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Abstract: Constant-specified and exponential concentration inequalities play an essential role in the
finite-sample theory of machine learning and high-dimensional statistics area. We obtain sharper
and constants-specified concentration inequalities for the sum of independent sub-Weibull random
variables, which leads to a mixture of two tails: sub-Gaussian for small deviations and sub-Weibull
for large deviations from the mean. These bounds are new and improve existing bounds with sharper
constants. In addition, a new sub-Weibull parameter is also proposed, which enables recovering
the tight concentration inequality for a random variable (vector). For statistical applications, we
give an `2-error of estimated coefficients in negative binomial regressions when the heavy-tailed
covariates are sub-Weibull distributed with sparse structures, which is a new result for negative
binomial regressions. In applying random matrices, we derive non-asymptotic versions of Bai-Yin’s
theorem for sub-Weibull entries with exponential tail bounds. Finally, by demonstrating a sub-
Weibull confidence region for a log-truncated Z-estimator without the second-moment condition, we
discuss and define the sub-Weibull type robust estimator for independent observations {Xi}n

i=1 without
exponential-moment conditions.

Keywords: constants-specified concentration inequalities; exponential tail bounds; heavy-tailed
random variables; sub-Weibull parameter; lower bounds on the least singular value
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1. Introduction

In the last two decades, with the development of modern data collection methods
in science and techniques, scientists and engineers can access and load a huge number
of variables in their experiments. Over hundreds of years, probability theory lays the
mathematical foundation of statistics. Arising from data-driving problems, various recent
statistics research advances also contribute to new and challenging probability problems
for further study. For example, in recent years, the rapid development of high-dimensional
statistics and machine learning have promoted the development of the probability theory
and even pure mathematics, such as random matrices, large deviation inequalities, and
geometric functional analysis, etc.; see [1]. More importantly, the concentration inequality
(CI) quantifies the concentration of measures that are at the heart of statistical machine
learning. Usually, CI quantifies how a random variable (r.v.) X deviates around its mean
EX =: µ by presenting as one-side or two-sided bounds for the tail probability of X− µ

P(X− µ > t) or P(|X− µ| > t) ≤ some small δ, ∀ t ≥ 0.

The classical statistical models are faced with fixed-dimensional variables only. How-
ever, contemporary data science motivates statisticians to pay more attention to studying
p× p random Hessian matrices (or sample covariance matrices, [2]) with p→ ∞, arising
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from the likelihood functions of high-dimensional regressions with covariates in Rp. When
the model dimension increases with sample size, obtaining asymptotic results for the esti-
mator is potentially more challenging than the fixed dimensional case. In statistical machine
learning, concentration inequalities (large derivation inequalities) are essential in deriving
non-asymptotic error bounds for the proposed estimator; see [3,4]. Over recent decades,
researchers have developed remarkable results of matrix concentration inequalities, which
focuses on non-asymptotic upper and lower bounds for the largest eigenvalue of a finite
sum of random matrices. For a more fascinated introduction, please refer to the book [5].

Motivated from sample covariance matrices, a random matrix is a specific matrix
Ap×p with its entries Ajk drawn from some distributions. As p→ ∞, random matrix theory
mainly focuses on studying the properties of the p eigenvalues of Ap×p, which turn out to
have some limit law. Several famous limit laws in random matrix theory are different from
the CLT for the summation of independent random variables since the p eigenvalues are
dependent and interact with each other. For convergence in distribution, some pioneering
works are the Wigner’s semicircle law for some symmetric Gaussian matrices’ eigenvalues,
the Marchenko-Pastur law for Wishart distributed random matrices (sample covariance
matrices), and the Tracy-Widom laws for the limit distribution for maximum eigenvalues in
Wishart matrices. All these three laws can be regarded as the CLT of random matrix versions.
Moreover, the limit law for the empirical spectral density is some circle distribution, which
sheds light on the non-communicative behaviors of the random matrix, while the classic
limit law in CLT is for normal distribution or infinite divisible distribution. For strong
convergence, Bai-Yin’s law complements the Marchenko-Pastur law, which asserts that
almost surely convergence of the smallest and largest eigenvalue for a sample covariance
matrix. The monograph [2] thoroughly introduces the limit law in random matrices.

This work aims to extend non-asymptotic results from sub-Gaussian to sub-Weibull in
terms of exponential concentration inequalities with applications in count data regressions,
random matrices, and robust estimators. The contributions are:

(i) We review and present some new results for sub-Weibull r.v.s, including sharp concen-
tration inequalities for weighted summations of independent sub-Weibull r.v.s and
negative binomial r.v.s, which are useful in many statistical applications.

(ii) Based on the generalized Bernstein-Orlicz norm, a sharper concentration for sub-
Weibull summations is obtained in Theorem 1. Here we circumvent Stirling’s approxi-
mation and derive the inequalities more subtly. As a result, the confidence interval
based on our result is sharper and more accurate than that in [6] (For example, see
Remark 2) and [7] (see Proposition 1 with unknown constants) gave.

(iii) By sharper sub-Weibull concentrations, we give two applications. First, from the
proposed negative binomial concentration inequalities, we obtain the OP(

√
p/n) (up

to some log factors) estimation error for the estimated coefficients in negative binomial
regressions under the increasing-dimensional framework p = pn and heavy-tailed
covariates. Second, we provide a non-asymptotic Bai-Yin’s theorem for sub-Weibull
random matrices with exponential-decay high probability.

(iv) We propose a new sub-Weibull parameters, which is enabled of recovering the tight
concentration inequality for a single non-zero mean random vector. The simulation
studies for estimating sub-Gaussian and sub-exponential parameters show these
parameters could be estimated well.

(v) We establish a unified non-asymptotic confidence region and the convergence rate
for general log-truncated Z-estimator in Theorem 5. Moreover, we define a sub-
Weibull type estimator for a sequence of independent observations {Xi}n

i=1 without
the second-moment condition, beyond the definition of the sub-Gaussian estimator.

2. Sharper Concentrations for Sub-Weibull Summation

Concentration inequalities are powerful in high-dimensional statistical inference, and
it can derive explicit non-asymptotic error bounds as a function of sample size, sparsity
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level, and dimension [3]. In this section, we present preparation results of concentration
inequalities for sub-Weibull random variables.

2.1. Properties of Sub-Weibull Norm and Orlicz-Type Norm

In empirical process theory, sub-Weibull norm (or other Orlicz-type norms) is crucial
to derive the tail probability for both single sub-Weibull random variable and summation
of random variables (by using the Chernoff’s inequality). A benefit of Orlicz-type norms is
that the concentration does not need the zero mean assumption.

Definition 1 (Sub-Weibull norm). For θ > 0, the sub-Weibull norm of X is defined as

‖X‖ψθ
:= inf{C ∈ (0, ∞) : E[exp(|X|θ/Cθ)] ≤ 2}.

The ‖ · ‖ψθ
is also called the ψθ-norm. We define X as a sub-Weibull random variable with

index θ if it has a bounded ψθ-norm (denoted as X ∼ subW(θ)). Actually, the sub-Weibull
norm is a special case of Orlicz norms below.

Definition 2 (Orlicz Norms). Let g : [0, ∞)→ [0, ∞) be a non-decreasing convex function
with g(0) = 1. The “g-Orlicz norm” of a real-valued r.v. X is given by

‖X‖g := inf{η > 0 : E[g(|X|/η)] ≤ 2}. (1)

Using exponential Markov’s inequality, we have

P(|X| ≥ t) = P(g(|X|/‖X‖g) ≥ g(t/‖X‖g)) ≤ g−1(t/‖X‖g)Eg(X/‖X‖g) ≤ 2g−1(t/‖X‖g) (2)

by Definition 2. For example, let g(x) = exθ
, which leads to sub-Weibull norm for θ ≥ 1.

Example 1 (ψθ-norm of bounded r.v.). For a r.v. |X| ≤ M < ∞, we have

‖X‖ψθ
= inf{t > 0 : Ee|X|

θ /tθ ≤ 2} ≤ inf{t > 0 : EeMθ /tθ ≤ 2} = M(log 2)−1/θ .

In general, we have following corollary to determine ‖X‖ψθ
based on moment gener-

ating functions (MGF). It would be useful for doing statistical inference of ψθ-norm.

Corollary 1. If ‖X‖ψθ
< ∞, then ‖X‖ψθ

=
(
m−1
|X|θ (2)

)−1/θ for the MGF φZ(t) := EetZ.

Remark 1. If we observe i.i.d. data {Xi}n
i=1 from a sub-Weibull distribution, one can use the

empirical moment generating function (EMGF, [8]) to estimate the sub-Weibull norm of X. Since
the EMGF m̂|X|θ (t) = 1

n ∑n
i=1 exp{t|Xi|θ} converge to MGF m|X|θ (t) in probability for t in a

neighbourhood of zero, the value of the inverse function of EMGF at 2. Then, under some regularity
conditions,

(
m̂|X|θ

)−1
(2), is a consistent estimate for ‖X‖ψθ

.

In particular, if we take θ = 1, we get the sub-exponential norm of X, which is defined
as ‖X‖ψ1 = inf{t > 0 : E exp(|X|/t) ≤ 2}. For independent r.v.s {Xi}n

i=1, if EXi = 0 and
‖Xi‖ψ1 < ∞, by Proposition 4.2 in [4], we know ∀ t ≥ 0

P
(∣∣∣ n

∑
i=1

Xi

∣∣∣ ≥ t
)
≤ 2 exp

−1
4

 t2

∑n
i=1 2‖Xi‖2

ψ1

∧ t
max

1≤i≤n
‖Xi‖ψ1

. (3)
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Example 2. An explicitly calculation of the sub-exponential norm is given in [9], they show that
Poisson r.v. X ∼ Poisson(λ) has sub-exponential norm ‖X‖ψ1

≤ [log(log(2)λ−1 + 1)]−1. And
Example 1 with triangle inequality implies

‖X− EX‖ψ1
≤ ‖X‖ψ1

+ ‖EX‖ψ1
= ‖X‖ψ1

+
λ

log 2
≤ [log(log(2)λ−1 + 1)]−1 +

λ

log 2

based on following useful results.

Proposition 1 (Lemma A.3 in [9]). For any α > 0 and any r.v.s X, Y we have ‖X + Y‖ψθ
≤

Kα

(
‖X‖ψθ

+ ‖Y‖ψθ

)
and

‖EX‖ψθ
≤ 1

dα(log 2)1/α
‖X‖ψθ

, ‖X− EX‖ψθ
≤ Kα

(
1 + (dα log 2)−1/α

)
‖X‖ψθ

,

where dθ := (θe)1/θ/2, Kθ := 21/θ if θ ∈ (0, 1) and Kθ = 1 if θ ≥ 1.

To extend Poisson variables, one can also consider concentration for sums of indepen-
dent heterogeneous negative binomial variables {Yi}n

i=1 with probability mass functions:

P(Yi = y) =
Γ(y + ki)

Γ(ki)y!
(1− qi)

ki qy
i
(
qi ∈ (0, 1), y ∈ N

)
, (4)

where {ki}n
i=1 ∈ (0, ∞) are variance-dependence parameters. Here, the mean and variance

of {Yi}n
i=1 are EYi =

kiqi
1−qi

, Var Yi =
kiqi

(1−qi)2 respectively. The MGF of {Yi}n
i=1 are EesYi =(

1−qi
1−qies

)ki
for i = 1, · · · , n. Based on (3), we obtain following results.

Corollary 2. For any independent r.v.s {Yi}n
i=1 satisfying ‖Yi‖ψ1 < ∞, t ≥ 0, and non-random

weight w = (w1, · · · , wn)>, we have

P
(
|

n

∑
i=1

wi(Yi − EYi)| ≥ t
)
≤ 2e

− 1
4

(
t2

2 ∑n
i=1 w2

i (‖Yi‖ψ1
+|EYi/ log 2|)2

∧ t
max1≤i≤n |wi |(‖Yi‖ψ1

+|EYi/ log 2|)

)
.

P
(
|

n

∑
i=1

wi(Yi − EYi)| > 2
(

2t
n

∑
i=1

w2
i ‖Yi − EYi‖2

ψ1

)1/2
+ 2t max

1≤i≤n
(|wi|‖Yi − EYi‖ψ1

)

)
≤ 2e−t.

In particular, if Yi is independently distributed as NB(µi, ki), we have

P
(
|

n

∑
i=1

wi(Yi − EYi)| ≥ t
)
≤ 2e

− 1
4 (

t2

2 ∑n
i=1 w2

i a2(µi ,ki)
∧ t

max1≤i≤n |wi |a(µi ,ki)
)
, (5)

where a(µi, ki) :=
[

log 1−(1−qi)/
ki
√

2
qi

]−1
+ µi

log 2 with qi := µi
ki+µi

.

Corollary 2 can play an important role in many non-asymptotic analyses of various
estimators. For instance, recently [10] uses the above inequality as an essential role for
deriving the non-asymptotic behavior of the penalty estimator in the counting data model.

Next, we study moment properties for sub-Weibull random variables. Lemma 1.4
in [11] showed that if X ∼ subG(σ2), then we have: (a). the tail satisfies P(|X| > t) ≤
2e−t2/2σ2

for any t > 0; (b). The (a) implies that moments E|X|k ≤ (2σ2)k/2kΓ( k
2 ) and

[k−1/2(E(|X|k))1/k]2 ≤ σ2e2/e, k ≥ 2. We extend Lemma 1.4 in [11] to sub-Weibull r.v. X
satisfying following properties.
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Corollary 3 (Moment properties of sub-Weibull norm). (a). If ‖X‖ψθ
< ∞, then P{|X| >

t} ≤ 2e−(t/‖X‖ψθ
)θ

for all t ≥ 0; and then E|X|k ≤ 2‖X‖k
ψθ

Γ( k
θ + 1) for all k ≥ 1. (2). Let Cθ :=

max
k≥1

(
2
√

2π
θ

)1/k( k
θ

)1/(2k)
, for all k ≥ 1 we have (E|X|k)1/k ≤ Cθ(θe11/12)−1/θ‖X‖ψθ

k1/θ .

Particularly, sub-Weibull r.v.s reduce to sub-exponential or sub-Gaussian r.v.s when
θ = 1 or 2. It is obvious that the smaller θ is, the heavier tail the r.v. has. A r.v. is called
heavy-tailed if its distribution function fails to be bounded by a decreasing exponential
function, i.e.,∫

eλxdF(x) = ∞, ∀λ > 0 (the tail decays slower than some exponential r.v.s);

see [12]. Hence for sub-Weibull r.v.s, we usually focus on the the sub-Weibull index
θ ∈ (0, 1). A simple example that the heavy-tailed distributions arises when we work more
production on sub-Gaussian r.v.s. Via a power transform of |X|, the next corollary explains
the relation of sub-Weibull norm with parameter θ and rθ, which is similar to Lemmas 2.7.6
of [1] for sub-exponential norm.

Corollary 4. For any θ, r ∈ (0, ∞), if X ∼ subW(θ), then |X|r ∼ subW(θ/r). Moreover,

‖|X|r‖ψθ/r
= ‖X‖r

ψθ
. (6)

Conversely, if X ∼ subW(rθ), then Xr ∼ subW(θ) with ‖Xr‖ψθ
= ‖X‖r

ψrθ
.

By Corollary 4, we obtain that d-th root of the absolute value of sub-Gaussian is
subW(2d) by letting r = 1/d. Corollary 4 can be extended to product of r.v.s, from
Proposition D.2 in [6] with the equality replacing by inequality, we state it as the following
proposition.

Proposition 2. If {Wi}d
i=1 are (possibly dependent) r.vs satisfying ‖Wi‖ψαi

< ∞ for some αi > 0,
then

‖
d

∏
i=1

Wi‖ψβ
≤

d

∏
i=1
‖Wi‖ψαi

where
1
β

:=
d

∑
i=1

1
αi

.

For multi-armed bandit problems in reinforcement learning, [7] move beyond sub-
Gaussianity and consider the reward under sub-Weibull distribution which has a much
weaker tail. The corresponding concentration inequality (Theorem 3.1 in [7]) for the sum of
independent sub-Weibull r.v.s is illustrated as follows.

Proposition 3 (Concentration inequality for sub-Weibull distribution). Suppose {Xi}n
i=1 are

independent sub-Weibull random variables with ‖Xi − EXi‖ψθ
≤ v. Then there exists absolute

constants C1θ and C2θ only depending on θ such that with probability at least 1− e−t:∣∣∣∣∣ 1n n

∑
i=1

Xi − EXi
v

∣∣∣∣∣ ≤ C1θ

(
t
n

)1/2
+ C2θ

(
t
n

)1/θ

=

{
O(n−1/θ), θ > 2
O(n−1/2), 0 < θ ≤ 2

.

The weakness in the Proposition 3 is that the upper bound of Sa
n := ∑n

i=1 aiYi −
E(∑n

i=1 aiYi) is up to a unknown constants C1θ , C2θ . In the next section, we will give a
constants-specified and high probability upper bound for |Sa

n |, which improve Proposition 3
and is sharper than Theorem 3.1 in [6].

2.2. Main Results: Concentrations for Sub-Weibull Summation

Based on the exponential moment condition, the Chernoff’s tricks implies the follow-
ing sub-exponential concentrations from Proposition 4.2 in [4].
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Proposition 4. For any independent r.v.s {Yi}n
i=1 satisfying ‖Yi‖ψ1 < ∞, t ≥ 0, and non-random

weight w = (w1, · · · , wn)>, we have

P(|
n
∑

i=1
wi(Yi − EYi)| > 2(2t

n
∑

i=1
w2

i ‖Yi − EYi‖2
ψ1
)1/2 + 2t max

1≤i≤n
(|wi|‖Yi − EYi‖ψ1

)) ≤ 2e−t.

But it is not easy to extend to sub-Weibull distributions. From Corollary 4, Yi ∼
subW(θ)⇒ |Yi|1/θ ∼ subW(1). The MGF of |Yi|1/θ satisfies Eeλ1/θ |Yi |1/θ ≤ eλ1/θ K1/θ

, |λ| ≤
1
K for some constant K > 0. The bound of Eeλ1/θ |Yi |1/θ

with θ 6= 1 or 2 is not directly
applicable for deriving the concentration of ∑n

i=1 wi(Yi − EYi) by using the independence
and Chernoff’s tricks, since the MGF of Weibull r.v. do not has closed form as exponential
function. Thanks to the tail probability derived by Orlicz-type norms, instead of using
the upper bound for MGF, an alternative method is given by [6] who defines the so-called
Generalized Bernstein-Orlicz (GBO) norm. And the GBO norm can help us to derive tail
behaviours for sub-Weibull r.v.s.

Definition 3 (GBO norm). Fix α > 0 and L ≥ 0. Define the function Ψθ,L(·) as the inverse
function Ψ−1

θ,L(t) :=
√

log(t + 1) + L(log(t + 1))1/θ for all t ≥ 0. The GBO norm of a r.v. X is
then given by ‖X‖Ψθ,L := inf{η > 0 : E[Ψθ,L(|X|/η)] ≤ 1}.

The monotone function Ψθ,L(·) is motivated by the classical Bernstein’s inequality
for sub-exponential r.v.s. Like the sub-Weibull norm properties Corollary 3, the following
proposition in [6] allows us to get the concentration inequality for r.v. with finite GBO norm.

Proposition 5. If ‖X‖Ψθ,L < ∞, then P(|X| ≥ ‖X‖Ψθ,L{
√

t + Lt1/θ}) ≤ 2e−t ∀ t ≥ 0.

With an upper bound of GBO norm, we could easily derive the concentration inequal-
ity for a single sub-Weibull r.v. or even the sum of independent sub-Weibull r.v.s. The
sharper upper bounds for the GBO norm is obtained for the sub-Weibull summation, which
refines the constant in the sub-Weibull concentration inequality. Let ||X||p := (E|X|p)1/p

for all integer p ≥ 1. First, by truncating more precisely, we obtain a sharper upper bound
for ||X||p, comparing to Proposition C.1 in [6].

Corollary 5. If ‖X‖p ≤ C1
√

p + C2 p1/θ for p ≥ 2 and constants C1, C2, then

‖X‖Ψθ,K ≤ γeC1

where K = γ2/θC2/(γC1) and γ ≈ 1.78 is the minimal solution of{
k > 1 : e2k−2 − 1 +

e2(1−k2)/k2

k2 − 1
≤ 1

}
.

The proof can be seen in the Appendix A. In below, we need the moment estimation
for sums of independent symmetric r.v.s.

Lemma 1 (Khinchin-Kahane Inequality, Theorem 1.3.1 of [13]). Let {ai}n
i=1 be a finite non-

random sequence, {εi}n
i=1 be a sequence of independent Rademacher variables and 1 < p < q < ∞.

Then ‖∑n
i=1 εiai‖q ≤

(
q−1
p−1

)1/2
‖∑n

i=1 εiai‖p.

Lemma 2 (Theorem 2 of [14]). Let {Xi}n
i=1 be a sequence of independent symmetric r.v.s, and

p ≥ 2. Then, e−1
2e2 ‖(Xi)‖p ≤ ‖X1 + · · ·+ Xn‖p ≤ e‖(Xi)‖p, where ‖(Xi)‖p := inf{t > 0 :

∑n
i=1 log φp(Xi/t) ≤ p} with φp(X) := E|1 + X|p.
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Lemma 3 (Example 3.2 and 3.3 of [14]). Assume X be a symmetric r.v. satisfying P(|X| ≥ t) =
e−N(t). For any t ≥ 0, we have

(a) If N(t) is concave, then log φp(e−2tX) ≤ pMp,X(t) := (tp‖X‖p
p) ∨ (pt2‖X‖2

2).
(b) For convex N(t), denote the convex conjugate function N∗(t) := sups>0{ts− N(s)} and

Mp,X(t) =
{

p−1N∗(p|t|), if p|t| ≥ 2
pt2, if p|t| < 2.

Then log φp(tX/4) ≤ pMp,X(t).

With the help of three lemmas above, we can obtain the main results concerning
the shaper and constant-specified concentration inequality for the sum of independent
sub-Weibull r.v.s.

Theorem 1 (Concentration for sub-Weibull summation). Let γ be given in Corollary 5. If
{Xi}n

i=1 are independent centralized r.v.s such that ‖Xi‖ψθ
< ∞ for all 1 ≤ i ≤ n and some θ > 0,

then for any weight vector w = (w1, . . . , wn) ∈ Rn, the following bounds holds true:

(a) The estimate for GBO norm of the summation:

‖∑n
i=1 wiXi‖Ψθ,Ln(θ,bX )

≤ γeC(θ)‖bX‖2,

where bX = (w1‖X1‖ψθ
, . . . , wn‖Xn‖ψθ

)> ∈ Rn, with

C(θ) :=

{
2
[
log1/θ 2 + e3

(
Γ1/2( 2

θ + 1
)
+ 3

2−θ
3θ supp≥2 p−

1
θ Γ1/p( p

θ + 1
))]

, if θ ≤ 1,

2[4e + (log 2)1/θ ], if θ > 1;

and Ln(θ, b) = γ2/θ A(θ) ‖b‖∞
‖b‖2

1{0 < θ ≤ 1} + γ2/θ B(θ)
‖b‖β

‖b‖2
1{θ > 1} where B(θ) =:

2eθ−1/θ(1−θ−1)
1/β

4e+(log 2)1/θ and A(θ) =: inf
p≥2

e33
2−θ
3θ p−1/θ Γ1/p( p

θ +1)

2[log1/θ 2+e3(Γ1/2( 2
θ +1)+3

2−θ
3θ supp≥2 p−1/θ Γ1/p(

p
θ +1))]

. For

the case θ > 1, β is the Hölder conjugate satisfying 1/θ + 1/β = 1.
(b) Concentration for sub-Weibull summation:

P
(
|

n

∑
i=1

wiXi| ≥ 2eC(θ)‖bX‖2{
√

t + Ln(θ, bX)t1/θ}
)
≤ 2e−t. (7)

(c) Another form of for θ 6= 2:

P
(
|

n

∑
i=1

wiXi| ≥ s
)
≤ 2 exp

{
−
(

sθ[
4eC(θ)‖bX‖2Ln(θ, bX)

]θ
∧ s2

16e2C2(θ)‖bX‖2
2

)}

(θ < 2) =

{
2e−s2/16e2C2(θ)‖b‖2

2 , if s ≤ 4eC(θ)‖bX‖2Lθ/(θ−2)
n (θ, bX)

2e−sθ /[4eC(θ)‖bX‖2Ln(θ,bX)]
θ
, if s > 4eC(θ)‖bX‖2Lθ/(θ−2)

n (θ, bX);

(θ > 2) =

{
2e−sθ /[4eC(θ)‖bX‖2Ln(θ,bX)]

θ
, if s < 4eC(θ)‖bX‖2Lθ/(2−θ)

n (θ, bX)

2e−s2/16e2C2(θ)‖bX‖2
2 , if s ≥ 4eC(θ)‖bX‖2Lθ/(2−θ)

n (θ, bX).

Remark 2. The constant C(θ) in Theorem 1 can be improved as C(θ)/2 under symmetric assump-
tion of sub-Weibull r.v.s {Xi}n

i=1. Moreover, by the improved symmetrization theorem (Theorem 3.4
in [15]), one can replace the constant C(θ) in Theorem 1 by a sharper constant (1 + o(1))C(θ)/2.
Theorem 1 (b) also implies a potential empirical upper bound for ∑n

i=1 wiXi for independent sub-
Weibull r.v.s {Xi}n

i=1, because the only unknown variable in 2eC(θ)‖bX‖2{
√

t + Ln(θ)t1/θ} is
bX . From Remark 1, estimating bX is possible for i.i.d. observation {Xi}n

i=1.

Remark 3. Compared with the newest result in [6], our method do not use the crude String’s
approximation will give sharper concentration. For example, suppose X1, . . . , X10 are i.i.d. r.v.s
with mean µ and ‖X1 − µ‖ψθ

= 1. Here we set θ = 0.5, X is heavy-tailed (for example set the
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density of X as f (x) = 1
2
√

x e−
√

x · 1(x ≥ 0)). We find that C(θ) ≈ 2825.89, A(θ) ≈ 0.07, and

L10(θ, 1>10) = 0.23. Hence, 95% confidence interval in our method will be

µ ∈ X± 2e× 2118.80,

while the 95% confidence interval in Theorem 3.1 of [6] is evaluated as

µ ∈ X± 2e× 3969.94.

In this example, it can be seen that our method does give a much better (tighter) confidence interval.

Remark 4. Theorem 1 (b) generalizes the sub-Gaussian concentration inequalities, sub-exponential
concentration inequalities, and Bernstein’s concentration inequalities with Bernstein’s moment
condition. For θ < 2 in Theorem 1 (c), the tail behaviour of the sum is akin to a sub-Gaussian tail
for small t, and the tail resembles the exponential tail for large t; For θ > 2, the tail behaves like a
Weibull r.v. with tail parameter θ and the tail of sums match that of the sub-Gaussian tail for large t.
The intuition is that the sum will concentrate around zero by the Law of Large Number. Theorem 1
shows that the convergence rate will be faster for small deviations from the mean and will be slower
for large deviations from the mean.

Remark 5. Recently, similar result presented in [16] is that

P
(∣∣∣ n

∑
i=1

Xi

∣∣∣ > x
)
≤ exp

{
−
( x

nKθ

)1/θ
}

, for x ≥ nKθ

where Kθ is some constants only depends on X and θ (Kθ can be obtained by Proposition 3). But it
is obvious to see this large derivation result cannot guarantee a

√
n-convergence rate (as presented

in Proposition 3) whereas our result always give a
√

n-convergence rate, as presented in Theorem 1
(c) and Proposition 3.

2.3. Sub-Weibull Parameter

In this part, a new sub-Weibull parameters is proposed, which is enable of recovering
the tight concentration inequality for single non-zero mean random vector. Similar to
characterizations of sub-Gaussian r.vs. in Proposition 2.5.2 of [1], sub-Weibull r.vs. has the
equivalent definitions.

Proposition 6 (Characterizations of sub-Weibull r.v., [17]). Let X be a r.v., then the following
properties are equivalent. (1). The tails of X satisfy P(|X| ≥ x) ≤ e−(x/K1)

θ
, for all x ≥ 0; (2).

The moments of X satisfy ‖X‖k := (E|X|k)1/k ≤ K2k1/θ for all k ≥ 1 ∧ θ; (3). The MGF of
|X|1/θ satisfies Eeλ1/θ |X|1/θ ≤ eλ1/θ K1/θ

3 for |λ| ≤ 1
K3

; (4). Ee|X/K4|1/θ ≤ 2.

From the upper bound of (E|X|k)1/k in Proposition 6(2), an alternative definition
of the sub-Weibull norm ‖X‖ψθ

:= supk≥1 k−1/θ(E|X|k)1/k is given by [17]. Let θ = 1.
An alternative definition of the sub-exponential norm is ‖X‖ψ1 := supk≥1 k−1(E|X|k)1/k

see Proposition 2.7.1 of [1]. The sub-exponential r.v. X satisfies equivalent properties in
Proposition 6 (Characterizations of sub-exponential with θ = 1). However, these definition
is not enough to obtain the sharp parameter as presented in the sub-Gaussian case. Here,
we redefine the sub-Weibull parameter by our Corollary 3(a).

Definition 4 (Sub-Weibull r.v.,X ∼ subW(θ, v)). Define the sub-Weibull norm

‖X‖ϕθ
= supk≥1

(
E|X|θk/k!

)1/(θk)
.
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We denote the sub-Weibull r.v. as X ∼ subW(θ, v) if v = ‖X‖ϕθ
< ∞ for a given

θ > 0. For θ ≥ 1, the ‖·‖ϕθ
is a norm which satisfies triangle inequality by Minkowski’s

inequality: E(|X + Y|r)1/r ≤ [E(|X|r)]1/r + [E(|Y|r)]1/r,(r ≥ 1) comparing to Proposition
1. Definition 4 is free of bounding MGF, and it avoids Stirling’s approximation in the proof
of the tail inequality. We obtain following main results for this moment-based norm.

Corollary 6. If ‖X‖ϕθ
< ∞, then P{|X| > t} ≤ 2 exp{− tθ

2‖X‖θ
ϕθ

} for all t ≥ 0.

Theorem 2 (sub-Weibull concentration). Suppose that there are n independent sub-Weibull r.v.s
Xi ∼ subW(θ, vi) for i = 1, 2, · · · , n. We have

P

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ exp

−
θe11/12tθ

2[e(
n
∑

i=1
vi)Cθ ]θ

, for t ≥ e(
n

∑
i=1

vi)Cθ(2−1θe11/12)
−1/θ

,

and P
(∣∣∣∣ 1

n

n
∑

i=1
Xi

∣∣∣∣ ≤ ev̄21/θCθ

(
log(α−1)

θe11/12

)1/θ
)
≥ 1− α ∈ (1− e−1, 1]. Moreover, we have

P

(
|

n

∑
i=1

Xi| ≥ e(
n

∑
i=1

(E|Xi|)t)1/t + e(
n

∑
i=1

vi)21/θCθ(
t

θe11/12 )
1/θ

)
≤ e−t, ∀ t ≥ 0.

The proof of Theorem 2 can be seen in Appendix A.8. The concentration in this
Theorem 2 will serve a critical role in many statistical and machine learning literature. For
instance, the sub-Weibull concentrations in [7] contain unknown parameters, which makes
the algorithm for general sub-Weibull random rewards is infeasible. However, when using
our results, it will become feasible as we give explicit constants in these concentrations.

Importantly, the sub-exponential parameter is a special case of sub-Weibull norm by
letting θ = 1. Denote the sub-exponential parameter for r.v X as

‖X‖ϕ1
:= sup

k≥1

(
E|X|k

k!

)1/k
.

We denote X ∼ sEϕ1(v) if v = ‖X‖ϕ2 . For exponential r.v. X ∼ Exp(µ), the moment
is EXk = k!λk and ‖X‖ϕ1

= λ. Another case of sub-Weibull norm is θ = 2, which defines
sub-Gaussian parameter:

‖X‖ϕ2
:= sup

k≥1

(
E|X|2k

k!

)1/2k
≥ (Var X)1/2.

Like the generalized method of moments, we can give the higher-moment estimation
procedure for the norm ‖X‖ϕ2 . Unfortunately, the method in Remark 1 for estimating MGF
is not stable in the simulation since the exponential function has a massive variance in
some cases.

• Estimation procedure for ‖X‖ϕ2 and ‖X‖ϕ1 . Consider

‖̂X‖ϕ2
= sup

k≥1

( 1
n× k!

n

∑
i=1
|Xi|2k

)1/(2k)
, ‖̂X‖ϕ1

= sup
k≥2

(
1
k!
· 1

n

n

∑
i=1
|Xi|k

)1/k

(8)

as a discrete optimization problem. We can take kmax big enough to minimize(
1

n×k! ∑n
i=1 |Xi|2k

)1/(2k)
,
(

1
k! ·

1
n ∑n

i=1|Xi|k
)1/k

on k ∈ {1, . . . , pmax}.

At the first glimpse, the bigger p is, the larger n is required in this method. Nonetheless,
often, most of common distributions only require a median-size of p to give a relatively
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good result, then only the median-size of n in turn is required. For standard Gaussian
random, centralized Bernoulli (successful probability µ = 0.3), and uniform distributed (on
[−1, 1]) variable X,

‖X‖ϕ2 =
√

2

[
Γ
(
(1 + p)/2

)
Γ(1/2)Γ(1 + p/2)

]1/p

,
[

µ(1− µ)p + (1− µ)µp

Γ(p/2 + 1)

]1/p
,

Γ−1/p(p/2 + 1)
(p + 1)1/p .

It can be shown that ‖X‖ϕ2 ≈ 1, 0.4582576, 0.5773503. The Figures 1–3 show the
estimated value from different n under estimate method (8) for the three distributions
mentioned above. The estimate method (8) is a correct estimated method for sub-Gaussian
parameter to our best knowledge.
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The moment approach: standard Gaussian

Figure 1. standard Gaussian.
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The moment approach : centralized Bernoulli

Figure 2. centralized Bernoulli.
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The moment approach : uniform distribution

Figure 3. Uniform on [−1, 1].

For centralized negative binomial, and centralized Poisson (λ = 1) variable X,
‖X‖ϕ1 = 2.460938, 0.7357589, respectively. The Figures 4 and 5 show the estimated value
from different n under estimate method (8) for the four distributions mentioned above.
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The moment approach: centralized negative binomial

Figure 4. centralized negative binomial.
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The moment approach: centralized Poisson

Figure 5. centralized Poisson.

The five figures mentioned above show litter bias between the estimated norm and
true norm. It is worthy to note that the norm estimator for centralized negative binomial
case has a peak point. This is caused by sub-exponential distributions having relatively
heavy tails, and hence the norm estimation may not robust as that in sub-Gaussian under
relatively small sample sizes.

Moreover, sub-Gaussian and sub-exponential parameter is extensible for random
vectors with values in a normed space (X , ‖ · ‖), we define norm-sub-Gaussian parameter
and norm-sub-exponential parameter: The norm-sub-Gaussian parameter:

‖X‖ϕ2
= supk≥1(k!)−1/(2k)

(
E‖X‖2k

)1/(2k)
;

the norm-sub-exponential parameter:

‖X‖ϕ1
= supk≥1(k!)−1/k

(
E‖X‖k

)1/k
.

We denote X ∼ nsubGϕ1(σ
2) and X ∼ nsubGϕ2(σ

2) for σ2 = ‖X‖ϕ2
and ‖X‖ϕ1

, respec-
tively.

3. Statistical Applications of Sub-Weibull Concentrations
3.1. Negative Binomial Regressions with Heavy-Tail Covariates

In statistical regression analysis, the responses {Yi}n
i=1 in linear regressions are assume

to be continuous Gaussian variables. However, the category in classification or grouping
may be infinite with index by the non-negative integers. The categorical variables is
treated as countable responses for distinction categories or groups; sometimes it can be
infinite. In practice, random count responses include the number of patients, the bacterium
in the unit region, or stars in the sky and so on. The responses {Yi}n

i=1 with covariates
{Xi}n

i=1 belongs to generalized linear regressions. We consider i.i.d. random variables
{(Xi, Yi)}n

i=1 ∼ (X, Y) ∈ Rp × N. By the methods of the maximum likelihood or the
M-estimation, the estimator β̂n is given by

β̂n := arg min
β∈Rp

1
n

n

∑
i=1

`(X>i β, Yi), (9)

where the loss function `(·, ·) is convex and twice differentiable in the first argument.
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In high-dimensional regressions, the dimension β may be growing with sample size n.
When {Yi}n

i=1 belongs to the exponential family, [18] studied the asymptotic behavior of β̂n
in the generalized linear models (GLMs) as pn := dim(X) is increasing. In our study, we
focus on the case that the covariates is subW(θ) heavy-tailed for θ < 1.

The target vector β∗ := arg min
β∈Rp

E`
(
XT β, Y

)
is assumed to be the loss under the popula-

tion expectation, comparing to (9). Let ˙̀(u, y) := ∂
∂t `(t, y)

∣∣∣
t=u

, ῭(u, y) := ∂
∂t

˙̀(t, y)
∣∣∣
t=u

and

C(u, y) := sup|s−t|≤u
῭(s,y)
῭(t,y)

. Finally, define the score function and Hessian matrix of the em-

pirical loss function are Ẑn(β) := 1
n ∑n

i=1
˙̀(XT

i β, Yi)Xi and Q̂n(β) := 1
n ∑n

i=1
῭(XT

i β, Yi)XiXT
i ,

respectively. The population version of Hessian matrix is Q(β) := E[ ῭(XT β, Y)XXT ]. The
following so-called determining inequalities guarantee the `2-error for the estimator ob-
tained from the smooth M-estimator defined as (9).

Lemma 4 (Corollary 3.1 in [19]). Let δn(β) := 3
2‖[Q̂n(β)]−1Ẑn(β)‖2 for β ∈ Rp. If `(·, ·)

is a twice differentiable function that is convex in the first argument and for some β∗ ∈ Rp:
max1≤i≤n C(‖Xi‖2δn(β∗), Yi) ≤ 4

3 . Then there exists a vector β̂n ∈ Rp satisfying Ẑn(β̂n) = 0
as the estimating equation of (9),

1
2

δn(β∗) ≤ ‖β̂n − β∗‖2 ≤ δn(β∗).

Applications of Lemma 4 in regression analysis is of special interest when X is heavy
tailed, i.e., the sub-Weibull index θ < 1. For the negative binomial regression (NBR) with
the known dispersion parameter k > 0, the loss function is

`(u, y) = −yu + (y + k) log(k + eu). (10)

Thus we have ˙̀(u, y) = − k(y−eu)
k+eu , ῭(u, y) = k(y+k)eu

(k+eu)2 , see [20] for details.

Further computation gives C(u, y) = sup|s−t|≤u
es(k+et)2

(k+es)2et and it implies that C(u, y) ≤
e3u. Therefore, condition max1≤i≤n C(‖Xi‖2δn(β∗), Yi) ≤ 4

3 in Lemma 4 leads to

max1≤i≤n‖Xi‖2δn(β∗) ≤ log(4/3)
3 .

This condition need the assumption of the design space for max1≤i≤n‖Xi‖2.
In NBR with loss (10), one has

Q̂n(β∗) := 1
n

n
∑

i=1

(Yi+k)keX>i β∗XiX>i
(k+eX>i β∗

)2
and Ẑn(β∗) := −1

n

n
∑

i=1

k(Yi−eX>i β∗ )Xi

k+eX>i β∗
.

To guarantee that β̂n approximates β∗ well, some regularity conditions are required.

• (C.1): For MY, MX > 0, assume max
1≤i≤n

‖Yi‖ψ1 ≤ MY and the heavy-tailed covariates

{Xik} are uniformly sub-Weibull with max
1≤i≤n,1≤k≤p

‖Xik‖ψθ
≤ MX for 0 < θ < 1.

• (C.2): The vector Xi is sparse or bounded. Let FY := {max
1≤i≤n

EYi = max
1≤i≤n

eX>i β∗ ≤

B, max
1≤i≤n

‖Xi‖2 ≤ In} with a slowly increasing function In, we have P{F c
Y} = εn → 0.

In addition, to bound max
1≤i≤n,1≤i≤k

|Xik|, the sub-Weibull concentration determines:

P
(

max
1≤i≤n,1≤i≤k

|Xik| > t
)
≤ npP(|X11| > t) ≤ 2npe−(t/‖X11‖ψθ

)θ

≤ δ⇒ t = MXlog1/θ(
2np

δ
),

by using Corollary 3. Hence, we define the event for the maximum designs:

Fmax =
{

max
1≤i≤n,1≤k≤p

|Xik| ≤ MXlog1/θ(
2np

δ
)
}
∩ FY.
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To make sure that the optimization in (9) has a unique solution, we also require the minimal
eigenvalue condition.

• (C.3): Suppose that b>E(Q̂n(β))b ≥ Cmin is satisfied for all b ∈ Sp−1.

In the proof, to ensure that the random Hessian function has a non-singular eigenvalue, we
define the event

F1 =

{
max

k,j

∣∣∣∣∣ 1n n

∑
i=1

[
YikeX>i β∗XikXij

(k + eX>i β∗)2
− E

(
YikeX>i β∗XikXij

(k + eX>i β∗)2

)]∣∣∣∣∣ ≤ Cmin

4

}

F2 =

{
max

k,j

∣∣∣∣∣ 1n n

∑
i=1

[
keX>i β∗XikXij

(k + eX>i β∗)2
− E

(
keX>i β∗XikXij

(k + eX>i β∗)2

)]∣∣∣∣∣ ≤ Cmin

4

}
.

Theorem 3 (Upper bound for `2-error). In the NBR with loss (10) and (C.1− C.3), let

MBX = MX +
B

log 2
, Rn :=

6MBX MX
Cmin

[√
2p
n

log
(2p

δ

)
+

1
n

√
p log

(2p
δ

)]
log1/θ

(2np
δ

)
,

and b := (k/n)M2
X(1, . . . , 1)> ∈ Rn. Under the event F1 ∩ F2 ∩ Fmax, for any 0 < δ < 1, if

the sample size n satisfies

Rn In ≤
log(4/3)

3
, (11)

Let cn := e
− 1

4 (
nt2

2M4
X log4/θ (

2np
δ

)M2
BX
∧ nt

M2
X log2/θ (

2np
δ

)MBX
)

+ e
−( tθ/2

[4eC(θ/2)‖b‖2 Ln(θ/2,b)]θ/2 ∧
t2

16e2C2(θ/2)‖b‖22
)

with
t = Cmin/4, then

P(‖β̂n − β∗‖2 ≤ Rn) ≥ 1− 2p2cn − δ− εn.

A few comment is made on this theorem. First, in order to get ‖β̂n − β∗‖2
p−→ 0, we

need p = o(n) under sample size restriction (11) with In = o(log−1/θ(np) · [n−1 p log p]−1/2).
Second, note that the εn in provability 1− 2p2cn − δ− εn depends on the models size and
the fluctuation of the design by the event Fmax.

3.2. Non-Asymptotic Bai-Yin’s Theorem

In statistical machine learning, exponential decay tail probability is crucial to evaluate
the finite-sample performance. Unlike Bai-Yin’s law with the fourth-moment condition
that leads to polynomial decay tail probability, under sub-Weibull conditions of data, we
provide a exponential decay tail probability on the extreme eigenvalues of a n× p random
matrix.

Let A = An,p be an n× p random matrix whose entries are independent copies of a
r.v. with zero mean, unit variance, and finite fourth moment. Suppose that the dimensions
n and p both grow to infinity while the aspect ratio p/n converges to a constant in [0, 1].
Then Bai-Yin’s law [21] asserted that the standardized extreme eigenvalues satisfying

1√
n λmin(A) = 1−

√
p
n + o

(√
p
n

)
, 1√

n λmax(A) = 1 +
√

p
n + o

(√
p
n

)
a.s..

Next we introduce a special counting measure for measuring the complexity of a certain set
in some space. The Nε is called an ε-net of K in Rn if K can be covered by balls with centers
in K and radii ε (under Euclidean distance). The covering number N (K, ε) is defined by the
smallest number of closed balls with centers in K and radii ε whose union covers K.

For purposes of studying random matrices, we need to extend the definition of sub-
Weibull r.v. to sub-Weibull random vectors. The n-dimensional unit Euclidean sphere
Sn−1, is denoted by Sn−1 = {x ∈ Rn : ‖x‖2 = 1}. We say that a random vector X in Rn is
sub-Weibull if the one-dimensional marginals 〈X, a〉 are sub-Weibull r.v.s for all a ∈ Rn.
The sub-Weibull norm of a random vector X is defined as ‖X‖ψθ

:= supa∈Sn−1 ‖〈X, a〉‖ψθ
.
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Similarly, define the spectral norm for any p× p matrix B as
∥∥B
∥∥ = max||x||2=1

∥∥Bx
∥∥

2 =
supx∈Sp−1 |〈Bx, x〉|. Spectral norm has many good properties, see [1] for details.

Furthermore, for simplicity, we assume that the rows in random matrices are isotropic
random vectors. A random vector Y in Rn is called isotropic if Var(Y) = Ip. Equivalently,
Y is isotropic if E[〈Y , a〉2] = ‖a‖2

2 for all a ∈ Rn. In the non-asymptotic regime, Theorem
4.6.1 in [1] study the upper and lower bounds of maximum (minimum) eigenvalues of
random matrices with independent sub-Gaussian entries which are sampled from high-
dimensional distributions. As an extension of Theorem 4.6.1 in [1], the following result
is a non-asymptotic versions of Bai-Yin’s law for sub-Weibull entries, which is useful to
estimate covariance matrices from heavy-tailed data [subW(θ), θ < 1].

Theorem 4 (Non-asymptotic Bai-Yin’s law). Let A be an n× p matrix whose rows Ai are inde-
pendent isotropic sub-Weibull random vectors in Rp with covariance matrix Ip and
max1≤i≤n‖Ai‖ψθ

≤ K. Then for every s ≥ 0, we have

P
{∥∥ 1

n
A>A− Ip

∥∥ ≤ H(cp + s2, n; θ)

}
≥ 1− 2e−s2

,

where

H(t, n; θ) := 2eKC(θ/2)Kθ/2[1 + ([(eθ/2)θ/2] log 2)−θ/2)

[√
t
n +

{
A(θ/2) (γ

2t)2/θ

n , θ ≤ 2

B(θ/2) (γ
2t)2/θ

n1/θ , θ > 2

]
,

where Kα := 21/α if α ∈ (0, 1) and Kα = 1 if α ≥ 1; A(θ/2), B(θ/2) and C(θ/2) defined in
Theorem 1a.

Moreover, the concentration inequality for extreme eigenvalues hold for c ≥ n log 9/p

P
{√

1− H2(cp + s2, n; θ) ≤ λmin(A)√
n ≤ λmax(A)√

n ≤
√

1 + H2(cp + s2, n; θ)
}
≥ 1− 2e−s2

. (12)

3.3. General Log-Truncated Z-Estimators and sub-Weibull Type Robust Estimators

Motivated from log-truncated loss in [22,23], we study the almost surely continuous
and non-decreasing function ϕc : R→ R for truncating the original score function

− log[1− x + c(|x|)] ≤ ϕc(x) ≤ log[1 + x + c(|x|)], ∀x ∈ R (13)

where c(|x|) > 0 is a high-order function [23] of |x| which is to be specified. For example, a
plausible choose for ϕc(x) in (13) should have following form

ϕc(x) = log[1 + x + c(|x|)]1(x ≥ 0)− log[1− x + c(|x|)]1(x ≤ 0)

= sign(x) log(1 + |x|+ c(|x|)). (14)

For (14), we get ϕc(x) ≈ x for sufficiently smaller x and ϕc(x) � x for larger x. Un-
der (13), now we show that c(|x|) must obey a key inequality. For all x ∈ R, it suf-
fices to verify − log[1 − x + c(|x|)] ≤ log[1 + x + c(|x|)], which is equivalent to check
log[(1 + c(|x|) + x)(1 + c(|x|)− x)] ≥ 0, namely (1 + c(|x|))2 − x2 ≥ 1 ⇔ c(|x|) ≥√

1 + x2 − 1.
For independent r.v.s {Xi}n

i=1, using the score function (14), we define the score
function of data

Ẑαn(θ) =
1

nαn
∑n

i=1 ϕc[αn(Xi − θ)] for any θ ∈ R.

Then the influence of the heavy-tailed outliers is weaken by ϕc[αn(Xi − θ)] by choosing an
optimal αn. We aim to estimate the average mean: µn := 1

n ∑n
i=1 EXi for non-i.i.d. samples

{Xi}n
i=1. Define the Z-estimator θ̂αn as

θ̂αn ∈ {θ ∈ R : Ẑαn(θ) = 0}, (15)
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where αn is the tuning parameter (will be determined later).
To guarantee consistency for log-truncated Z-estimators (15), we require following

assumptions of c(·).
• (C.1): For a constant c2 > 1, the c(x) satisfies weak triangle inequality and scaling

property,

(C.1.1) : c(x + y) ≤ c2[c(x) + c(y)], (C.1.2) : c(tx) ≤ f (t)c(x)

for f (t) satisfies
(C.1.3): f (t) and f (t)/|t| are non-constant increasing functions and lim

t→0
f (t)/|t| = 0.

Remark 6. Note that |x| ≥
√

1 + x2 − 1 and we could put c(|x|) = |x|. However, c(|x|) = |x|
does not satisfy (C.1.3) since f (t) = |t| and f (t)/|t| are constant functions of t.

In the following theorem, we establish the finite sample confidence interval and the
convergence rate of the estimator θ̂αn .

Theorem 5. Let {Xi}n
i=1 be independent samples drawn from an unknown probability distri-

bution {Pi}n
i=1 on R. Consider the estimator θ̂αn defined as (15) with (C.1), αn → 0 and

1
n ∑n

i=1 E[c(Xi − θ)] = O(1). Let B+
n (θ) = µn − θ + 1

nαn
∑n

i=1 E[c(αn(Xi − θ))]+
log(δ−1)

nαn
and

B−n (θ) = µn − θ − 1
nαn

∑n
i=1 E[c(αn(Xi − θ))]− log(δ−1)

nαn
. Let θ+ be the smallest solution of the

equation B+
n (θ) = 0 and θ− be the largest solution of B−n (θ) = 0.

(a). We have with the (1− 2δ)-confidence intervals

P(B−n (θ) < Ẑαn(θ) < B+
n (θ)) ≥ 1− 2δ, P(θ− ≤ θ̂αn ≤ θ+) ≥ 1− 2δ,

for any δ ∈ (0, 1/2) satisfies the sample condition:

1
nαn

n

∑
i=1

E[c(αnXi − αn[µn ± dn(c)])] +
log(δ−1)

nαn
< dn(c), (16)

where dn(c) is a constant such that B±n (µn ± dn(c)) < 0.

(b). Moreover, picking αn ≥ f−1
(

log(δ−1)
c2 ∑n

i=1 E[c(Xi−µn)]

)
, one has

P
(
|θ̂αn − µn| ≤

∣∣∣∣g−1
αn

{
−2 log(δ−1)

nαn

}∣∣∣∣) ≥ 1− 2δ, with gαn(t) := t +
c2

αn
c(αnt). (17)

The (17) in Theorem 5 is a fundamental extension of Lemma 2.1 (see Theorem 16
in [24]) with c(x) = x2/2 from i.i.d. sample to independent sample. Let c(x) = |x|β/β,
for i.i.d. sample, Theorem 5 implies Lemmas 2.3, 2.4 and Theorem 2.1 in [22]. The αn ≥
f−1
(

log(δ−1)
c2 ∑n

i=1 E[c(Xi−µn)]

)
in Theorem 5(b) gives a theoretical guarantee for choosing the

tuning parameter αn.

Proposition 7 (Theorem 2.1 in [22]). Let {Xi}n
i=1 be a sequence of i.i.d. samples drawn from

an unknown probability distribution on R. We assume E|X1|β < ∞ for a certain β ∈ (1, 2]
and denote µ = E[X1], vβ = E|X1 − µ|β. Given any ε ∈ (0, 1/2) and positive integer n ≥(

2vβ+1
β

) β
β−1 2β log(ε−1)

vβ
, let αn = 1

2 (
2β log(ε−1)

nvβ
)

1
β . Then, with probability at least 1− 2ε,

|θ̂αn − µ| ≤ 2
(

2β log(ε−1)

n

) β−1
β

v
1
β

β

β−
(

2β log(ε−1)

nvβ

) β−1
β


−1

= O
(

n−
β−1

β

)
. (18)
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Comparing to the convergence rate in (18), put O(n−
β−1

β ) = O(n−1/θ) for θ > 2. It
implies

β−1 + θ−1 = 1, (θ ≥ 2 or 0 < β ≤ 2).

For example, let us deal with the Pareto distribution Pareto(α, k) with shape parameter
α > 0 and scale parameter k > 0, and the density function is f (x) = αkα

xα+1 · 1{x∈[k,∞)}.
For α ≤ 2, Pareto(α, k) has infinite variance, and it does not belong to the sub-Weibull
distribution, so do the sample mean of i.i.d. Pareto distributed data. Proposition 7 shows
that the estimator error for robust mean estimator enjoys sub-Weibull concentration as
presented in Proposition 3, without finite sub-Weibull norm assumption of data. With the
Weibull-tailed behavior, it motivates us to define general sub-Weibull estimators having
the non-parametric convergence rate O(n−1/θ) in Proposition 3 for θ > 2, even if the data
do not have finite sub-Weibull norm.

Definition 5 (Sub-Weibull estimators). An estimator µ̂ := µ̂(X1, · · · , Xn) based on i.i.d. sam-
ples {Xi}n

i=1 from an unknown probability distribution P with mean µP, is called (A, B, C)-
subW(θ) if

∀t ∈ (0, A), P(|µ̂− µP| ≤ B(t/n)1/θ) ≥ 1− Ce−t.

For example, in Proposition 7, θ̂αn is (∞, B, 1)-subW( β
β−1 )with B ∼ 2

(
2β log(ε−1)

) β−1
β v

1
β

β

in Definition 5. When θ = 2, [25] defined sub-Gaussian estimators (includes Median of
means and Catoni’s estimators) for certain heavy-tailed distributions and discussed the
nonexistence of sub-Gaussian mean estimators under β-moment condition for the data
(β ∈ (1, 2)).

4. Conclusions

Concentration inequalities are far-reaching useful in high-dimensional statistical infer-
ences and machine learnings. They can facilitate various explicit non-asymptotic confidence
intervals as a function of the sample size and model dimension.

Future research includes sharper version of Theorem 2 that is crucial to construct
non-asymptotic and data-driven confidence intervals for the sub-Weibull sample mean.
Although we have obtained sharper upper bounds for sub-Weibull concentrations, the
lower bounds on tail probabilities are also important in some statistical applications [26].
Developing non-asymptotic and sharp lower tail bounds of Weibull r.v.s is left for further
study. For negative binomial concentration inequalities in Corollary 2, it is of interesting to
study concentration inequalities of COM-negative binomial distributions (see [27]).
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Appendix A

Appendix A.1

Proof of Corollary 1. φ|X|θ (t) is continuous for t a neighborhood of zero, by the defini-

tion, 2 ≥ Ee(|X|/‖X‖ψθ
)θ

= m|X|θ
(
‖X‖−θ

ψθ

)
. Since |X|θ > 0, the MGF m|X|θ (t) is mono-

tonic increasing. Hence, inverse function m−1
|X|θ (t) exists and ‖X‖−θ

ψθ
= m−1

|X|θ (2). So

‖X‖ψθ
=
(
m−1
|X|θ (2)

)−1/θ .

Appendix A.2

Proof of Corollary 2. The first inequality is the direct application of (3) by observing that
for any constant a ∈ R, and r.v. Y with ‖Y‖ψ1 < ∞, ‖aY‖ψ1 = |a|‖Y‖ψ1 , ‖Y + a‖ψ1 ≤
‖Y‖ψ1 + ‖a‖ψ1 = ‖Y‖ψ1 + |a|/ log 2 and ‖X + a‖2

ψ1
≤ (‖X‖ψ1 + |a|/ log 2)2. The second

inequality is obtained from (3) by considering two rate in ( t2

∑n
i=1 2‖Yi‖2

ψ1

∧ t
max1≤i≤n ‖Yi‖ψ1

)

separately. For (5), we only need to note that

‖Yi‖ψ1 = inf{t > 0 : EeYi/t ≤ 2} = inf{t > 0 :
(

1−qi
1−qie1/t

)ki ≤ 2} =
[

log 1−(1−qi)/
ki
√

2
qi

]−1
.

Then the third inequality is obtained by the first inequality and the definition of
a(µi, ki).

Appendix A.3

Proof of Corollary 3. The first and second part of this proposition were shown in Lemma
2.1 of [28]. For the third result, using the bounds of Gamma function [see [29]]:

√
2πxx−(1/2)e−x ≤ Γ(x) ≤ [

√
2πxx−(1/2)e−x] · e1/(12x), (x > 0),

it gives

(E|X|k)1/k≤
{

2‖X‖k
ϕθ

(
k
θ

)
[
√

2π(k/θ)
k
θ−

1
2 e−

11k
12θ ]
}1/k

= ( 2
√

2π
θ )1/k{

(
k
θ

) k
θ +

1
2 e−

11k
12θ }1/k‖X‖ϕθ

= ( 2
√

2π
θ )1/k(k/θ)

1
θ +

1
2k e−

11
12θ ‖X‖ϕθ

≤ Cθ(θe11/12)−1/θ‖X‖ϕθ
k1/θ .

Appendix A.4

Proof of Corollary 4. By the definition of ψθ-norm, E exp{|X/‖X‖ψθ
|θ} ≤ 2. Then

E exp{||X|r/‖X‖r
ψθ
|θ/r} ≤ 2. The result |X|r ∼ subW(θ/r) follows by the definition of

ψθ-norm again. Moreover,

‖X‖ψθ
: = inf{C ∈ (0, ∞) : E[exp(|X|θ/Cθ)] ≤ 2}

= [inf{Cr ∈ (0, ∞) : E[exp{||X|r/Cr|θ/r}] ≤ 2}]1/r = ‖|X|r‖1/r
ψθ/r

,

which verifies (6). If X ∼ subW(rθ), then E exp{|Xr/‖X‖r
ψrθ
|θ} = E exp{|X/‖X‖ψrθ

|rθ} ≤
2, which means that Xr ∼ subW(θ) with

‖X‖ψrθ
: = inf{C ∈ (0, ∞) : E[exp(|X|rθ/Crθ)] ≤ 2}

= [inf{Cr ∈ (0, ∞) : E[exp{||X|r/Cr|θ}] ≤ 2}]1/r = ‖|X|r‖1/r
ψθ

.
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Appendix A.5

Proof of Corollary 5. Set ∆ := supp≥2
‖X‖p√

p+Lp1/θ so that ‖X‖p ≤ ∆
√

p + L∆p1/θ holds for

all p ≥ 2. By Markov’s inequality for t-th moment (t ≥ 2), we have

P
(
|X| ≥ e∆

√
t + eL∆t1/θ

)
≤
(

||X||t
e∆[
√

t + Lt1/θ ]

)t
≤ e−t, [By the definition of ∆].

So, for any t ≥ 2,
P
(
|X| ≥ e∆

√
t + eL∆t1/θ

)
≤ e−t. (A1)

Note the definition of ∆ shows ‖X‖t ≤ ∆
√

t + L∆t1/θ holds for all t ≥ 2 and assump-
tion ‖X‖t ≤ C1

√
t + C2t1/θ for all t ≥ 2. It gives e∆

√
t + eL∆t1/θ ≤ eC1

√
t + eC2t1/θ . This

inequality with (A1) gives

P
(
|X| ≥ eC1

√
t + eC2t1/θ

)
≤ 1{0 < t < 2}+ e−t{t ≥ 2}, ∀t > 0. (A2)

Take K = k2/θC2/(kC1), and define δk := keC1 for a certain constant k > 1,

E
[

Ψθ,K

(
|X|
δk

)]
=
∫ ∞

0
P
(
|X| ≥ δkΨ−1

θ,K(s)
)

ds

=
∫ ∞

0
P(|X| ≥ keC1

√
log(1 + s) + keC1K[log(1 + s)]1/θ)ds

=
∫ ∞

0
P(|X| ≥ eC1

√
log(1 + s)k2 + eC2[log(1 + s)k2

]1/θ)ds

[By (A2)] ≤
∫

0<k2 log(1+s)<2
ds +

∫
k2 log(1+s)≥2

exp
{
−k2 log(1 + s)

}
ds

≤
∫ e2k−2−1

0
dt +

∫ ∞

e2k−2−1

dt

(1 + t)k2

= e2k−2 − 1 +
(1 + t)1−k2

1− k2 |∞
e2k−2−1

= e2k−2 − 1 +
e2(1−k2)/k2

k2 − 1
≤ 1.

Therefore, ‖X‖Ψθ,K ≤ γeC1 with γ defined as the smallest solution of the inequality

{k > 1 : e2k−2 − 1 + e2(1−k2)/k2

k2−1 ≤ 1}. An approximate solution is γ ≈ 1.78.

Appendix A.6

The main idea in the proof is by the sharper estimates of the GBO norm of the sum of
symmetric r.v.s.

Proof of Theorem 1.

(a) Without loss of generality, we assume ‖Xi‖ψθ
= 1. Define Yi :=

(
|Xi| − (log 2)1/θ

)
+

,

then it is easy to check that P(|Xi| ≥ t) ≤ 2e−tθ
implies P(Yi ≥ t) ≤ e−tθ

. For inde-
pendent Rademacher r.v. {εi}n

i=1, the symmetrization inequality gives ‖∑n
i=1 wiXi‖p ≤

2‖∑n
i=1 εiwiXi‖p. Note that εiXi is identically distributed as εi|Xi|,
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‖
n

∑
i=1

wiXi‖p ≤ 2‖
n

∑
i=1

εiwi|Xi|‖p ≤ 2‖
n

∑
i=1

εiwi
(
Yi + (log 2)1/θ

)
‖p

≤ 2‖
n

∑
i=1

εiwiYi‖p + 2(log 2)1/θ‖
n

∑
i=1

εiwi‖p

[Khinchin-Kahane inequality] ≤ 2‖
n

∑
i=1

εiwiYi‖p + 2(log 2)1/θ

(
p− 1
2− 1

)1/2
‖

n

∑
i=1

εiwi‖2

< 2‖
n

∑
i=1

εiwiYi‖p + 2(log 2)1/θ√p(E(
n

∑
i=1

εiwi)
2)1/2

[{εi}n
i=1 are independent] = 2‖

n

∑
i=1

εiwiYi‖p + 2(log 2)1/θ√p‖w‖2. (A3)

From Lemma 2, we are going to handle the first term in (A3) with the sum of symmetric
r.v.s. Since P(Yi ≥ t) ≤ e−tθ

, then

‖∑n
i=1 εiwiYi‖p = ‖∑n

i=1 wiZi‖p, Zi := εiYi

for symmetric independent r.v.s {Zi}n
i=1 satisfying |Zi|

d
= Yi and P(Zi ≥ t) = e−tθ

for all
t ≥ 0.

Next, we proceed the proof by checking the moment conditions in Corollary 5.
Case θ ≤ 1: N(t) = tθ is concave for θ ≤ 1. From Lemmas 2 and 3 (a), for p ≥ 2,∥∥∥ n

∑
i=1

wiZi

∥∥∥
p
≤ e inf

{
t > 0 :

n

∑
i=1

log φp

(
e−2
(wie2

t

)
Zi

)
≤ p

}
≤ e inf

{
t > 0 :

n

∑
i=1

pMp,Zi

(wie2

t

)
≤ p

}
= e inf

{
t > 0 :

n

∑
i=1

[{(wie2

t

)p
‖Zi‖

p
p

}
∨
{

p
(wie2

t

)2
‖Zi‖2

2

}]
≤ p

}
≤ e inf

{
t > 0 : Γ

( p
θ
+ 1
) e2p

tp ‖w‖
p
p ≤ 1

}
+ e inf

{
t > 0 : pΓ

(2
θ
+ 1
) e4

t2 ‖w‖
2
2 ≤ 1

}
,

where the last inequality we use ‖Zi‖
p
p =

∫ ∞
0 ptp−1P(|Zi| ≥ t) dt ≤

∫ ∞
0 ptp−1e−tθ

dt =

pΓ
( p

θ + 1
)
. Hence

‖∑n
i=1 wiZi‖p ≤ e3

[
Γ1/p( p

θ + 1
)
‖w‖p +

√
pΓ1/2( 2

θ + 1
)
‖w‖2

]
,

and

‖
n

∑
i=1

wiXi‖p ≤ 2e3
[
Γ1/p

( p
θ
+ 1
)
‖w‖p +

√
pΓ1/2

(2
θ
+ 1
)
‖w‖2

]
+ 2(log 2)1/θ√p‖w‖2

= 2e3Γ1/p
( p

θ
+ 1
)
‖w‖p + 2

[
(log 2)1/θ + e3Γ1/2

(2
θ
+ 1
)]√

p‖w‖2.

Using homogeneity, we can assume that
√

p‖w‖2 + p1/θ‖w‖∞ = 1. Then ‖w‖2 ≤
p−1/2 and ‖w‖∞ ≤ p−1/θ . Therefore, for p ≥ 2,

‖w‖p ≤
( n

∑
i=1
|wi|2‖w‖

p−2
∞

)1/p
≤ (p−1−(p−2)/θ)1/p = (p−p/θ p(2−θ)/θ)1/p

≤ 3
2−θ
3θ p−1/θ = 3

2−θ
3θ p−1/θ{√p‖w‖2 + p1/θ‖w‖∞},
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where the last inequality follows form the fact that p1/p ≤ 31/3 for any p ≥ 2, p ∈ N. Hence∥∥∥ n

∑
i=1

wiXi

∥∥∥
p
≤ 2e3+ 2−θ

eθ Γ1/p
( p

θ
+ 1
)
‖w‖∞

+ 2
[

log1/θ 2 + e3
(

Γ1/2
(2

θ
+ 1
)
+ 3

2−θ
3θ p−

1
θ Γ1/p

( p
θ
+ 1
))]√

p‖w‖2.

Following Corollary 5, we have∥∥∥ n

∑
i=1

wiXi

∥∥∥
Ψθ,Ln(θ,p)

≤ γeD1(θ),

where Ln(θ, p) = γ2/θ D2(θ,p)
γD1(θ)

, D1(θ) := 2[log1/θ 2+ e3(Γ1/2( 2
θ + 1)+ supp≥2 3

2−θ
3θ p−

1
θ Γ1/p( p

θ

+1))]‖w‖2 < ∞, and D2(θ, p) := 2e33
2−θ
3θ p−1/θΓ1/p( p

θ + 1
)
‖w‖∞.

Finally, take Ln(θ) = infp≥1 Ln(θ, p) > 0. Indeed, the positive limit can be argued by
(2.2) in [30]. Then by the monotonicity property of the GBO norm, it gives∥∥∥ n

∑
i=1

wiXi

∥∥∥
Ψθ,Ln(θ)

≤
∥∥∥ n

∑
i=1

wiXi

∥∥∥
Ψθ,Ln(θ,p)

≤ γeD1(θ).

Case θ > 1: In this case N(t) = tθ is convex with N∗(t) = θ−
1

θ−1
(
1− θ−1)t θ

θ−1 . By
Lemmas 2 and 3(b), for p ≥ 2, we have∥∥∥∑n

i=1 wiZi

∥∥∥
p
≤ e inf

{
t > 0 : ∑n

i=1 log φp

(
4wi

t Zi/4
)
≤ p

}
+ e inf

{
t > 0 : ∑n

i=1 pMp,Zi (
4wi

t ) ≤ p
}

≤ e inf
{

t > 0 : ∑n
i=1 p−1N∗

(
p
∣∣∣ 4wi

t

∣∣∣) ≤ 1
}
+ e inf

{
t > 0 : ∑n

i=1 p( 4wi
t )2 ≤ 1

}
= 4e

[√
p‖w‖2 + (p/θ)1/θ(1− θ−1)1/β‖w‖β

]
with β mentioned in the statement. Therefore, for p ≥ 2, Equation (A3) implies

‖∑n
i=1 wiXi‖p ≤ [8e + 2(log 2)1/θ ]

√
p‖w‖2 + 8e(p/θ)1/θ(1− θ−1)1/β‖w‖β.

Then the following result follows by Corollary 5,

‖∑n
i=1 wiXi‖Ψθ,L′(θ)

≤ γeD′1(θ),

where Ln(θ) =
γ2/θ D′2(θ)

γD′1(θ)
, D′1(θ) =

[
8e + 2(log 2)1/θ

]
‖w‖2, and D′2(θ) = 8eθ−1/θ(1 −

θ−1)1/β‖w‖β.
Note that wiXi = (wi‖Xi‖ψθ

)(Xi/‖Xi‖ψθ
), we can conclude (a).

(b) It is followed from Proposition 5 and (a).

(c) For easy notation, put Ln(θ) = Ln(θ, bX) in the proof. When θ < 2, by the inequality
a + b ≤ 2(a ∨ b) for a, b > 0, we have

P
(
|

n
∑

i=1
wiXi| ≥ 4eC(θ)‖b‖2

√
t
)
≤ 2e−t, if

√
t ≥ Ln(θ)t1/θ .

Put s := 4eC(θ)‖b‖2
√

t, we have

P
(
|

n
∑

i=1
wiXi| ≥ s

)
≤ 2 exp

{
− s2

16e2C2(θ)‖b‖2
2

}
, if s ≤ 4eC(θ)‖b‖2Lθ/(θ−2)

n (θ).

For
√

t ≤ Ln(θ)t1/θ , we obtain P(|∑n
i=1 wiXi| ≥ 4eC(θ)‖bX‖2Ln(θ)t1/θ) ≤ 2e−t. Let

s := 4eC(θ)‖b‖2Ln(θ)t1/θ , it gives

P
(
|

n
∑

i=1
wiXi| ≥ s

)
≤ 2 exp

{
− sθ

[4eC(θ)‖b‖2Ln(θ)]
θ

}
, if s > 4eC(θ)‖b‖2Lθ/(θ−2)

n (θ).
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Similarly, for θ > 2, it implies

P(|∑n
i=1 wiXi| ≥ s) ≤ 2e

− sθ

[4eC(θ)‖b‖2 Ln(θ)]θ if s ≤ 4eC(θ)‖b‖2Lθ/(2−θ)
n (θ),

and P(|∑n
i=1 wiXi| ≥ s) ≤ 2e

− s2

16e2C2(θ)‖b‖22 if s ≥ 4eC(θ)‖b‖2Lθ/(2−θ)
n (θ).

Appendix A.7

Proof of Corollary 6. Using the definition of ‖X‖ϕθ
, it yields

Ee(c
−1|X|)θ

= 1 +
∞

∑
k=1

c−kE|X|kθ

k!
≤ 1 +

∞

∑
k=1

c−kk!‖X‖kθ
ϕθ

k!

= 1 +
∞

∑
k=1

(
‖X‖θ

ϕθ

cθ
)k = 1 +

‖X‖θ
ϕθ

cθ

∞

∑
k=0

(
‖X‖θ

ϕθ

cθ
)k

[
‖X‖θ

ϕ2

cθ
< 1] = 1 + (

‖X‖θ
ϕ2

cθ
)

1

1− ‖X‖θ
ϕ2

/cθ
≤ 2

if
‖X‖θ

ϕ2
cθ ≤ 1

2 which implies that the minimal c is 21/θ‖X‖ϕθ
. That is to say we have

Ee|X/[21/θ‖X‖ϕθ
]|1/θ
≤ 2. Applying (2), we have

P{|X| > t} ≤ 2e−(t/[2
1/θ‖X‖ϕθ

])
θ

= 2 exp{− tθ

2‖X‖θ
ϕθ

} for all t ≥ 0. (A4)

Appendix A.8

Proof of Theorem 2. Minkowski’s inequality for p ≥ 1 and definition of ‖X‖ϕθ
imply∥∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥∥
p

≤
n

∑
i=1
‖Xi‖p ≤

n

∑
i=1

vi · 21/θCθ

( p
θe11/12

)1/θ
,

where the last inequality by letting Cθ := max
k≥1

(
2
√

2π
θ

)1/k( k
θ

)1/(2k)
in Corollary 3b.

From Markov’s inequality, it yields

P

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ t−p

∥∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥∥
p

p

≤ t−p(
n

∑
i=1

vi)
p2p/θCθ

( p
θe11/12

)p/θ
.

Let t−p(
n
∑

i=1
vi)

p2p/θCθ

(
p

θe11/12

)p/θ
= e−p, it gives

t = e(
n
∑

i=1
vi)21/θCθ

(
p

θe11/12

)1/θ
and p = θe11/12tθ

[e(
n
∑

i=1
vi)21/θCθ ]θ

.

Therefore, for p ≥ 1, we have

P

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ P

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ e(
n

∑
i=1

vi)Cθ(2−1θe11/12)
−1/θ

)
≤ e−p ∈ (0, e−1]. (A5)
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So

P

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ exp

{
− θe11/12tθ

2[e(
n
∑

i=1
vi)Cθ ]θ

}
, t ≥ e(

n

∑
i=1

vi)Cθ(2−1θe11/12)
−1/θ

.

Let v̄ = 1
n

n
∑

i=1
vi and e−p =: α. Then

P

(∣∣∣∣∣ 1n n

∑
i=1

Xi

∣∣∣∣∣ ≤ ev̄21/θCθ

(
log(α−1)

θe11/12

)1/θ
)
≥ 1− α ∈ (1− e−1, 1].

For p < 1, note that moment monotonicity show that [E(|X|p)]1/p is a non-decreasing
function of p,, i.e.,

0 < p ≤ 1⇒ [E|X|p]1/p ≤ E|X|.

The cr -inequality implies
∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥p

p
≤

n
∑

i=1
‖Xi‖p

p. Using Markov’s inequality again, we

have

P

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ t−p

∥∥∥∥∥ n

∑
i=1

Xi

∥∥∥∥∥
p

p

≤ t−p
n

∑
i=1
‖Xi‖p

p ≤ t−p
n

∑
i=1

(E|Xi|)p.

Put t−p
n
∑

i=1
(E|Xi|)p = e−p and t = e(

n
∑

i=1
(E|Xi|)p)1/p. Then, we obtain

P

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ e(
n

∑
i=1

(E|Xi|)p)1/p

)
≤ e−p ∈ (e−1, 1). (A6)

Combine (A5) and (A6), we obtain for all t ≥ 0,

P

(
|

n

∑
i=1

Xi| ≥ e(
n

∑
i=1

(E|Xi|)t)1/t + e(
n

∑
i=1

vi)21/θCθ(
t

θe11/12 )
1/θ

)
≤ e−t.

This completes the proof.

Appendix A.9

Proof of Theorem 3. Note that for ∀b ∈ Sp−1, it yields

b>Q̂n(β∗)b− b>E(Q̂n(β∗))b ≥ −‖b‖max
k,j
|[Q̂n(β∗)− EQ̂n(β∗)]kj|

= −max
k,j

∣∣∣∣∣∣ 1n
n

∑
i=1

[
(Yi + k)keX>i β∗XiX>i

(k + eX>i β∗)2
− E

(
(Yi + k)keX>i β∗XiX>i

(k + eX>i β∗)2

)]
kj

∣∣∣∣∣∣. (A7)

Consider the decomposition

1
n

n
∑

i=1

[
(Yi+k)keX>i β∗XikXij

(k+eX>i β∗
)2

− E

(
(Yi+k)keX>i β∗XikXij

(k+eX>i β∗
)2

)]

= 1
n

n
∑

i=1

[
YikeX>i β∗XikXij

(k+eX>i β∗
)2
− E

(
YikeX>i β∗XikXij

(k+eX>i β∗
)2

)]
+ k

n

n
∑

i=1

[
keX>i β∗XikXij

(k+eX>i β∗
)2
− E

(
keX>i β∗XikXij

(k+eX>i β∗
)2

)]
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For the first term, we have under the Fmax with t = Cmin/4

P

(∣∣∣∣∣ 1
n

n
∑

i=1

[
YikeX>i β∗XikXij

(k+eX>i β∗
)

2 − E

(
YikeX>i β∗XikXij

(k+eX>i β∗
)

2

)]∣∣∣∣∣ ≥ t,Fmax

)

≤ 2 exp

− 1
4

 n2t2

2
n
∑

i=1
(XikXij)

2(‖Yi‖ψ1
+|

exp(X>i β∗)
log 2 |)2

∧ nt

max
1≤i≤n

|XikXij |(‖Yi‖ψ1
+|

exp(X>i β∗)
log 2 |)




≤ 2 exp
{
− 1

4

(
nt2

2M4
X log4/θ(

2np
δ )M2

BX
∧ nt

M2
X log2/θ(

2np
δ )MBX

)}
where we use keX>i β∗(k + eX>i β∗)−2 ≤ 1 and the second last inequality is from Corollary 2.

For the second term, by Theorem 1 and
∥∥XikXij

∥∥
ψθ/2
≤ ‖Xik‖ψθ

∥∥Xij
∥∥

ψθ
≤ M2

X we
have

P

(∣∣∣∣∣ k
n

n
∑

i=1

[
keX>i β∗XikXij

(k+eX>i β∗
)2
− E

(
keX>i β∗XikXij

(k+eX>i β∗
)2

)]∣∣∣∣∣ ≥ t,Fmax

)
≤ 2 exp

{
−
(

tθ/2

[4eC(θ/2)‖b‖2Ln(θ/2,b)]θ/2 ∧ t2

16e2C2(θ/2)‖b‖2
2

)}
where b = (k/n)M2

X(1, . . . , 1)> ∈ Rn.
Assume that b>E(Q̂n(β))b ≥ Cmin for all b ∈ Sp−1. Under F1 and F2, it shows that

by (A7): b>E (Q̂n(β))b ≥ Cmin − Cmin
2 = Cmin

2 . Then

P{λmin(Q̂n(β)) ≤ Cmin

2
} = P

{
b>E(Q̂n(β))b ≤ Cmin

2
, ∀b ∈ Sp−1

}
(A8)

≤ P
{

b>E(Q̂n(β))b ≤ Cmin

2
, ∀b ∈ Sp−1,Fmax

}
+ P(F c

max)

≤ P{F1,Fmax}+ P{F2,Fmax}+ P(F c
R(n))

≤ 2p2 exp

{
−1

4

(
nt2

M4
Xlog4/θ( 2np

δ )M2
BX

∧ nt

M2
Xlog2/θ( 2np

δ )MBX

)}

+ 2p2 exp

{
−
(

tθ/2

[4eC(θ/2)‖b‖2Ln(θ/2, b)]θ/2 ∧
t2

16e2C2(θ/2)‖b‖2
2

)}
+ P(F c

max). (A9)

Then we have by conditioning on F1 ∩ F2

δn(β) := 3
2‖[Q̂n(β)]−1Ẑn(β)‖2 ≤ 3

Cmin
‖Ẑn(β)‖2.

By k/(k + eX>i β∗) ≤ 1, Corollary 2 implies for any 1 ≤ k ≤ p,

P
[∣∣∣√ p

n

n

∑
i=1

k(Yi − eX>i β∗)Xik

k + eX>i β∗

∣∣∣ >2
(2tp

n

n

∑
i=1

X2
ik‖Yi − EYi‖2

ψ1

)1/2

+ 2t
√

p
n

max
1≤i≤n

|Xik|‖Yi − EYi‖ψ1

]
≤ 2e−t.

(A10)

Let

λ1n(t, X) := 2
(

2tp
n max

1≤k≤n

n
∑

i=1
X2

ik‖Yi − EYi‖2
ψ1

)1/2
+ 2t

√
p
n max

1≤i≤n,1≤k≤p
(|Xik|‖Yi − EYi‖ψ1

).
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We bound max
1≤i≤n,1≤k≤p

|Xik| ≤ MXlog1/θ( 2np
δ ) and max

1≤k≤n
1
n

n
∑

i=1
X2

ik ≤ M2
Xlog2/θ( 2np

δ )

under the event Fmax. Note that MBX = MX + B
log 2 , then (C.1) and (C.2) gives

λ1n(t, X) ≤ 2
(

2tpM2
BX max

1≤k≤p

1
n

n

∑
i=1

X2
ik

)1/2
+ 2t

√
p
n

max
1≤i≤n,1≤k≤p

|Xik|MBX

≤ 2MBX MX(
√

2tp + t
√

p/n) log1/θ(2np/δ) =: λn(t).

So, P
(
|
√

p
n

n
∑

i=1

k(Yi−eX>i β∗ )Xik

k+eX>i β∗
| > λn(t)

)
≤ 2e−t, k = 1, 2, . . . , p. Thus (A10) shows

P{
√

n‖Ẑn(β∗)‖2 > λ1n(t)} ≤ P{
√

n‖Ẑn(β∗)‖2 > λ1n(t),Fmax}+ P(F c
max)

≤ P(
p⋃

k=1
{‖ 1√

n

n
∑

i=1

k(Yi−eX>i β∗ )Xik

k+eX>i β∗
‖ > λ1n(t)√

p }) + P(F c
max) ≤ 2pe−t + P(F c

max) = δ + εn,

where t := log( 2p
δ ). Then ‖β̂n − β∗‖2 ≤ δn(β∗) ≤ 3

Cmin
‖Ẑn(β∗)‖2 ≤ 3λ1n(t)

Cmin
√

n via Lemma 4.
Under F1 ∩ F2 ∩ Fmax, we obtain

‖β̂n − β∗‖2 ≤
6MBX MX

Cmin

[√
2p
n

log
(2p

δ

)
+

1
n

√
p log

(2p
δ

)]
log1/θ

(2np
δ

)
.

Furthermore, under F1 ∩ F2 ∩ Fmax, it gives the condition of n: (11).

Appendix A.10

Proof of Theorem 4. For convenience, the proof is divided into three steps.

Step 1. Adopting the lemma

Lemma A1 (Computing the spectral norm on a net, Lemma 5.4 in [1]). Let B be an p× p
matrix, and let Nε be an ε-net of Sp−1 for some ε ∈ [0, 1). Then∥∥B

∥∥ = max||x||2=1
∥∥Bx

∥∥
2 = supx∈Sp−1 |〈Bx, x〉| ≤ (1− 2ε)−1 supx∈Nε

|〈Bx, x〉|.

Then show that ‖ 1
n A>A− Ip‖ ≤ 2 maxx∈N1/4

∣∣ 1
n‖Ax‖2

2 − 1
∣∣. Indeed, note that 〈 1

n A>

Ax − x, x〉 = 〈 1
n A>Ax, x〉 − 1 = 1

n‖Ax‖2
2 − 1. By setting ε = 1/4 in Lemma 4, we can

obtain:∥∥ 1
n

A>A− Ip
∥∥ ≤ (1− 2ε)−1 sup

x∈Nε

|〈 1
n

A>Ax− x, x〉| = 2 max
x∈N1/4

∣∣∣ 1
n
‖Ax‖2

2 − 1
∣∣∣.

Step 2. Let Zi := |〈Ai, x〉| fix any x ∈ Sn−1. Observe that ‖Ax‖2
2 = ∑n

i=1 |〈Ai, x〉|2 =

∑n
i=1 Z2

i . The fact that {Zi}n
i=1 are subW(θ) with EZ2

i = 1, max1≤i≤n ‖Zi‖ψθ
= K. Then by

Corollary 4, Z2
i are independent subW(θ/2) r.v.s with max1≤i≤n ‖Z2

i ‖ψθ/2 = K2. The norm
triangle inequality (Lemma A.3 in [9]) gives

max
1≤i≤n

‖Z2
i − 1‖ψθ/2 ≤ Kθ/2[1 + ([(eθ/2)θ/2] log 2)−θ/2]K. (A11)

where Kα := 21/α if α ∈ (0, 1) and Kα = 1 if α ≥ 1.
Denote bX := 1

n (‖Z2
1 − 1‖ψθ/2 , . . . , ‖Z2

n − 1‖ψθ/2)
> in Theorem 1. With (A11), we have

‖bX‖2 = n−1
√

∑n
i=1 ‖Z2

i − 1‖2
ψθ/2
≤ Kθ/2[1+([(eθ/2)θ/2] log 2)−θ/2]K√

n

and ‖b‖∞ ≤ Kθ/2[1+([(eθ/2)θ/2] log 2)−θ/2]K
n .

For β := θ
θ−1 > 1, we obtain
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‖bX‖β = n−1{∑n
i=1 ‖Z2

i − 1‖β
ψθ/2
}1/β ≤ nβ−1−1[Kθ/2[1 + ([(eθ/2)θ/2] log 2)−θ/2]K] =

n−θ−1
Kθ/2[1 + ([(eθ/2)θ/2] log 2)−θ/2]K.

Write Ln(θ/2, bX) as the constant defined in Theorem 1(a). Then,

‖bX‖2Ln(θ/2, bX) = γ4/θ

{
A(θ/2)‖b‖∞, θ ≤ 2
B(θ/2)‖b‖β, θ > 2.

≤ Kθ/2[1 + ([(eθ/2)θ/2] log 2)−θ/2]Kγ4/θ

{
A(θ/2)/n, θ ≤ 2
B(θ/2)/n1/θ , θ > 2.

Hence

2eC(θ/2){‖bX‖2

√
t + ‖b‖2Ln(θ/2, bX)t2/θ}

≤ 2eKC(θ/2)Kθ/2[1 + ([(eθ/2)θ/2] log 2)−θ/2)

[√
t
n
+

{
A(θ/2)(γ2t)2/θ/n, θ ≤ 2
B(θ/2)(γ2t)2/θ/n1/θ , θ > 2

]
=: H(t, n; θ).

Therefore, P( 1
n |∑

n
i=1(Z2

i − 1)| ≥ H(t, n; θ)) ≤ 2e−t. Let t = cp + s2 for constant c, then

P
{∣∣∣ 1

n
‖Ax‖2

2 − 1
∣∣∣ ≥ H(cp + s2, n; θ)

}
≤ 2e−(cp+s2).

Step 3. Consider the follow lemma for covering numbers in [1].

Lemma A2 (Covering numbers of the sphere). For the unit Euclidean sphere Sn−1, the covering
number N (Sn−1, ε) satisfies N (Sn−1, ε) ≤ (1 + 2

ε )
n for every ε > 0.

Then, we show the concentration for ‖ 1
n A>A− Ip‖, and (12) follows by the definition

of largest and least eigenvalues. The conclusion is drawn by Step 1 and 2:

P
{∥∥∥ 1

n
A>A− Ip

∥∥∥ ≥ H(cp + s2, n; θ)

}
≤ P

{
2 max

x∈N1/4

∣∣∣ 1
n
‖Ax‖2

2 − 1
∣∣∣ ≥ H(cp + s2, n; θ)

}
≤ N (Sn−1, 1/4)P

{∣∣∣ 1
n
‖Ax‖2

2 − 1
∣∣∣ ≥ H(cp + s2, n; θ)/2

}
≤ 2 · 9ne−(cp+s2),

where the last inequality follows by Lemma A2 with ε = 1/4. When the c ≥ n log 9/p, then
2 · 9ne−(cp+s2) ≤ 2e−s2

, and the (12) is proved.
Moreover, note that

max
||x||2=1

∣∣∣∥∥ 1√
n

Ax
∥∥2

2 − 1
∣∣∣ = max

||x||2=1

∥∥( 1
n

A>A− Ip)x
∥∥2

2 =
∥∥ 1

n
A>A− Ip

∥∥2 ≤ H2(cp + s2, n; θ).

implies that √
1− H2(cp + s2, n; θ) ≤ 1√

n λmax(A) ≤
√

1 + H2(cp + s2, n; θ).

Similarly, for the minimal eigenvalue, we have

min
||x||2=1

∣∣∣∥∥ 1√
n

Ax
∥∥2

2 − 1
∣∣∣ = min

||x||2=1

∥∥( 1
n

A>A− Ip)x
∥∥2

2 =
∥∥ 1

n
A>A− Ip

∥∥2 ≤ H2(cp + s2, n; θ).
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This implies
√

1− H2(cp + s2, n; θ) ≤ 1√
n λmin(A) ≤

√
1 + H2(cp + s2, n; θ). So we

obtain that the two events satisfy{∥∥ 1
n

A>A− Ip
∥∥2 ≤ H2(cp + s2, n; θ)

}
⊂
{√

1− H2(cp + s2, n; θ) ≤ 1√
n

λmin(A) ≤ 1√
n

λmax(A) ≤
√

1 + H2(cp + s2, n; θ)
}

Then we obtain the second conclusion in this theorem.

Appendix A.11

Proof of Theorem 5. By independence and (13),

Ee±nαn Ẑαn (θ) =
n

∏
i=1

E exp{±ϕc[αn(Xi − θ)]} ≤
n

∏
i=1

E[1± αn(Xi − θ) + c(αn(Xi − θ))]

≤
n

∏
i=1

exp{±αnE(Xi − θ) + E[c(αn(Xi − θ))]} = exp

{
±αn

n

∑
i=1

E(Xi − θ) +
n

∑
i=1

E[c(αn(Xi − θ))]

}
. (A12)

For convenience, let

B+
n (θ) = µn − θ +

1
nαn

n

∑
i=1

E[c(αn(Xi − θ))]+
log(δ−1)

nαn
(A13)

and B−n (θ) = µn − θ − 1
nαn

n
∑

i=1
E[c(αn(Xi − θ))]− log(δ−1)

nαn
. Therefore, Equation (A12) and

the Markov’s inequality show

P(Ẑαn(θ) ≥ B+
n (θ)) = P(enαn Ẑαn (θ) ≥ enαnB+

n (θ)) ≤ Eenαn Ẑαn (θ)

enαnB+
n (θ)

≤ enαnB+
n (θ)−log(δ−1)

enαnB+
n (θ)

= δ

and P(Ẑαn(θ) ≤ B−n (θ)) = P(e−nαn Ẑαn (θ) ≥ e−nαnB−n (θ)) ≤ Ee−nαnẐαn (θ)

e−nαn B−n (θ)
≤ e−nαn B−n (θ)−log(δ−1)

e−nαn B−n (θ)
=

δ. These two inequality yield P
(

B−n (θ) < Ẑαn(θ)
)
= 1− P

(
Ẑαn(θ) ≤ B−n (θ)

)
− P

(
Ẑαn(θ) ≥

B+
n (θ)

)
≥ 1− 2δ.

The ∂Ẑαn (θ)
∂θ = − 1

n ∑n
i=1 ϕ̇c[αn(Xi − θ)] < 0 implies the map θ 7→ Ẑαn(θ) is non-

increasing. If θ = µn, we have B+
n (µn) > 0 from (A13). As n is sufficient large and αn → 0,

in B+
n (θ), from (C.1.2) the term 1

nαn
∑n

i=1 E[c(αn(Xi − θ))] ≤ f (αn)
αn

1
n ∑n

i=1 E[c(Xi − θ)] =
f (αn)

αn
O(1) converges to 0 by (C.1.3). Then, there must be a constant dn(c) > 0 such that

B+
n (µn + dn(c)) < 0. So under (16), it implies that B+

n (θ) = 0 has a solution and denote
the smallest solution θ+ ∈ (µn, µn + dn(c)). Similarly, for B−n (θ), we have B−n (µn) < 0.
The condition (16) implies B−n (µn − dn(c)) > 0, then B−n (θ) = 0 has a solution and denote
the largest solution θ− ∈ (µn − dn(c), µn). Note that Ẑαn(θ) is a continuous and non-
increasing function, the estimating equation Ẑαn(θ) = 0 has a solution θ̂αn ∈ [θ−, θ+] such
that θ− ≤ θ̂αn ≤ θ+ with a probability at least 1− 2δ. Recall that

B+
n (θ+) = µn − θ+ +

1
nαn

n

∑
i=1

E[c(αn(Xi − θ+))] +
log(δ−1)

nαn
= 0. (A14)

has the smallest solution θ+ ∈ (µn, µn + dn(c)) under the condition (16). We have
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µn − θ̂αn ≥ µn − θ+ = − 1
nαn

n

∑
i=1

E[c(αnXi − αnθ+)]−
log(δ−1)

nαn

= − 1
nαn

n

∑
i=1

E[c(αn(Xi − µn) + αn(µn − θ+))]−
log(δ−1)

nαn

[By (C.1.1)] ≥ − c2

nαn

n

∑
i=1

E[c(αnXi − αnµn)]−
c2

αn
· c(αn(µn − θ+))−

log(δ−1)

nαn

(A15)

which implies

µn − θ+ +
c2

αn
· c(αn(µn − θ+)) ≥ −

(
c2

nαn

n

∑
i=1

E[c(αn(Xi − µn))] +
log(δ−1)

nαn

)
. (A16)

Put c2
nαn

∑n
i=1 E[c(αn(Xi − µn))] =

log(δ−1)
nαn

, i.e., ∑n
i=1 c2E[c(αn(Xi − µn))] = log(δ−1).

The scaling assumption c(tx) ≤ f (t)c(x) gives

f (αn)c2

n

∑
i=1

E[c(Xi − µn)] ≥ c2

n

∑
i=1

E[c(αn(Xi − µn))] = log(δ−1)

and thus αn ≥ f−1
(

log(δ−1)
c2 ∑n

i=1 E[c(Xi−µn)]

)
. Let gαn(t) = t+ c2

αn
c(αnt). Moreover, Equation (A16)

and the value αn yields

gαn(µn − θ+) = µn − θ+ +
c2

αn
c(αn(µn − θ+)) ≥ −

2 log(δ−1)

nαn
.

Solve the above inequality in terms of µn − θ+, we obtain

µn − θ̂αn ≥ µn − θ+ ≥ g−1
αn

{
− 2 log(δ−1)

nαn

}
.

Similarly, for θ−, one has µn − θ̂αn ≤ µn − θ− ≤ −g−1
αn

{
− 2 log(δ−1)

nαn

}
. Then we obtain

that (17) holds with probability at least 1− 2δ.
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