to illustrate the efficiency of the logistic
regression model with lp,q regularization and the ADMM algorithm. l1/2 regularization
is shown to give a more sparse optimal solution than the l1 norm [28]. Hence, we em-
ployed q = 1/2 to do our numerical experiments, and we used the ADMM algorithm that
we designed in Section 3 to solve model (2). The environment for the simulations was
Python 3.7.

In order to verify the effect of the prediction and the classification for penalized
logistic regression model (2), we designed two simulation experiments with different data
structures. At the same time, we employed the LASSO logistic regression model and the
logistic regression model with the elastic net penalty to solve the numerical problems.
The numerical results illustrated the advantages of the logistic regression model with
lp,q regularization.

We mainly considered two aspects of the effects of the models: the ability of the model
to select variables; the ability of the model to test the effects of the classifications and
predictions for the penalized logistic regression models. The evaluation indexes for the
models in this section mainly included the following:

• P: the number of non-zero coefficients in the variables that the model gives.
• TP: the number of coefficients predicted to be non-zero which are actually non-zero.
• TN: the number of coefficients predicted to be zero which are actually zero.
• FP: the number of coefficients predicted to be non-zero but which are actually zero.
• FN: the number of coefficients predicted to be zero but which are actually non-zero.
• PSR: the ratio of the number of non-zero coefficients in the variables for the predicted

case to that of the true case, which is calculated by the following:

PSR =
TP
p

.
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• Accuracy: the accuracy of the prediction for the test data, which is calculated by the
following formulation:

Accuracy =
TP + TN

TP + TN + FP + FN
.

• AUC: area under the curve.

A P value close to TP shows that the model is good. The greater the Accuracy and
AUC, the better the model. PSR being close to 1 shows the goodness of the model.

Moreover, for the penalized parameter λ, we used the test set verification method to
choose it. Firstly, we selected a value of λ that made all coefficients equal to 0, and we set
it as λmax. Secondly, we chose a number that was very close to 0, such as 0.0001, and set
it as λmin. We chose λ ∈ [λmin, λmax] to do the numerical experiments. Finally, we gave
λ ∈ [λmin, λmax], and it produced a maximum value for the AUC. The augmented Lagrange
multiplier ρ did not influence the convergence of the algorithm, but the proper one would
give a fast convergence rate. When we performed the numerical experiments, we just chose
a better one, which meant it made the algorithm converge quickly.

4.1. Simulation Experiment with Non-Sparse Variables in the Group

Firstly, we constructed the group structure features with similar features in the group
and different features between different groups, and we obtained the data as it is given
in [1]. The data was generated according to the following model:

yi =
1

1 + exp(−Xiβ + ε)
.

Here, the explanatory variables for the groups followed the multivariate normal
distributions, which meant Xi ∼ N(0, Σps), and the error followed the standard normal
distribution, which meant ε ∼ N(0, 1). The correlation coefficient of the variables (XGi )i

and (XGi )j was ρ
|i−j|
s . Generally speaking, we employed ρs = 0.2 or ρs = 0.7 to denote the

weak correlation or strong correlation for the variables in the group.
For this simulation experiment, we generated data using 10 groups independently,

and each group contained five variables. Hence, the total number of variables was 50. There
were three groups that were significant, and the other seven groups were not significant.
The correlation coefficients within the groups were 0.2 and 0.7, respectively. The sample
size was 500. We selected 80% of the data for the training set and the others were the test
set. The experimental simulation was repeated 30 times. For this example, the penalized
parameter was λ = 0.001 for the LASSO logistic regression model. For model (2) the
penalized parameter was λ = 0.02 and the augmented Lagrange multiplier was chosen as
ρ = 0.1. For the logistic regression model with the elastic net penalty, the parameters were
set as λ1 = 0.0009 and λ2 = 0.0001.

The following table gives the numerical results for this example with different models
and different correlation coefficients.

According to Table 1, the logistic regression model with the elastic net penalty, the
LASSO logistic regression model and the logistic regression model with lp,q regularization
could perform variable selection. When the correlation of variables was different, the
criteria of the logistic regression model with lp,q regularization were better than the other
two models. According to the indexes P and TP, it could be seen that all variables with non-
zero coefficients in the logistic regression model with l2,1/2 regularization were screened
out when the correlation was different. The value of P was closer to that of TP, and all
the selected variables were variables with non-zero coefficients. When choosing different
parameters, the logistic regression model with lp,q regularization selected more variables
with true non-zero coefficients than that of the other two models, and the logistic regression
model with lp,q regularization gave a solution that was closer to the number of variables
with true non-zero coefficients. The PSR was closer to 1 and could select significant
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variables. From the prediction effect of the model, the AUC and accuracy of the logistic
regression model with lp,q regularization showed better prediction effects with different
correlation coefficients.

Table 1. The results for the simulations in experiment one.

The Correlation Coefficient Models P TP PSR Accuracy AUC

ρs = 0.2

Elastic Net 33.07 15.00 1.0000 0.9520 0.9503

LASSO 32.17 15.00 1.0000 0.9503 0.9497

p = 2, q = 1
2 15.00 15.00 1.0000 0.9657 0.9658

p = 1, q = 1
2 15.20 14.93 0.9956 0.9580 0.9582

ρs = 0.7

Elastic Net 31.33 15.00 1.0000 0.9577 0.9571

LASSO 29.47 14.83 0.9889 0.9577 0.9571

p = 2, q = 1
2 15.00 15.00 1.0000 0.9710 0.9716

p = 1, q = 1
2 16.03 14.90 0.9933 0.9637 0.9634

According to the variable-selection effect and the prediction effect of the models, the
logistic regression model with L2,1/2 regularization was better than those of the logistic
regression model with the elastic net penalty and the LASSO logistic regression model.
Since the data for this simulation experiment was designed to be zero or non-zero in one
group, the logistic regression model with L2,1/2 regularization performed better than the
logistic regression model with L1,1/2 regularization. The logistic regression model with
L2,1/2 regularization could select a set of variables or not, and it had an ideal group variable-
selection effect. The logistic regression model with the elastic net penalty and the LASSO
logistic regression model compressed the variables to achieve a sparse effect, but because
they did not make full use of the group structure information of the variables, they selected
too many variables with zero coefficients during variable selection, so the performance of
the two models was not good.

4.2. Simulation Experiment with the Sparse Variables in the Group

The data give were similar to those in the above experiment. The difference between
these two simulation experiments are given as follows. A total of six groups of variables
with intragroup correlation were simulated. Each group contained 10 variables. A total
of two groups of 12 variables were significant. One group of variables was completely
significant, and the other group contained two significant variables. The sample size was
500. The ratio of the training set to the test set was 8 : 2. The correlation coefficients within
the group were 0.2 and 0.7, respectively. For this example, the penalized parameter was
λ = 0.001 for the LASSO logistic regression model, and for model (2) the penalized param-
eter was λ = 0.032 and the augmented Lagrange multiplier was 0.1. When ρs = 0.2, the
parameters for the logistic regression model with the elastic net penalty were λ1 = 0.0018
and λ2 = 0.0002. Moreover, when ρs = 0.7, the parameters for the logistic regression model
with the elastic net penalty were λ1 = 0.0021 and λ2 = 0.0009.

The following table gives us the numerical results for this example with different
models and different correlation coefficients.

According to Table 2, the logistic regression model with L1,1/2 regularization per-
formed very well. From the perspective of variable selection, the logistic regression model
with the elastic net penalty, the LASSO logistic regression model and the logistic regression
model with lp,q regularization could screen out all the variables with non-zero coefficients.
The logistic regression model with the elastic net penalty and the LASSO logistic regression
model screened out too many variables with non-zero coefficients. However, the logistic
regression model with lp,q regularization not only gave all the variables with non-zero coef-
ficients, but also the values of P and TP were very close, which meant the variables given
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by the logistic regression model with lp,q regularization were close to the predicted ones.
For this kind of data, we found that the logistic regression model with l2,1/2 regularization
tended to compress a group of variables to be zero or non-zero at the same time. Therefore,
the logistic regression model with l2,1/2 regularization selected a significant difference, but
it did not filter out the important variables in the group. In terms of the prediction effect
of the model, the logistic regression model with l1,1/2 regularization performed well for
different correlation coefficients, and its prediction ability also improved compared with
the univariate selection model.

Table 2. The results for the simulations in experiment two.

The Correlation Coefficient Models P TP PSR Accuracy AUC

ρs = 0.2

Elastic Net 29.83 12.00 1.0000 0.9467 0.9467

LASSO 36.00 12.00 1.0000 0.9480 0.9478

p = 2, q = 1
2 14.67 12.00 1.0000 0.9580 0.9650

p = 1, q = 1
2 12.37 12.00 1.0000 0.9651 0.9673

ρs = 0.7

Elastic Net 24.36 12.00 1.0000 0.9570 0.9561

LASSO 29.40 12.00 1.0000 0.9590 0.9589

p = 2, q = 1
2 17.33 12.00 1.0000 0.9640 0.9635

p = 1, q = 1
2 12.90 12.00 1.0000 0.9700 0.9704

Combining the effects of variable selection and model prediction, the logistic regression
model with lp,q regularization performed well when the variables were sparse in the group.
Due to the “all in all out” mechanism, the logistic regression model with l2,1/2 regularization
could only screen out important variable groups. The important variables in the group
could not be screened out, and the variable-selection ability was not good. But the logistic
regression model with l1,1/2 regularization could overcome this disadvantage.

From the above two simulation experiments, we found the goodness of the logistic
regression model with lp,q regularization for variable selection and prediction for the data
with a group structure. Moreover, for different data, we adjusted the value of p to adapt to
the problems.

5. Real-Data Experiment

Data description and preprocessing are described as follows. In this section, the real
data are considered. The data came from the excellent mining quantitative platform, and
the website is https://uqer.datayes.com/ (acdcessed on 31 October 2021) The data were
the factor data and the yield data of constituent stocks for the Shanghai and Shenzhen 300
index in China’s stock market from 1 January 2010 to 31 December 2020. The advantages
for using these data were good performance, large scale, high liquidity and active trading
in the market. In order to ensure the accuracy and rationality of the analysis results,
we needed to select and correct the range of samples. According to the development
experience of China’s stock market and previous research experience, the empirical part
located the sample starting point in 2010. Secondly, because the capital of companies in the
financial industry has the characteristics of high leverage and high debt, the construction of
some financial indicators is quite different from the other listed companies. Therefore, we
excluded some financial companies based on our experience. In addition, ST and PT stocks
in the market have abnormal financial conditions and performance losses. We also excluded
such kinds of stocks with weak comparability. Among the 243 stock factors visible on the
excellent mining quantitative platform, 34 factors that belong to nine groups were selected
to evaluate model (2). The data were daily data, but in practice, if daily transaction data
were used for investment, the frequent transactions would lead to a significant increase in
transaction costs. The rise of transaction costs would affect the annualized rate of return.

https://uqer.datayes.com/
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In order to reduce the impact of transaction costs, we used monthly transaction data for
modeling. Hence, it was necessary to conduct a monthly average processing for each
factor’s data, and we used monthly data for stock selection. In the division of the data set,
the data from 1 January 2010 to 30 April 2018 were selected as the training set, and the data
from 1 May 2018 to 31 December 2020 were used for back testing.

In order to ensure the quality of subsequent factor screening and the effect of stock rise
and fall prediction, we needed to preprocess the data before the analysis. The methods for
data preprocessing included noise cleaning, missing value processing, data standardization,
lag processing and so on.

Using the above factors and data processing methods to generate the stock factor
matrix, we employed the logistic regression model with lp,q regularization and the ADMM
algorithm proposed in Section 3 to estimate the coefficients of the factors. We also calculated
the posterior probability of the stock, sorted the probability from large to small, and bought
the top ten stocks with equal weight.

In the following, we introduce the historical back test evaluation index. When we
performed the back test analysis for the solutions, in order to perform the objective reflective
and comprehensive evaluation of the solutions, it was necessary to give the evaluation
indicators. We selected nine indicators to do this, and they were the return rate of the year,
the return rate of the benchmark year, the sharp ratio, the volatility, the return unrelated to
the market fluctuations (α), the sensitivity to market changes (β), the information ratio, the
maximum pullback, the turnover rate of the year, etc.

Based on the above evaluation criteria, we used the selected data to back test and
verify the effectiveness of model (2), and we employed the above model to predict the
stock trend. Moreover, we sorted the predicted yield data, and selected the top 10 stocks
with the highest rise in probability as the stock portfolio for the month, according to the
equal weight reconstruction portfolio. We held it until the end of the month to calculate the
month’s income. The initial capital was set at 10 million yuan, the tax for buying was 0.003,
and the tax for selling was 0.0013. The sliding point was 0. Moreover, the parameters for
model (2) were given as λ = 0.004. λ = 0.003 was chosen for the LASSO logistic regression
model. We adopted λ1 = λ2 = 0.02 for the logistic regression model with the elastic net
penalty. We employed the ADMM algorithm that we gave in Section 3 to solve this example,
and the Lagrange multipliers for the ADMM algorithm to solve these models were chosen
as ρ = 0.1. After the calculation, we listed the following transaction back test results and
the cumulative yield figure, which are listed in Table 3 and Figure 1, respectively.

Table 3. The back test results.

The Logistic Regression with Different Penalties The l1,1/2 Norm LASSO Elastic Net

The return rate of the year 22.7% 20.5% 18.8%

The return rate of the benchmark year 13.3% 13.3% 13.3%

α 10.5% 6.2% 8.0%

β 0.89 0.92 0.64

The sharp ratio 0.84 0.72 0.41

The volatility 22.8% 23.5% 23.7%

The information ratio 0.68 0.54 0.41

The maximum pullback 18.8% 27.7% 25.1%

The turnover rate of the year 9.14 7.67 9.33
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Figure 1. The cumulative yield figure.

From Table 3, we found that the return rates for the year for these three models were
all higher than the return rate of the benchmark year, 13.3%. For the return rate of the
benchmark year, the logistic regression model with l1,1/2 regularization was the highest.
Model (2) gave a good strategy from the perspective of excess return α and the sharp ratio.
Under the same risk coefficient, the investment strategy based on the logistic regression
model with l1,1/2 regularization could help investors make effective investment decisions
and obtain higher yields. Moreover, the model could give a strategy with an acceptable
range in the maximum pullback, and the strategy could also more effectively prevent the
pullback risk.

From the graph of the cumulative rate of return, the line given by the logistic regression
model with l1,1/2 regularization was basically always above the benchmark annualized
rate of the return curve, which indicated that the return of the portfolio constructed with
the group information was always stable. The portfolio constructed based on the logistic
regression model with l1,1/2 regularization could not only screen out the important factor
types affecting stock returns, but could also screen out the important factor indicators in
the group, so as to more accurately predict the probability of stock returns rising. When
constructing the portfolio based on this model, it had certain advantages over the other
two regression models.

6. Conclusions

Combined with the data requirements, this paper proposed a logistic regression model
with lp,q regularization. We showed the properties of the lp,q norm and the loss function
of the logistic regression problem. Moreover, the oracle inequality for the lp,q norm and
the global recovery bound for the penalized regression model were established with the
help of the (p, q)-group restricted eigenvalue condition. These properties were important
for variable selection. In Section 3, we showed the framework for the ADMM algorithm
for solving the penalized logistic regression model. For the algorithm, we gave a method
for solving the subproblems, so as to reduce the difficulty and complexity of solving the
model (2).

By the numerical simulation results, since the logistic regression with lp,q regularization
comprehensively considered the group structure information of variables, compared with
the univariate selection method considering only a single variable, it could eliminate more
redundant variables, so as to screen out the more important characteristics of dependent
variables. It also had higher accuracy when we performed the test on the test set. Moreover,
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for the real-data experiment, it was found that the logistic regression model with lp,q
regularization could show a more stable effect in variable selection and prediction.

In future work, we could extend the group logistic regression model with Lp,q reg-
ularization. In the theoretical part, we could do more analysis, such as local recovery
bounds and design a more appropriate algorithm, which could give a convergence solution.
Moreover, in the numerical parts, we could choose more p and q to illustrate the goodness
of the model (2).

Author Contributions: Conceptualization and methodology, Y.Z. and C.W.; investigation and data
curation, X.L.; writing—original draft preparation, writing—review and editing, Y.Z. and C.W. All
authors have read and agreed to the published version of the manuscript.

Funding: The authors’ work was supported by the National Natural Science Foundation of China
(No. 12171027), National Statistical Science Research Project (2019LZ40), State Key Laboratory of
Scientific and Engineering Computing, Chinese Academy of Sciences, and the Youth Foundation of
Minzu University of China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96,

1348–1360. [CrossRef]
2. Huang, J.; Ma, S.; Xie, H.; Zhang, C. A group bridge approach for variable selection. Biometrika 2009, 96, 339–355. [CrossRef]
3. Kim, S.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, D. An interior-point method for large-scale regularized least squares. IEEE J.

Sel. Top. Signal Process. 2007, 1, 606–617. [CrossRef]
4. Meinshausen, N. Relaxed lasso. Comput. Stat. Data Anal. 2006, 52, 374–393. [CrossRef]
5. Nikolova, M.; Ng, M.K.; Zhang, S.; Ching, W. Efficient reconstruction of piecewise constant images using nonsmooth nonconvex

minimization. SIAM J. Imaging Sci. 2008, 1, 2–25. [CrossRef]
6. Ong, C.S.; An, L.T.H. Leaning sparse classifiers with difference of convex functions algorithms. Optim. Method Softw. 2013, 28,

830–854. [CrossRef]
7. Soubies, E.; Blance-Fraud, L.; Aubert, G. A continuous exact penalty (cel0) for least squares regularized problem. SIAM J. Imaging

Sci. 2015, 8, 1607–1639. [CrossRef]
8. Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. B 2011, 73, 273–282. [CrossRef]
9. Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [CrossRef]
10. Zhang, T. Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res. 2010, 11, 1081–1107.
11. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 2005, 67, 301–320. [CrossRef]
12. Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [CrossRef]
13. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. B 2006, 68, 49–67. [CrossRef]
14. Wang, L.; Li, H.; Huang, J.Z. Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements.

J. Am. Stat. Assoc. 2008, 103, 1556–1569. [CrossRef] [PubMed]
15. Huang, J.; Breheny, P.; Ma, S. A selective review of group selection in high-dimensional models. Stat. Sci. 2012, 27, 481–499.

[CrossRef] [PubMed]
16. Chartrand, R.; Staneva, V. Restricted isometry properties and nonconvex compressive sensing. Inverse Probl. 2008, 24, 035020.

[CrossRef]
17. Hu, Y.; Li, C.; Meng, K.; Qin, J.; Yang, X. Group sparse optimization via lp,q regularization. J. Mach. Learn. Res. 2017, 18, 1–52.
18. Meier, L.; Sara, G.; Bu̇hlmann, P. The group lasso for logistic regression. J. R. Statist. Soc. B 2008, 70, 53–71. [CrossRef]
19. Zhao, P.; Rocha, G.; Yu, B. The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Statist.

2009, 37, 3468–3497. [CrossRef]
20. Bartlett, P.L.; Mendelson, S.; Neeman, J. L1 regularized linear regression: Persistence and oracle inequalities. Probab. Theory Relat.

Fields 2012, 154, 193–224. [CrossRef]
21. Greenshtein, E.; Ritov, Y.A. Persistence in high-dimensional linear predictor selection and the virtue of overparametrization.

Bernoulli 2012, 10, 971–988. [CrossRef]
22. Blazère, M.; Loubes, J.M.; Gamboa, F. Oracle inequalities for a group lasso procedure applied to generalized linear models in high

dimension. IEEE Trans. Inform. Theory 2014, 60, 2303–2318.

http://doi.org/10.1198/016214501753382273
http://dx.doi.org/10.1093/biomet/asp020
http://dx.doi.org/10.1109/JSTSP.2007.910971
http://dx.doi.org/10.1016/j.csda.2006.12.019
http://dx.doi.org/10.1137/070692285
http://dx.doi.org/10.1080/10556788.2011.652630
http://dx.doi.org/10.1137/151003714
http://dx.doi.org/10.1111/j.1467-9868.2011.00771.x
http://dx.doi.org/10.1214/09-AOS729
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1198/016214506000000735
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://dx.doi.org/10.1198/016214508000000788
http://www.ncbi.nlm.nih.gov/pubmed/20054431
http://dx.doi.org/10.1214/12-STS392
http://www.ncbi.nlm.nih.gov/pubmed/24174707
http://dx.doi.org/10.1088/0266-5611/24/3/035020
http://dx.doi.org/10.1111/j.1467-9868.2007.00627.x
http://dx.doi.org/10.1214/07-AOS584
http://dx.doi.org/10.1007/s00440-011-0367-2
http://dx.doi.org/10.3150/bj/1106314846


Mathematics 2022, 10, 2227 15 of 15

23. Kwemou, M. Non-asymptotic oracle inequalities for the Lasso and group Lasso in high dimensional logistic model. ESAIM-Probab.
Stat. 2016, 20, 309–331. [CrossRef]

24. Xiao, Y.; Yan, T.; Zhang, H.; Zhang, Y. Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models.
J. Inequal. Appl. 2020, 1, 1–33. [CrossRef]

25. Rockafellar, R.T.; Wets, R.J.-B. Variational Analysis, 3rd ed.; Springer: New York, NY, USA, 2009.
26. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction

method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [CrossRef]
27. Han, D. A survey on some recent developments of alternating direction method of multipliers. J. Oper. Res. Soc. China 2022, 10,

1–52. [CrossRef]
28. Xu, Z.; Chang, X.; Xu, F.; Zhang, H. l1/2 regularization: A thresholding representation theory and a fast solver. IEEE Trans. Neural

Netw. Learn. Syst. 2012, 23, 1013–1027.

http://dx.doi.org/10.1051/ps/2015020
http://dx.doi.org/10.1186/s13660-020-02517-3
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1007/s40305-021-00368-3

	Introduction
	Theoretical Analysis
	ADMM Algorithm
	Simulation Examples
	Simulation Experiment with Non-Sparse Variables in the Group
	Simulation Experiment with the Sparse Variables in the Group

	Real-Data Experiment
	Conclusions
	References

