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Abstract: In this paper, we address the case of a particular class of function referred to as the rational
equivariant functions. We investigate which elliptic zeta functions arising from integrals of power of
℘, where ℘ is the Weierstrass ℘-function attached to a rank two lattice of C, yield rational equivariant
functions. Our concern in this survey is to provide certain examples of rational equivariant functions.
In this sense, we establish a criterion in order to determine the rationality of equivariant functions
derived from ratios of modular functions of low weight. Modular forms play an important role in
number theory and many areas of mathematics and physics.
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1. Introduction

Let us consider that the modular group SL2(Z) acts on on the upper half-plane H

by Möbius transformation: for τ ∈ H γ =

[
a b
c d

]
∈ SL2(Z), we have γτ = aτ+b

cτ+b . The

region delimited by <τ = − 1
2 , <τ = 1

2 and | τ |= 1 is the fundamental domain for this
action. If f is a modular form for SL2(Z), then f (τ + 1) = f (τ). In other words, any
modular function is periodic and thus has a Fourier expansion that can be written as a
power series in the form q = e2πiτ . This representation is called the q-expansion of f . By this
property, f is meromorphic at ∞ if its q-expansion has only a finite number of negative
powers of q, and f is holomorphic at ∞ if the limit

f (∞) := lim
=τ→∞

f (τ)

exists.
Equivalently, a modular function f is holomorphic at ∞ if its q-expansion has only

non-negative powers of q. Finally, a cusp form is a holomorphic modular form that vanishes
at ∞.

For a finite index subgroup Γ of SL2(Z), an equivariant function is a meromorphic
function on the upper half-plane H, which commutes with the action of Γ on H. Namely,

f (γτ) = γ f (τ) , γ ∈ Γ , τ ∈ H, (1)
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where γ acts by linear fractional transformations on both sides. These were extensively
studied in connection with modular forms in [1–3] and have important applications to mod-
ular forms and vector-valued modular forms [4,5]. We could recall here several applications
of equivariant functions. Thus, we describe here some of them as they found in [3]. In [6],
we showed that the set of equivariant functions is parameterized by modular functions of
weight 2. It turns out that the rationality property is connected to the analytic behaviour
at the fixed points of the function. There is another construction of equivariant functions
that uses logarithmic derivatives of modular functions f of any weight. The equivariant
functions h f that are constructed in this way are known as rational equivariant functions,
because their associated function ĥ := 1/(h(τ)− τ) in H∪ {∞} has rational residues at all
of its poles [2].

In this paper, we focus on the problem of producing examples of rational equivariant
functions. To this aim, we prove a criterion which examines the rationality of equivariant
functions constructed from ratios of modular functions of low weight. As consequence, it
follows from this criterion that the equivariant functions

hn(τ) := τ +
2πi

fn(τ) + η(1)
, (2)

with fn = Φn/Ψn, are rational for all n ≤ 12 and for n = 14.
In the next step, we turn our attention to the problem of establishing the non-rationality

of given equivariant functions. In particular, we prove that h13 does not belong to the set
of rational equivariant functions, and conjecture that for all n ≥ 15, the functions hn are
non-rational. In support of the conjecture, we provide some analysis numerically.

An interesting elliptic aspect occurs along the modular dimension of equivariant
functions structure, as we can see in [3]. The significant form of the equivariant function
related to the weight 12 cusp form ∆ given by

h1(z) = z +
6

iπE2(z)
= z + 12

∆
∆′

,

is associated to the Weierstrass ζ-function. It is here denoted by E2, the weight 2 Eisenstein
series and ζ ′ = ℘ with ℘ as the classical Weierstrass elliptic function.

From the standpoint of differential algebra, each equivariant form satisfies a differential
equation of a degree at most of 6; this is something one would expect from a function that
satisfies a large number of functional equations. To explain this phenomenon, consider the
differential ring of modular forms and their derivatives, commonly known as the ring of
quasi-modular forms, which has a transcendence degree of 3 and is simply C[E2, E4, E6].
We uncover essential differential features of the reciprocal of E2, E4, and E6 once again
when we specify concrete examples of equivariant forms from the Eisenstein series. It
was demonstrated that 1

E2
, 1

E4
and 1

E6
fulfill algebraic differential equations over Q using

a Maillet theorem. Since the equivariant functions are differentially algebraic, this allows
us to control gaps or growth coefficients in the expansion of these functions in q-series
using well-known transcendence theory theorems like those of Maillet and Popken. In [3],
the following elements of equivariant functions are emphasized: the connection between
the Schwarz derivative and cross-ratio, then the the Schwarz derivative and equivariance,
and finally, the cross-ratio and equivariance. This primary construct is the result of the
following aspects: the infinitesimal counterpart of the cross-ratio represents the Schwarz
derivative; the Schwarz differential equation is related to the Riccati equation; the cross-
ratio of four solutions to the Riccati equation is a constant in the field C; and finally the
cross-ratio of four solutions to the Riccati equation is a constant in the field C.

As a consequences of the above aspects, the equivariant functions are very fascinating
objects for study. We can recall here another form of the equivariance concept, namely the
platonic form, which occurs in the physics field.
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We investigate in the paper two various techniques to reveal that an equivariant
function h is not rational. One approach, which uses the classification of rational equivariant
functions, is to prove that ĥ has irrational residue at some pole. For instance, explicitly
computing the residues at the poles of ĥ13 reveals that they are quadratic irrationals.
The disadvantage of this approach is that to find the poles and the residues of given
equivariant functions such as hn, we often need to find the roots of polynomials. This is
difficult if the polynomials have a large degree.

Then, we propose another criterion for the non-rationality of equivariant functions,
which is based on the notion of irreducible polynomials. There are criteria to test if a
polynomial is irreducible, such as Eisenstein’s criterion. The advantage of this approach in
proving the irrationality of hn is most evident for large values of n, because this criterion
requires only the analysis of coefficients of large polynomials, not of their roots.

2. Basic Definitions and Facts

Let Λ ⊂ C be a lattice in C, that is Λ = ω1 Z + ω2 Z with=(ω2/ω1) > 0. Such a lattice
can be expressed with a different basis (ω′1, ω′2) if ω′1 = a ω1 + b ω2 and ω′2 = c ω1 + d ω2

with γ =

[
a b
c d

]
∈ SL2(Z); that is, (ω′1, ω′2) = (ω1, ω2)γ

t, where γt denotes the transpose

of the matrix γ. The main reference in this section is [7].
The Weierstrass ℘-function is the elliptic function with respect to Λ given by:

℘(Λ, z) =
1
z2 + ∑

ω∈Λ
ω 6=0

(
1

(z− w)2 −
1

ω2

)
.

The function is absolutely and uniformly convergent on certain compact sets of C \Λ
and provides a meromorphic function on C with poles of order 2 at the points of Λ and no
other poles. The Weierstrass ζ-function is defined by the series

ζ(Λ, z) =
1
z
+ ∑

ω∈Λ
ω 6=0

(
1

z− w
+

1
ω

+
z

ω2

)
. (3)

We can also affirm that the function is absolutely and uniformly convergent on certain
compact sets of C \Λ. In addition, it provides a meromorphic function on C with simple
poles at the points of Λ and no other poles. Differentiating the above series we get for all
z ∈ C:

d
dz

ζ(Λ, z) = −℘(Λ, z) .

Since ℘ is periodic relative to Λ, ζ is quasi-periodic in the sense that for all ω ∈ Λ and
for all z ∈ C, we have

ζ(Λ, z + ω) = ζ(Λ, z) + ηΛ(ω), (4)

where ηΛ(ω) is independent of z. We call ηΛ : Λ −→ C the quasi-period map associated
with ζ. It is clear that ηΛ is Z-linear, and thus it is completely determined by the values
of ηΛ(ω1) and ηΛ(ω2). The periods and the quasi-periods are related by the Legendre
relation:

ω1ηΛ(ω2)−ω2ηΛ(ω1) = 2πi. (5)

Let ω1 and ω2 be such that =(ω2/ω1) > 0 and set

M(ω1,ω2)
=

[
ω2 η(ω2)
ω1 η(ω1)

]
,
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where η is the quasi-period map of the Weierstrass zeta function ζ(ω1Z+ ω2Z, z). Using
the Legendre relation (5), we have

det M(ω1,ω2)
= −2πi.

Definition 1. Let L be the set of lattices Λ(ω1,ω2)
= ω1Z+ ω2Z with =(ω2/ω1) > 0. The ellip-

tic zeta function of weight k ∈ Z is defined as a map

Z : L×C −→ C∪ {∞}

satisfying the following properties:

I. For each Λ = ω1Z+ ω2Z, the map

Z(Λ, ·) : C −→ C∪ {∞}

is quasi-periodic, that is

Z(Λ, z + ω) = Z(Λ, z) + HΛ(ω) , z ∈ C , ω ∈ Λ ,

where the quasi-period function HΛ(ω) does not depend on z;
II. Z is homogeneous of weight k in the sense that

Z(αΛ, αz) = αk Z(Λ, z) , α ∈ C∗ , z ∈ C;

III. If Λτ = Z+ τZ, τ ∈ H, then the quasi-periods HΛτ
(τ) and HΛτ

(1) as functions of τ are
meromorphic on H.

It follows from (I) that for each Λ, the quasi-period function HΛ is Z-linear, and there-
fore, it is completely determined by HΛ(ω1) and HΛ(ω2).

Let Z be an elliptic zeta function of weight k with the two quasi-periods H(ω1) and
H(ω2). Set [

Φ
Ψ

]
= M−1

(ω1,ω2)

[
H(ω2)
H(ω1)

]
.

In other words,

2πiΦ = η(ω2)H(ω1)− η(ω1)H(ω2) (6)

2πiΨ = ω1H(ω2)−ω2H(ω1). (7)

Recall the Eisenstein series G2(τ) defined by

G2(τ) =
1
2 ∑

n 6=0

1
n2 +

1
2 ∑

m 6=0
∑

n∈Z

1
(mτ + n)2

and the normalized weight-two Eisenstein series

E2(τ) =
6

π2 G2(τ) = 1− 24
∞

∑
n=1

σ1(n)qn , q = e2πiτ ,

where σ1(n) is the sum of positive divisors of n. The following properties one can eas-
ily deduce from the definition of the Weierstrass ζ-function (3), as they were described
in [7], namely

η(1) = G2(τ),

η(τ) = τG2(τ)− 2πi,
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Further, if ∆ denotes the weight 12 cusp form (the discriminant)

∆(τ) = q
∞

∏
n=1

(1− qn)24 , q = e2πiτ ,

then

E2(τ) =
1

2πi
∆′(τ)
∆(τ)

.

Let Λ = ω1Z+ ω2Z, =(ω2/ω1) > 0 be a lattice in C. The Eisenstein series g2 and g3
are defined by

g2(Λ) = 60 ∑
ω∈Λ−{0}

1
ω4 , g3(Λ) = 140 ∑

ω∈Λ−{0}

1
ω4 .

When Λ = Z+ τZ, τ ∈ H, g2 and g3, as functions of τ, they are modular forms of
weight four and six, respectively.

We now study the effects of differentiation on modular forms. The following functions
were studied by Ramanujan [8], who proved that they satisfy the following differential
equations:

Proposition 1. If f is a modular function of weight k, then

D f := (2πi) f ′ + kη1 f ; (8)

is a modular function of weight k + 2.

Ramanujan considered derivatives of the Eisenstein series [8] and showed the follow-
ing formulas:

Example 1.

(2πi)G′2 = 6(η1)
2 − 4g2; (9)

(2πi)g′2 = 6g3 − 4η1g2; (10)

(2πi)g′3 =
1
3

g2
2 − 6g3η1; (11)

(2πi)∆′ = −12η1∆. (12)

These allow us to study a special modular function, the j invariant, in terms of which
any other modular function of weight 0 can be expressed explicitly.

Definition 2. The j invariant function is given by

j(τ) = 1728
g3

2(τ)

∆(τ)
, τ ∈ H.

We remark that the function j is a modular one of weight 0 since it is the ratio of two
modular forms of weight 12. The function j has a simple pole at infinity and is holomorphic
on H since ∆ has a simple zero at infinity but vanishes nowhere else and g2(∞) 6= 0.

Its derivative can be found by substituting terms using the values from Example 1:

(2πi)j′ =
1
8

g3

g2
j.
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For a non-negative integer n, the power ℘n(z) can be written as a linear combination
of 1, ℘ and successive derivatives of ℘:

℘n(Λ, z) = Φn(Λ)−Ψn(Λ)℘(Λ, z) +
n−1

∑
k=1

αk℘
(2k), (13)

where the coefficients αk are polynomials in g2 and g3 with rational coefficients; see ([9], p. 108).
In particular, Φ0 = 1, Ψ0 = 0, Φ1 = 0 and Ψ1 = −1.

For each lattice Λ and z ∈ C, a primitive
∫

℘n(u)du of ℘n has the form

Φn(Λ) z + Ψn(Λ)ζ(Λ, z) + En(Λ, z), (14)

where for each Λ, En(Λ, z) is a Λ−elliptic function. We define

Zn(Λ, z) := Φn(Λ) z + Ψn(Λ)ζ(Λ, z).

It is clear that for each Λ, Zn(Λ, z) is quasi-periodic with the quasi-period map
given by

Hn(ω) = Φn(Λ) ω + Ψn(Λ)η(ω),

where η is the quasi-period map for the Weierstrass ζ−function.

3. Rational Equivariant Functions

The key lemma for the definition of rational equivariant functions are the following:

Lemma 1 ([10]). Let f : H → Ĉ be a modular function of weight k for some k ∈ Z. Then
h f (τ) = τ + (k f (τ)/ f ′(τ)) defines an equivariant function with ĥ = f ′/(k f ).

The equivariant functions of this form are called rational:

Definition 3 (Rational equivariant functions). An equivariant function h f (τ) is rational if
there exists a modular function f of weight k such that

h f (τ) = τ + k
f (τ)
f ′(τ)

.

Example 2. The function

h(τ) =
η(τ)

η(1)

is a rational equivariant function, because by (9) (Ramanujan formulas) and (5) (Legendre’s equa-
tion) we have

h1(τ) =
η2(τ)

η1(τ)
= τ − 2πi

η1(τ)
= τ + 12

∆(τ)
∆′(τ)

.

Example 3.

h f (τ) = τ + 108
f
f ′

is a rational equivariant function with f = ∆5g12
2 .

Proof. From Example 1 (Ramanujan’s formula), we compute

f ′ = 5∆4(−12η1∆)g12
2 + 12∆5g11

2 (6g3 − 4η1g2)

Thus, h f (τ) is a rational equivariant function.
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In the case that h is an equivariant function different from the identity, it follows
from [11] that

ĥ =
η1

2πi
+ g

for some modular function g of weight 2. In particular, ĥ is meromorphic on H ∪ ∞,
and ĥ(∞) := limIm(τ)→∞ ĥ(τ) is well-defined as an element of Ĉ := C ∪∞. The rational
equivariant functions are called in this way because of the following classification.

Proposition 2 ([2], Theorem 5.3). An equivariant function h 6= idH is rational if and only if ĥ
has simple poles with residues ∈ Q, and ĥ(∞)/(2πi) ∈ Q.

4. Examples of Rational Equivariant Functions

We show in the next proposition that quotients of modular functions of low degree can
be used to produce functions with rational residues yielding various examples of rational
equivariant functions. Throughout this section, M2n is the space of the modular function of
weight 2n.

Proposition 3. Let N, D ∈ Q[g2, g3] with N ∈ M2n and D ∈ M2n−2 where n ≤ 14 and n 6= 13.
Suppose also that D is not a cusp form, ordiD ≤ 1 and ordρD ≤ 2, where ρ = e2πi/3. Then the
meromorphic function φ = N/(2πiD) has only simple poles in H with rational residues, and
φ(∞)/(2πi) is rational.

Proof. First, we know [12] Table 1.1 that g2(τ) has a simple zero at τ = ρ and no other
zero in the fundamental domain, while g3(τ) has a simple zero at τ = i and no other
zero in the fundamental domain. Since ordρD ≤ 2, the function D cannot be divisible
by g3

2 when considered as an element of Q[g2, g3]. Analogously, D is not divisible by g2
3,

because ordiD ≤ 1. Now, we notice that the function N/(2πiD) can be written as

N
2πiD

=
ag4

3 + bg3
2g2

3 + cg6
2

(2πi)g2g3(dg3
2 + eg2

3)
(15)

for some suitable a, b, c, d, e ∈ C. This can be seen from Table 1 using the fact that N ∈ M2n
and D ∈ M2n−2 and then multiplying or dividing by suitable factors to match the denomi-
nator in (15). Since N, D ∈ Q[g2, g3], we can choose for a, b, c, d, e to be in Q. Further, as D
is not divisible by g3

2 or g2
3, we can choose d, e 6= 0. Moreover, we can choose d, e such that

dg2(∞) + eg3(∞) 6= 0 because D is not a cusp.

Table 1. Table of M2n for n ≤ 14.

M0 = C
M2 = 0
M4 = Cg2

M6 = Cg3

M8 = Cg2
2

M10 = Cg2g3

M12 = Cg3
2 +Cg2

3
M14 = Cg2

2g3

M16 = Cg4
2 +Cg2g2

3
M18 = Cg3

2g3 +Cg3
3

M20 = Cg5
2 +Cg2

2g2
3

M22 = Cg4
2g3 +Cg2g3

3
M24 = Cg4

3 +Cg3
2g2

3 +Cg6
2

M26 = Cg5
2g3 +Cg2

2g3
3

M28 = Cg2g4
3 +Cg4

2g2
3 +Cg7

2
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Clearly, ψ = dg3
2 + eg2

3 is a modular function of weight 12. By [12] Corollary 3.8,
it follows that

1
2

ordi(ψ) +
1
3

ordρ(ψ) + ord∞(ψ) + ∑
τ∈Γ(1)\H∗

τ 6=i,ρ,∞

ordτ(ψ) = 1. (16)

We notice that ordi(ψ) = ordρ(ψ) = ord∞(ψ) = 0, because ψ is not a cusp,
ψ(i) = dg2(i) 6= 0 and ψ(ρ) = eg3(ρ) 6= 0. Moreover, both g2 and g3 are holomor-
phic on all H∗, so ordτ(ψ) is a non-negative integer for all τ ∈ Γ(1)\H∗. We deduce that ψ
has exactly one simple zero at some τ0 ∈ Γ(1)\H∗ with τ0 6∈ {i, ρ, ∞}.

Coming back to the function φ, we see from (15) that it can have poles only in the
SL2(Z)-orbits of i, ρ and τ0. On these points, φ is either holomorphic or it has a simple pole.
Since the denominator in (15) has simple zeros, we can compute the residues of φ via

resτφ =
(ag4

3 + bg3
2g2

3 + cg6
2)(τ)

(2πi)(g2g3ψ)′(τ)

for any τ ∈ H. Thus, in the next computations, it requires the derivatives of this denominator:

(g2g3ψ)′ = g′2g3(dg3
2 + eg2

3) + g2g′3(dg3
2 + eg2

3) + g2g3(3dg2
2g′2 + 2eg3g′3)

Now we find the residue of φ at i using Ramanujan’s formula (11):

resiφ =
cg6

2(i)
(2πi)dg4

2(i)g′3(i)
=

cg6
2(i)

1
3 dg6

2(i)
=

3c
d

.

Similarly, we can also use Ramanujan’s formula (10) to compute the residue of φ at ρ:

resρφ =
ag4

3(ρ)

(2πi)eg′2g3
3(ρ)

=
ag4

3(ρ)

6eg4
3(ρ)

=
a
6e

.

Now, we compute the residue of φ at τ0. Since ψ is zero at τ0, this gives
g3

2(τ0) = − e
d g4

3(τ0), which is useful to simplify the numerator in the following computation.
In order to keep the formulas simple, here we write only g2, g3 in place of g2(τ0), g3(τ0):

resτ0 φ =
ag4

3 + bg3
2g2

3 + cg6
2

g2g3(3dg2
2g′2 + 2eg3g′3)

=
−a d

e g3
2g2

3 + bg3
2g2

3 − c e
d g3

2g2
3

g2g3[3dg2
2(6g3 − 4η1g2) + 2eg3(

1
3 g2

2 − 6g3η1)]

=
g3

2g2
3
−ad2+bed−ce2

ed

−12η1g2g3[dg3
2 + eg2

3] + g3
2g2

3[18d + 2
3 e]

=
g3

2g2
3
−ad2+bed−ce2

ed

0 + 2
3 g3

2g2
3[27d + e]

=
3(−ad2 + bed− ce2)

2de(27d + e)
.
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Finally, we compute the value of φ at infinity

φ(∞) =
ag4

3(∞) + bg3
2(∞)g2

3(∞) + cg6
2(∞)

(2πi)g2(∞)g3(∞)(dg3
2(∞) + eg2

3(∞))
.

Using that g2(∞) = (2πi)4/12 and g3(∞) = −(2πi)6/216, it follows

1
2πi

φ(∞) =

a
(216)6 +

b
123(216)2 +

c
126

1
12
−1
216

(
d

123 +
e

2162

) .

This concludes the proposition.
This Proposition 3 has the following immediate consequence.

Corollary 1. For all n = 1, . . . , 12 and n = 14 the function hn is rational.

Proof. By [6] Propostion 7.1, we have

hn = τ +
2πi

fn(τ) + η1
with fn =

Φn

Ψn
,

and so
ĥn =

1
hn − τ

=
fn + η1

2πi
.

Here we recall that Φn ∈ M2n, Ψn ∈ M2n−2 and Φn, Ψn ∈ Q[g2, g3] by [6]
Proposition 3.2. We now prove that ordiΨn ≤ 1 and ordρΨn ≤ 2. We list in Table 2 the values
of Φn and Ψn for n ≤ 14, which are computed recursively from the definitions. From this
table, we see that Ψn is not divisible by g2

3 and so

ordiΨn ≤ 1.

We also check that Ψn is not divisible by g3
2, and so it has no triple zeros at ρ:

ordρΨn ≤ 2.

Now it is necessary to show that Ψn is not a cusp form, that is Φn(∞) 6= 0, which
is equivalent to verify that Ψn is not divisible by ∆ = g3

2 + 27g2
3 when considered as an

element of C[g2, g3]. This requirement is fulfilled and one can verify this through Table 2.
Proposition 3 implies fn/(2πi) has only simple poles in H with rational residues and
fn(∞)/(2πi)2 is rational. It is known that η1 is holomorphic on H and

η1(∞)

(2πi)2 =
π2E2(i∞)

3(2πi)2 =
1
12
∈ Q.

In conclusion, we get that ĥn has simple poles with rational residues and hn(∞)/(2πi)
is rational. That proves hn is a rational equivariant function by the classification stated in
Proposition 2.
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Table 2. Table of Φn and Ψn for n ≤ 14.

n Φn Ψn

3
g3
10

3g2
20

4
5g2

2
336

g3
7

5
g2g3
30

7g2
2

240

6
15g3

2
4928

+
g2

3
55

87g2g3
1540

7
433g2

2g3

43680
77g3

2
12480

+
5g2

3
182

8
13g4

2
19712

+
7g2g2

3
660

167g2
2g3

9240

9
383g3

2g3

136136
+

7g3
3

1870
77g4

2
56576

+
6021g2g2

3
340340

10
2873g5

2 + 86848g2
2g2

3
19475456

3251g3
2g3 + 3520g3

3
608608

11
20327g4

2g3

26138112
+

7g2g3
3

2244
209g5

2
678912

+
134g2

2g2
3

17017

12
663g6

2
19689472

+
775529g3

2g2
3

475931456
+

7g4
3

8602
2884469g4

2g3 + 9834816g2g3
3

1903725824

13
2623663g5

2g3 + 21088240g2
2g3

3
12415603200

4807g6
2

67891200
+

44139g3
2g2

3
14780480

+
11g4

3
8645

14
1221025g7

2 + 86159616g4
2g2

3 + 138098688g2g4
3

156649439232
1367889g5

2g3 + 9613504g2
2g3

3
3263529984

5. A Non-Rational Equivariant Function

In this section, we prove the non-rationality of h13. The strategy here is to compute
explicitly the residue at some pole of ĥ13 and verify that it is an irrational number.

Theorem 1. h13 is not rational.

Proof. By Proposition 2, it suffices to show that there exists a pole z0 ∈ H of ĥ13 such that
resz0(ĥ13) 6∈ Q to prove that h13 is not a rational equivariant function. We begin by recalling
that h13 satisfies

h13 =
Φ13z−Ψ13η2

Φ13z−Ψ13η1
.

Therefore, we have

ĥ13 =
Φ13

2πiΨ13
− η1

2πi
.

The values of Φ13 and Ψ13 are listed in Table 2:

Ψ13 = αg6
2 + βg3

2g2
3 + γg4

3,

Φ13 = δg5
2g3 + εg2

2g3
3,
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where

α =
4807

67891200
, β =

44139
14780480

, γ =
11

8645

δ =
2623663

12415603200
, and ε =

21088240
12415603200

These modular functions are written as polynomials in g2 and g3. In order to deal with
polynomials in one variable only, it is useful to introduce the modular function x : H→ Ĉ
of weight 0 given by the formula x =

g3
2

g2
3
. Then we have

Ψ13 = g4
3(αx2 + βx + γ), (17)

Φ13 = g2
2g3

3(δx + ε). (18)

For the computations of the residue of ĥ13, we need the derivative of Ψ13.

(2πi)Ψ′13 = 6αg5
2(2πi)g′2 + 3(2πi)βg2

2g2
3g′2 + 2(2πi)βg3

2g3g′3 + 4γ(2πi)g3
3g′3. (19)

By the Ramanujan identities (1) and after some simplification, Equation (19) becomes:

(2πi)Ψ′13 = −η1g4
3(24αx2 + 24βx + 24γ) + (36αg5

2g3 + 18βg2
2g3

3 + 2/3βg5
2g3 + 4/3γg2

2g3
3)

and so

(2πi)Ψ′13 = 24η1Ψ13 + g2
2g3

3

[(
36α +

2
3

β

)
x +

(
18β +

4
3

γ

)]
. (20)

By (17), we have that τ ∈ H is a zero of Ψ13 if and only if g3(τ) = 0 or

αx(τ)2 + βx(τ) + γ = 0. (21)

Notice that g3(τ) = 0 if and only if τ = i. Let us now apply the following lemma.

Lemma 2. The modular function x : H∗ → Ĉ given by x =
g3

2
g2

3
is surjective.

Proof. In fact, any nonconstant modular function of weight zero is surjective. Alternatively,
we can give a direct proof as follows. First it is well-known that the j-function induces a
bijection between Γ(1)\H∗ and Ĉ [12] Theorem 4.1. Since the projection H∗ → Γ(1)\H∗
is surjective, we have that j : H∗ → Ĉ is surjective. Now, we have that x = r ◦ j, where
r : Ĉ → Ĉ is given by r(t) = 27−1(1− 1728t−1). However, r is bijective with inverse
r−1(t) = 1728(1− 27t)−1. Therefore, x is surjective.

By Lemma 2, there exists τ0 ∈ H∗ such that

x(τ0) =
−β +

√
β2 − 4αγ

2α
. (22)

Thus, (21) is satisfied by τ = τ0. Moreover, we can see from an explicit calculation
that x(τ0) 6= i and x(τ0) 6= ρ. In particular, this means that g2(τ0) 6= 0, g3(τ0) 6= 0 and
Ψ13(τ0) = 0. Thus, τ0 is a simple pole of ĥ13.

It is clear that the residue of ĥ13 at τ0 is the same as the residue of Φ13/Ψ13. By the
usual formula, this residue is equal to

resτ0(ĥ13) =
Φ13(τ0)

(2πi)Ψ′13(τ0)
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as long as Φ13(τ0) 6= 0 and Ψ′13(τ0) 6= 0. The values of Φ13(τ0) and Ψ13(τ0) are calculated
from (18) and (20). Performing all simplifications, we finally get:

resτ0(ĥ13) =
A + B

√
55211205
C

,

for some nonzero integers A, B, C. Since this is not a rational number, we get by Proposition 2
that h13 is not a rational equivariant function.

6. Irreducibility of Denominators Implies Non-Rationality

It seems that the rationality of the equivariant functions hn for n ≤ 12 or n = 14 is
more the exception than the rule. In this section, we replace the ad-hoc arguments of the
previous section with considerations that are valid for every hn.

First, in the previous proof, we rewrote Φ13 and Ψ13 up to factors of the form ga
2gb

3
as polynomials in the modular function of weight 0 and degree 1 x = g3

2/g2
3. There is

another natural choice we can make, namely to rewrite everything in terms of the modular
function j.

The functions hn are constructed in terms of the modular functions Φn and Ψn of
weight 2. The next proposition shows that each ratio Φn/Ψn belongs to a nice class of
modular functions of weight 2, namely those that can be written as R(j)j′, where R is
some rational function with rational coefficients. This expression is particularly useful to
compute the residues.

Proposition 4. For every n ∈ N with n ≥ 3, we have Φn
2πiΨn

= Rn(j)j′ where Rn ∈ Q(t).

Proof. The key observation is that g2Φn and g3Ψn are modular functions of the same
weight, which can be written as polynomials in g2 and g3 with rational coefficients. This is
clear from the recursion in the definition of Φn and Ψn. If x = g3

2/g2
3, then we can write

g2Φn = ga
2gb

3P(x)

g3Ψn = ga
2gb

3Q(x)

for some a ∈ {0, 1, 2}, some b ∈ {0, 1} and some polynomials P, Q with rational coefficients.
The proposition is then proved by noticing the formulas

x =
1

27
(1− 1728j)

and
g3

(2πi)g2
=

1
18j

j′.

Proposition 4 can also be proof by a different method, and the following lemma is
required for this purpose.

Lemma 3. For every n ∈ N with n ≥ 5, we have g2
g3

Ψn
Ψn−1

= R̃n(j) and Ψn
g2Ψn−2

= ˜̃Rn(j) for some

R̃n, ˜̃Rn ∈ Q(t).
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Proof. We are going to use mathematical induction. By direct computation, we get

g2

g3

Ψ4

Ψ3
=

g2

g3

−2
14 g3
−3
20 g2

=
20
21

(23)

g2

g3

Ψ5

Ψ4
=

g2

g3

7
240 g2

2
1
7 g3

=
49g3

2
240g2

3
=

49x
240

(24)

Ψ5

g2Ψ3
=
−7
240 g2

2
−3
20 g2

2
=

7
36

. (25)

where x = g3
2/g2

3 as stated in Lemma 2. Now, suppose that both statements are true up to
n, and we prove they are true for n + 1. Using the recursion formula from [9], p. 109, (see
also [3] §9) we have

g2

g3

Ψn+1

Ψn
= g2

r(n)g2Ψn−1 + s(n)g3Ψn−1

g3Ψn

=
g2

g3

[
r(n)g2

Ψn−1

Ψn
+ s(n)g3

Ψn−2

Ψn

]
= r(n)

x
R̃n(j)

+ s(n)
1

˜̃Rn(j)
.

Since r(n), s(n) ∈ Q and x = g3
2/g2

3 = r(j) ∈ Q(j), then

g2

g3

Ψn+1

Ψn
∈ Q(j).

Moreover,

Ψn+1

g2Ψn−1
=

r(n)g2Ψn−1 + s(n)g3Ψn−2

g2Ψn−1

= r(n) + s(n)
g3Ψn−2

g2Ψn−1

= r(n) + s(n)
1

R̃n−1(j)
,

and this implies Ψn+1/(g2Ψn−1) ∈ Q(j).

Another Proof of Proposition 4. This proof is also based on mathematical induction. The
first part consists of direct computation for n = 3, 4, 5, 6:

Φ3

2πiΨ3
=

2g3

(2πi)3g2
=

1
27j

j′, (26)

Φ4

2πiΨ4
=

5g2
2

(2πi)48g3
=

5
32(−1728 + j)

j′, (27)

Φ5

2πiΨ5
=

8g3

(2πi)7g2
=

4
63j

j′, (28)

Φ6

2πiΨ6
=

8g2
2

(2πi)7g3
+

28g2
3

(2πi)87g2
=

75
(928(−1728 + j))

j′ +
14

783j
j′. (29)
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Now by using the recursion formulas in [9], p. 109, we find

Φn

2πiΨn
=

r(n)g2Φn−2 + s(n)g3Φn−3

2πi(r(n)g2Ψn−2 + s(n)g3Ψn−3)

=
r(n)g2Φn−2

2πi(r(n)g2Ψn−2 + s(n)g3Ψn−3)
+

s(n)g3Φn−3

2πi(r(n)g2Ψn−2 + s(n)g3Ψn−3)

=

(
2πi(r(n)g2Ψn−2 + s(n)g3Ψn−3)

r(n)g2Φn−2

)−1

+

(
2πi(r(n)g2Ψn−2 + s(n)g3Ψn−3)

s(n)g3Φn−3

)−1

=

(
2πiΨn−2

Φn−2
+

2πi(s(n)g3Ψn−2Ψn−3)

r(n)g2Ψn−2Φn−2

)−1

+

(
2πir(n)g2Ψn−2Ψn−3

s(n)g3Ψn−3Φn−3
+

2πiΨn−3

Φn−3

)−1

=

(
1

Rn−2(j)j′
+

s(n)
r(n)R̃n−2(j)Rn−2(j)j′

)−1

+

(
r(n)R̃n−2(j)

s(n)Rn−3(j)j′
+

1
Rn−3(j)j′

)−1

=

(
r(n)R̃n−2(j)Rn−2(j)
s(n) + r(n)R̃n−2(j)

+
s(n)Rn−3(j)

s(n) + r(n)R̃n−2(j)

)
︸ ︷︷ ︸

Rn(j)

j′.

This concludes the proof.

Table 3 lists the expressions of Rn(j) for n ≤ 14. For every n ∈ N with n ≥ 3, we
introduce the polynomials pn, qn ∈ Z[t] so that Rn = pn/qn and the fraction pn/qn is
written in reduced form.

Notice that the rational function Rn for n ≤ 12 and for n = 14 decomposes as a
sum of fractions that have linear denominators with rational coefficients. On the contrary,
the denominator of R13 is an irreducible polynomial of the second degree. This is the
motivation for the following criterion of non-rationality.

Theorem 2. Let n ∈ N with n ≥ 3 and suppose qn is irreducible in Q[t] with a degree of at least 2
and pn 6= cq′n for some c ∈ Q. Then, hn is an irrational equivariant function.

Proof. We are going to use the following lemma.

Lemma 4. Let p, q ∈ Q[t] such that deg p ≤ deg q, p is not identically zero and q is irreducible.
Then p and q do not have common roots.

Suppose that hn has rational residues at all its poles and let j0 be a zero of qn. Because
j is surjective, there exist τ0 ∈ H such that j0 = j(τ0). Thus, qn(j(τ0)) = 0, pn(j(τ0)) 6= 0
and q′n(j(τ0)) 6= 0 by applying 4. Then τ0 is a simple pole of hn.

Let

r = resτ0 hn =
pn(j(τ0))

q′n(j(τ0))

for some r ∈ Q by assumption, which gets us

pn(j0) = rq′n(j0).
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Now let pn(j0)− rq′n(j0) = m(j0). Thus, we get m(j0) = 0. However, pn − rq′n = m
with a degree of m is at most the maximum between the degrees of pn, q′n and deg m ≤ deg qn,
so by Lemma 4, we get m(j0) 6= 0, which is a contradiction.

Table 3. Table of Rn(j).

n Rn(j)

3
1

27j

4
5

32(−1728 + j)

5
4

63j

6
75

(928(−1728 + j))
+

14
783j

7
433

(−1382400 + 5651j)

8
585

(10688(−1728 + j))
+

49
1503j

9
637

54189j
+

165599575
(162567(−8220672 + 14639j))

10
8619

208064(−1728 + j)
+

12760776
3251(−6082560 + 91297j)

11
637

28944j
+

55120391
3216(−237109248 + 282053j)

12
439569

(13186144(−1728 + j))
+

12103
1383021j

+
76910381850969359

(63321923823(−5664854016 + 29238493j))

13
4(−36440478720 + 91927141j)

(125791622922240− 4758534328320j + 4420585843j2)

14
1221025

43772448(−1728 + j)
+

22477
1351899j

+
371958496352913151

205471974579(−16612134912 + 46546507j)
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7. Examples of Irrational Equivariant Functions via Irreducibility

There is a well-known criterion to test if a polynomial is irreducible.

Lemma 5 (Eisenstein Criterion). Let p be a prime number and Q(x) be a polynomial with integer
coeffecients such that

Q(x) = anxn + an−1xn−1 + ... + a1x + a0.

If we find p such that p divides every ai, and i 6= n, then p does not divide an and p2 does not
divide a0. Then, we get that Q is irreducible over Q.

This criterion of irreducibility, in conjunction with our criterion of irrationality
Theorem 2, can be used to prove more examples of irrational equivariant functions. As an
easy example, let us prove again that h13 is irrational.

Corollary 2. h13 is irrational.

Proof. First, let us prove that q13 is irreducible. From Table 3, it follows that

q13 = 125791622922240− 4758534328320t + 4420585843t2.

Now apply Eisenstein’s criterion with the prime p = 5, which implies q13 is irreducible.
Therefore, h13 is irrational by Theorem 2.

More technical examples can be provided by using Theorem 2. Now we provide
another example that shows hn is irreducible for some n > 14 without computing the
residues at its poles.

Lemma 6. hn for n ∼= 1, 3, 4, 5 modulo 6, we have pn 6= q′n

Proof. From the mathematical computation file, we can see that deg pn 6= deg q′n.

Example 4.

h20 =
32149306475g9

2 + 5179242972288g6
2g2

3 + 45510257049600g3
2g4

3 + 20823072571392g6
3

48g2g3
(
53632004899g6

2 + 1382526006400g3
2g2

3 + 2156880961536g4
3
) .

8. Conclusions

Throughout this study we derive the criterion for rationality and non-rationality of
the equivariant function hn. The validity of the derived condition is done theoretically for
1 ≤ n ≤ 14. However, for n ≥ 15, we are unable to verify the criterion thematically.

Based on our extensive numerical experiment as presented in the above table, we state
the following conjecture.

Conjecture 1. For every n ≥ 15, the equivariant function hn is not a rational equivariant function.

One possible method to prove the conjecture would be to suppose that α is the zero of
Ψn and the pole of hn, where n > 14, and then we get a P-series that changes its sign every
n. This would require an advanced technique that can consider many special cases.
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3 1
7

5
28

g3
10

3g2
20

2g3
3g2

4 1
6

7
36

5g2
2

336
g3
7

5g2
2

48g3

5 2
11

9
44

g2g3
30

7g2
2

240
8g3
7g2

6 5
26

11
52

15g3
2

4928 +
g2

3
55

87g2g3
1540

75g3
2+448g2

3
1392g2g3

7 1
5

13
60

433g2
2g3

43680
77g3

2
12480 +

5g2
3

182
866g2

2g3
539g3

2+2400g2
3

8 7
34

15
68

13g4
2

19712 + 7
660 g2g2

3
167g2

2g3
9240

195g3
2+3136g2

3
5344g2g3

9 4
19

17
76

383g3
2g3

136136 +
7g3

3
1870

77g4
2

56576 +
6021g2g2

3
340340

32g3(1915g3
2+2548g2

3)
g2(29645g3

2+385344g2
3)

10 3
14

19
84

2873g5
2+86848g2

2g2
3

19475456
3251g3

2g3+3520g3
3

608608
g2

2(2873g3
2+86848g2

3)
32g3(3251g3

2+3520g2
3)

11 5
23

21
92

20327g4
2g3

26138112 +
7g2g3

3
2244

209g5
2

678912 +
134g2

2g2
3

17017
2g3(20327g3

2+81536g2
3)

g2(16093g3
2+411648g2

3)

12 11
50

23
100

663g6
2

19689472 +
775529g3

2g2
3

475931456 +
7g4

3
8602

2884469g4
2g3+9834816g2g3

3
1903725824

1025661g6
2+49633856g3

2g2
3+24786944g4

3
16g2g3(2884469g3

2+9834816g2
3)

13 2
9

25
108

2623663g5
2g3+21088240g2

2g3
3

12415603200
4807g6

2
67891200 +

44139g3
2g2

3
14780480 +

11g4
3

8645
8g2

2g3(2623663g3
2+21088240g2

3)
7032641g6

2+296614080g3
2g2

3+126382080g4
3

14 13
58

27
116

1221025g7
2+86159616g4

2g2
3+138098688g2g4

3
156649439232

1367889g5
2g3+9613504g2

2g3
3

3263529984
1221025g6

2+86159616g3
2g2

3+138098688g4
3

48g2g3(1367889g3
2+9613504g2

3)

15 7
31

29
124

357961827g6
2g3+4798866560g3

2g3
3+1150822400g5

3
6309491302400

207965241g7
2+13056798880g4

2g2
3+18349025280g2g4

3
12618982604800

2g3(357961827g6
2+4798866560g3

2g2
3+1150822400g4

3)
g2(207965241g6

2+13056798880g3
2g2

3+18349025280g4
3)

16 5
22

31
132

885243125g8
2+85637913216g5

2g2
3+286372884480g2

2g4
3

485613261619200
288367567g6

2g3+3447978560g3
2g3

3+726696960g5
3

2529235737600
g2

2(885243125g6
2+85637913216g3

2g2
3+286372884480g4

3)
192g3(288367567g6

2+3447978560g3
2g2

3+726696960g4
3)

17 8
35

33
140

53574809g7
2g3+1077589770g4

2g3
3+863116800g2g5

3
3549088857600

586083861g8
2+51221444480g5

2g2
3+153089658880g2

2g4
3

151427791257600
128g3(53574809g6

2+1077589770g3
2g2

3+863116800g4
3)

3g2(586083861g6
2+51221444480g3

2g2
3+153089658880g4

3)

18 17
74

35
148

56478511375g9
2+7168169898624g6

2g2
3+41120873041920g3

2g4
3+5479755939840g6

3
131439322811596800

20976619763g7
2g3+381885338240g4

2g3
3+273891179520g2g5

3
684579806310400

56478511375g9
2+7168169898624g6

2g2
3+41120873041920g3

2g4
3+5479755939840g6

3
192g2g3(20976619763g6

2+381885338240g3
2g2

3+273891179520g4
3)

19 3
13

37
156

1385553199195g8
2g3+39015774948096g5

2g3
3+67038887546880g2

2g5
3

347375353144934400
211966996395g9

2+24590804736256g6
2g2

3+127894506311680g3
2g4

3+15285828321280g6
3

231583568763289600
2g2

2g3(1385553199195g6
2+39015774948096g3

2g2
3+67038887546880g4

3)
3(211966996395g9

2+24590804736256g6
2g2

3+127894506311680g3
2g4

3+15285828321280g6
3)

20 19
82

39
164

91205g10
2

894918721536 +
7615817g7

2g2
3

463859834880 +
13227265g4

2g4
3

91684795488 +
247g2g6

3
3741870

53632004899g8
2g3+1382526006400g5

2g3
3+2156880961536g2

2g5
3

6571966140579840
32149306475g9

2+5179242972288g6
2g2

3+45510257049600g3
2g4

3+20823072571392g6
3

48g2g3(53632004899g6
2+1382526006400g3

2g2
3+2156880961536g4

3)
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