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Abstract: The Victorian Curriculum and Assessment Authority (VCAA) introduced the use of
Computer Algebra System (CAS) technology (calculator and software) into the senior secondary
mathematics curriculum and examination assessment in three phases, starting with a research-
based pilot from 2000, followed by parallel implementation of CAS and non-CAS subjects from
2006 and culminating in transition to CAS-assumed subjects in 2010. This paper reports reflections
on these developments over two decades from the perspectives of a researcher and the state math-
ematics manager (the authors) in consultation with four implementing teachers (the consultants).
The authors critically examined the strategic design decisions that were made for the initiative over
time. Then, with contributions from the four consultants, technical design issues relating to assess-
ment and to teaching and the changes over a decade were investigated. A range of modifications have
been made over the two decades, driven by changes in device capability and progressively increasing
teaching expertise. The place of CAS in senior mathematics is now widely accepted, partly because an
examination component not allowing any technology has been implemented. Examination questions
have become more general, which may have added difficulty, but more questions involve setting up
a real situation mathematically.
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examinations; computer-algebra; visualization; calculus
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1. Introduction

In Victoria, Australia, under the auspices of the Victorian Curriculum and Assess-
ment Authority (VCAA), the Victorian Certificate of Education (VCE) senior secondary
mathematics curriculum, and the related external assessment, incorporated the use of
computer algebra (CAS) for the last two decades. This paper presents the reflections of
four leading teachers, the system mathematics manager, and a researcher, all of whom
have been involved in this development from the initial introduction to mature imple-
mentation. The paper reports on policies, practices, and issues related to the design of
curriculum, pedagogy, and assessment from 2000 to 2022, covering four cycles of senior
secondary mathematics curriculum development, implementation, monitoring, evaluation,
and review.

The growth of computing power has had an enormous impact on how mathematical
calculations are carried out by all people, from meeting simple everyday needs such
as shopping to using models of highly complex systems, such as predicting weather.
As computers and digital devices have become more accessible, mathematics curricula,
teaching, and assessment have had to respond accordingly. In the Australian state of
Victoria, for its senior secondary mathematics examinations, students were permitted to
use the then newly accessible scientific calculators, rather than four figure logarithm tables
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or slide rules from 1978. These examinations were, and still are, very high stakes for
students and their schools, as the grades are used for both end-of-school certification and
for university entrance. Because of the importance of the examinations, related policies
are generally quickly adopted by teachers of Year 12 (the last year of school) and in lower
year levels as appropriate. After 1978, digital technology developed quickly. By 1997,
graphics calculators (at first scientific calculators with multi-line screens and the capacity
to graph functions and create tables) were sufficiently affordable to be permitted in the
calculus-based examinations for the intermediate subject (Mathematical Methods) and the
advanced subject (Specialist Mathematics). One year later, the examiners set the questions
assuming that all students had a graphics calculator. By 2000, graphics calculator use
was assumed by the examiners for the elementary subject (Further Mathematics) a non-
calculus data analysis and discrete mathematics subject. During the 1990s, it became
evident that graphics calculators with symbolic capability (symbolic algebra and calculus)
were evolving from very expensive calculators for professionals into the school market.
The futuristic scenario imagined by Wilf in “The Disk with the College Education” was
becoming reality [1]. Hence, a team of researchers, some of whom also were examiners
for the school subjects, began to analyze the likely impact of allowing CAS use in the
VCE examinations [2–4]. From the start, it was very clear that allowing CAS would have
a much greater impact on examination questions and solutions than allowing graphics
calculators and that teachers and students would need considerable support to use these
more complicated devices well. The change would have to be handled carefully. This paper
looks back on the two decades of that change, drawing on the perspectives of six long
term contributors.

We will show how the deliberate alignment between curriculum, assessment, and
pedagogy, has been critical to the successful adoption of a technology-active curriculum
and assessment, in particular for the external examinations. This initiative needed a posi-
tive policy framework; strong and informed leadership; clear expression of intention with
respect to curriculum and high-stakes assessment; a sound research basis with careful mon-
itoring of teachers’ opinions; and substantial professional learning and resource support
for pedagogy, all maintained over an extended period.

Expectations and practices change over time, and there has been, and continues to
be, genuine critical discourse in Victoria by different stakeholders on what is reasonable,
what is mathematically desirable, and what technology policies maintain a suitable bal-
ance for sub-groups of the student cohort, and for what pathways and purposes. This
paper reflects various aspects of that journey from several perspectives, each variously
concerned with what is best for students, making it all work, and progressing contemporary
curriculum development.

1.1. Strategic, Tactical and Technical Design

We consider the management of the shift to using mathematically-able software as a
complex example of educational design. We follow Burkhardt [5] in distinguishing three
aspects of design: strategic, tactical, and technical. There is no hierarchy of importance
because all three interconnect and influence whether an educational initiative is a success.
Burkhardt gives a working definition of strategic design:

Strategic design focuses on the design implications of the interactions of the products,
and the processes for their use, with the whole user system it aims to serve. [5] (p. 1)

In the present case, the user system includes teachers, students and parents, employers
and universities, experts, and indeed the whole community because of the importance of
retaining their confidence in the quality of the Victorian education system. The strategic
design of the shift to mathematically-able software, as described below, shows the value of
well-paced change in line with clear long-term intentions, consultation with stakeholders,
and planned professional development for teachers. Burkhardt’s tactical design is focused
on the overall internal structure of a product—in this case the mathematics study designs
that are outlined below. It is here that the intention that students learn to use technology
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as part of learning mathematics and also develop appropriate by-hand skills is set out
for teachers.

In the later parts of the paper, we discuss aspects of the technical design of this initia-
tive, with an emphasis on assessment. This aspect of design is focused on the mathematical
tasks that students and teachers do in the classroom and in assessment. Good techni-
cal design supports students to learn important mathematics and provides for valid and
equitable assessment of this learning [6].

1.2. Information Gathering

The information and opinions expressed in this paper arise from the reflections of
six expert long-term participants in this initiative, supplemented by reviews of curriculum
and assessment documents, including the examination papers since 2000. (Note that
we use the word ‘curriculum’ as the official specification of what students should be
taught and learn). Author Leigh-Lancaster was the Mathematics Manager at the VCAA
and led curriculum and assessment reviews for the period under discussion. His work
included liaising with teachers, academics, and examination panels, and supervising the
development of advice for teachers, support materials, and programs. Author Stacey is
a mathematics education researcher who led the major research study that accompanied
the first pilot CAS subject (reviewed in [2,3]) and has also had many other involvements
with teacher education, curriculum, and assessment in Victoria. To broaden and test
the authors’ views, we sought the views of leading educators in Victoria who had been
involved in the CAS initiative for some time. Four of these educators provided written
responses to a series of questions sent by the authors, thereby becoming the consultants
for this study. Together these four people have many roles: as teachers and mathematics
leaders in their schools, review panel members, examination panel members, examination
assessors, textbook authors, advisors to other schools, and active members of professional
associations, and over time, all of them have been involved in various subject revisions
and developments initiated by the VCAA. The consultants carefully thought back over
their own experiences and those of their students in using CAS to assess the success and
challenges of the initiative, and to describe the changes that have happened. They consulted
personal and public documents to support, explain, and discuss the conclusions that they
reached with concrete examples.

1.3. Background Research and Scholarship

Research has both informed and followed aspects of the development described in
this paper. The review papers by Stacey [2,3] give an overview of the research conducted
on this initiative, and many of the research papers cited later in the present article describe
research on specific questions. The intention of this paper, however, is to focus on design
issues, both strategic and technical. In the early phase, there was limited scholarly material
related to strategic design, as systems around the world were only beginning to implement
the structures for introducing CAS technology that were being developed (see, for exam-
ple [7,8]). Naturally, these structures had to be implemented and progressively adapted,
before formal investigation could take place. During the period from 2000 to 2010, a few
early research studies on large-scale initiatives emerged and there was ongoing personal
professional communication on strategic and technical design (including matters of policy,
process, and implementation) between leaders of senior secondary mathematics curriculum
and assessment in educational jurisdictions actively working in the field, including the USA,
France, Denmark, Victoria, Australia, and the International Baccalaureate Organisation.
Broader research and analysis subsequently took place (for example, [9]).

2. Outline of VCE Mathematics Study Designs (2000–2022)

In the state of Victoria, senior secondary school curriculum and assessment is specified
and controlled by the VCAA. The state’s curriculum content is broadly in line with the
Australian Curriculum with some modifications. For mathematics, a stronger endorsement
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and expectation of technology use in Victoria is one of the main differences from other
Australian states and territories. There are three mathematics subjects that students can
select for senior secondary school (Years 11 and 12) in Victoria. It is not compulsory to study
mathematics as part of the VCE. Students can choose to do more than one mathematics
subject. These three subjects can be broadly classified as elementary (data analysis and dis-
crete mathematics and applications), intermediate (functions, algebra, calculus, probability
and statistics), and advanced (extending the intermediate subject and including complex
numbers, vectors, differential equations and the like). The intermediate subject is required
as background for the advanced subject, and students who do the advanced subject typi-
cally take them simultaneously. Students can also choose to do both the elementary and
the intermediate subject.

The VCE Mathematics study design [10] develops these subjects as a sequence of four
semester units over 2 years, Units 1 and 2 normally completed in Year 11 and Units 3 and 4
completed in Year 12, with detailed content for each unit organized under areas of study
(e.g., data analysis, probability and statistics; functions, relations and graphs; or calculus),
and topics (e.g., investigating and modelling time series, continuous random variables, or
vector calculus) as applicable.

In every subject, for each unit and the areas of study, students are intended to meet
three outcomes for senior secondary mathematics:

• develop mathematical concepts, knowledge, and skills (Outcome 1);
• apply mathematics to analyze, investigate, and model a variety of contexts and solve

practical and theoretical problems in situations that range from well-defined and
familiar to open-ended and unfamiliar (Outcome 2); and

• use technology effectively as a tool for working mathematically (Outcome 3).

Each outcome is elaborated by key knowledge and key skill statements for each
mathematics subject. For Outcome 1 these explicitly incorporate expectations for by-
hand computation, and for Outcome 3 they explicitly incorporate expectations for the use
of technology.

The study design describes the assessment for each outcome and the areas of study.
Units 1 and 2 assessments are conducted fully within the school with the VCAA providing
guidelines and advice. For Units 3 and 4, the VCAA regulates school-based assessment,
worth a total of 34% of the final student score, and the external examinations held at the
end of Unit 4 worth a total of 66% of the final score. School-based assessment is subject
to audit, and results are statistically moderated with respect to the external examinations.
The questions for each external examination are written by a centrally appointed panel of
examiners; all students do the examinations in their schools at one time; and the exami-
nation scripts are marked anonymously by centrally appointed assessors, many of whom
are experienced current teachers of the subject. Examination scores are combined with
the school assessments to create a final grade for each subject. After the examination, the
questions are made public [11] and the chief assessors for each subject provide reports on
overall student performance to assist teachers in preparing students in the future. For each
subject there are two examinations for a total of 3 hours. Multiple choice questions are
worth one mark each and the component parts of longer constructed response questions
(typically worth a total in the range of 10 to 20 marks) are generally worth one to four
marks each.

School-based assessment involves students in mathematical investigation, modelling,
or problem-solving on three extended tasks devised by teachers according to VCAA speci-
fications. These provide opportunities for students to show how they are able to use the
technology of their choice to model situations, represent problems or data, test what-if
scenarios, and do computation (numerical, graphical, statistical, symbolic). In contrast, in
the external examinations, technology is used in order to solve questions that are intended
to take only a few minutes each. This technology use is much more constrained than
the technology use by some students in school-based assessments. However, because
the examinations have a high public profile and are compulsory for the student cohort,
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it is technology use in the examinations that has been of most interest and concern to
stakeholders, and consequently that is the focus of this paper.

The three-subject senior secondary Units 3 and 4 mathematics curriculum structure has
been stable since the early 1990s. There are regular curriculum reviews that have resulted
in some changes, but the intentions of the subjects and the target audience for each remain
broadly the same. Approximately 50,000 students do the VCE examinations each year.
About 30,000 of these students complete the examinations in the elementary mathematics
subject (currently named Further Mathematics in Units 3 and 4), approximately 16,000 in
the intermediate subject (Mathematical Methods), and approximately 5,000 in the advanced
subject (Specialist Mathematics). The exact subject names have varied over time and have
not always been the same for all four units of each subject.

3. Strategic Management of Technology Change

As noted above, a major theme of mathematics teaching and assessment has been
adapting to the changes in mathematically-able technology in a way that is reasonably
accessible to all schools. There are many aspects to this, at all levels of education, involving
for example classroom teaching, suitable curriculum content, and teacher preparation.
High-stakes examinations, such as those for VCE Mathematics, play a dual role of leading
change in schools as well as adapting to it, whilst always needing to maintain high public
confidence. They also play a key role in meeting prerequisite requirements for many
university courses. In particular, the intermediate subject is a prerequisite for very many
tertiary STEM courses and others such as economics and medicine (see, for example, [12]).
Carefully considered strategic design has been essential.

Figure 1 summarizes the changes in the rules about technology in final senior sec-
ondary mathematics examinations in Victoria since the advent of personal digital technol-
ogy. For more details, see [2,13]. Figure 1 shows the technology that examiners assume
students can use as they solve the examination questions, moving over time from no
technology through scientific, graphics, to CAS capabilities. The examinations contain no
questions specifically about the technology or to explicitly test its use; rather students make
question-by-question choices to use or not use the specific functionality of technology to
answer mathematical questions. The figure also shows that at some times, technology has
been permitted rather than assumed. Some students had the permitted technology whilst
others did not. At these times, examiners took care in designing questions that students
using the new technology were not advantaged. In the late 1990s, permitting graphics
calculators was intended as a bridging measure, giving time for teachers to learn about
the new capabilities, for schools to gear up with suitable equipment, and as an equity
measure for the technology to become more affordable (for example through a second-hand
market developing). It was also important that those who did two mathematics subjects
were not required to own two calculators. Since 2011, this has been an important reason
for assuming CAS in the elementary mathematics subject. The symbolic functionality of
the CAS has limited use in the largely non-algebraic questions. Both CAS and non-CAS
graphics calculators provide the full range of other relevant functionality for this subject,
numerical, graphical, statistical, and financial aspects.

As noted above, the likely impact of CAS technology on the examinations in the ad-
vanced and intermediate level subjects was substantial enough to preclude the introduction
of CAS with the ‘permitted to assumed’ strategy used for graphics calculators. Hence,
the incorporation of CAS technology has required a three-stage process over two decades:
closely researched pilot, parallel implementation with a phased transition, then universal
implementation. From 2001, when graphics calculators were the assumed technology
for all examinations, restricted cohorts undertook a modified version of the Mathematics
Methods course assuming an approved CAS calculator or software. The separate exami-
nations in the modified subject used common questions with the standard course where
possible (around 75%). These restricted cohorts began with a strongly researched pilot in
just three schools (each using a different brand of CAS calculator) that developed into a
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clearly flagged policy-driven transition that gave schools’ time to increase teachers’ skills
and prepare students in earlier year levels for the change [3,14]. By 2009, around half of the
intermediate mathematics student cohorts were enrolled in the modified CAS-assumed
subject, supporting a judgement that the whole system could reasonably shift. Hence, CAS
became the assumed technology for all senior secondary mathematics subjects from 2010,
with a 1-year staggering for the elementary subject as previously described. This is an
instance of successful strategic design implemented over a 10-year period [5].
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3.1. A No-Technology Examination

Following consultation with teachers and universities, particularly in response to
concerns (but not convincing evidence) that students using CAS may not develop adequate
by-hand skills in algebra, from 2006 a new structure for examinations in advanced and
intermediate mathematics was adopted. No technology was permitted in the 1-hour
Examination 1 (40 marks), whilst the 2-hour Examination 2 (80 marks) assumed access to
the designated technology. This use of a no-technology examination continues. In VCAA
consultations, this model was supported by a majority of teachers, with a large minority
supporting the then status-quo of technology being assumed in both examinations, and
with a very small minority preferring no use of technology in examinations. Garner and
Pierce [15] provided an insight into the varying views that teachers and students even
in one school had on the values of mathematics with and without technology. It is likely
that without the two-component model, public confidence (including from the tertiary
sector) that students are learning important aspects of mathematics may not have been
adequately assured. At the same time, the 1:2 overall mark weighting sends a strong
signal that the curriculum recognizes that in professional use of mathematics, people have
access to enabling technology and use it as applicable. Students should be prepared for
this. Research summarized in [3] showed that there was no evidence from the common
‘no technology’ Examination 1 of 2006–2009 that students using CAS developed weaker
by-hand skills than students using graphics calculators (see also [16]).

A decade on, we asked for the views of the four expert teachers whom we consulted in
writing this paper. Consultants 1, 3, and 4 strongly supported retaining the no-technology
component and Consultant 2 stated that allowing technology in both examinations was
equally viable, providing teachers were given sufficient support. Reasons for support of the
no-technology component were variously that it promotes memory, logical thinking and
structure, mental calculation and algebra skills, and knowledge of algorithms. Consultant
1, who has been both a teacher and examiner, noted that it is possible to test understanding
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of algorithms in a technology-assumed examination, but such ‘show-that’ questions are
very time consuming. She cited Specialist Mathematics Examination 1, 2021, Question 3c as
a straightforward question that tested the procedure for finding a confidence interval but
required no technology use or detailed calculations. Students were given the information
that Pr(−1.96 < Z < 1.96) = 0.95 and Pr(−3 < Z < 3) = 0.9973 and asked (among other
things) to find an approximate confidence interval for the mean lifetime of new light
globes given that the mean of a random sample of 25 light globes was 250 weeks, with a
population standard deviation of 10 weeks. The question requires students to link the 95%
confidence interval to the 0.95 probability, to know how the Z score is derived from sample
mean and standard deviation, and to use simple algebra to manipulate the inequality to
find the confidence interval. Consultant 1 commented that in contrast, in Examination 2,
students could use the calculator to locate the confidence interval quickly, then move onto
‘something more interesting’.

Consultant 3 commented that some of his students are reluctant to use their device to
solve problems in Examination 2 (where CAS is assumed), because they feel they may not
score all available points if they do not show working. The examination general instructions
specify that “where more than 1 mark is available, appropriate working must be shown”.
Consequently, he addresses in class how to write a clear solution incorporating CAS use:
writing down the mathematics that is needed to validate the method, process, and solution,
without the use of technology syntax. This consideration had also arisen with the earlier use
of graphics calculators when, for example, doing calculations with probability distributions.
Ball and Stacey found this issue arose even in the first year of the CAS pilot and gave
suggestions as to how it could be addressed [17]. VCAA examination reports also address
this issue (see, for example, 2006, 2011, and 2021 VCE Mathematical Methods examination
2 reports in [11]). Essentially, mark allocation for constructed responses has a formulation,
computation, and interpretation structure. Boers and Jones in a very early experiment with
CAS in university-level examinations commented that underuse of CAS was more common
than overuse [18].

3.2. The Computer Based Examination (2013 to 2021)

From 2013 to 2021, the VCAA ran a trial Computer-Based Examination (CBE) for
Mathematical Methods involving several hundred students at Years 11 and 12 that chose to
use Mathematica on computers in their teaching and as the CAS technology for students.
Over the years, the number of schools varied between 10 and 20. While the curriculum
and the assessment (school-based and examinations) were the same as for the standard
cohort, the mode of delivery and response to Examination 2 differed. For the CBE trial,
Mathematica was used to develop two specially designed notebooks, one that produced the
examination, the other that ran the Mathematical Methods Examination 2 as a notebook
(.nb file). Students from both standard and CBE cohorts sat the same no-technology written
response Examination 1.

For Examination 2, students in the CBE trial responded to multiple-choice items us-
ing radio buttons, with responses automatically saved. The constructed response section
provided computation and writing cells for parts and sub-parts of questions (akin to the
‘lines for working’ on the paper-based examination). Students could also insert additional
computation and writing cells and annotate graphs as they wished. Analysis of distri-
butions of scores showed students seemed to perform similarly on computer-based and
calculator-based examination formats [19].

The CBE was a very good fit for schools that were able to teach using Mathematica as
their choice of enabling technology. In the examinations, students were able to develop their
own responses using a broader set of functionalities (text, symbolic, numerical, graphical,
etc.). The assessors were able to see the students’ formulation of the problem; the output
obtained and how it was used; and any commentary, annotations, and interpretations.
Assessors had direct evidence for the use of various functionalities of technology, and how
these have been used, rather than indirect evidence from calculator-paper examinations.
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It is interesting to note that for the standard (non-CBE) Examination 2, where students write
their constructed responses in examination booklets, assessors have regularly commented
that errors in student solutions often arise from inaccurate ‘transfer’ of CAS output to
their written working. Examples can be found in 2011, 2018, and 2021 VCE Mathematical
Methods Examination 2 reports, or 2009 and 2016 Specialist Mathematics Examination 2
reports [11].

On the other hand, the CBE examination was platform-specific and creating the ex-
aminations as notebook files was resource intensive for the VCAA. Moreover, appropriate
IT expertise was required at the school to run the digital examination securely. Over the
8 years, there was limited uptake by schools and only a small number of schools moved
from the mainstream hand-held CAS devices to the CBE. The level of enrolment was around
3% of the number of students in the cohort. Often the initiative was championed by a lead-
ing teacher in a school, and if that person left, others did not necessarily have the required
familiarity with Mathematica to continue. With limited uptake and the pressures of COVID
restrictions, the CBE program was concluded in 2021. The benefits and disadvantages of
platform-specific assessment may need to be reviewed more broadly in coming years, as
the interplay between commercial technology companies and formal school assessment
changes. At this stage, the authors are not aware of any generic platforms that enable
students to choose from a range of CAS and readily evaluate, edit, and re-evaluate automat-
ically embedded computations as part of constructed responses in an examination context.
There are moves to shift some examinations in various other subjects entirely on-line, but
those examinations are generally text-based and do not require specific computational
software for students to construct responses.

4. Teaching, Learning and Examining Mathematics with CAS

In this section, we turn to questions of technical design, especially drawing on the
varied experiences of our four consultants in their multiple roles as teachers, examiners,
school leaders, and authors. We asked the consultants how examination questions had
changed over nearly two decades of CAS use. Whilst there have been minor changes to
some of the specified content in the mathematics courses over time, the main content has
not changed and the student cohorts seem to have remained stable, so it is reasonable
to attribute most changes to adaptation to changing technology. We asked them about
changes in how they use CAS calculators or software to teach and do mathematics in class
and we asked them what, if any, changes have occurred in how their year-12 students
use CAS calculators or software to do mathematics in class. The following main themes
emerged, with general agreement across all four consultants. Examples that illustrate the
main themes are provided in the following sections.

• Examination questions have been adapted to the continuing expansion of the function-
ality of CAS calculators over time, in some part influenced by the Victorian curriculum
and assessment. Various supplementary apps have been helpful, as students use them
to streamline solving standard types of examination questions.

• Some types of examination questions have become more demanding because they
are more abstract and have greater use of parameters, and the breadth, depth, and
variation in what can be asked has increased.

• Examination questions afford an increased variety of solution approaches with CAS.
• Teachers have shifted from conceptualising CAS technology as a graphics calculator

that also does algebra, to a tool with an integrated suite of functionalities and a very
useful display interface.

• Students and teachers have increased visualisation through the use of sliders, dynamic
displays, animations, and simulations to show or explore behaviour. CAS is often used
by students to get a ‘preliminary idea/insight/explore the territory’ before proceeding
with further work.

• Teachers put more focus on efficiency and effectiveness in problem-solving approaches,
so students will be more strategic about when and how to use the technology (think
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first, then do). Students give careful consideration as to how marks may be allocated
as partial credit for constructed responses in examinations.

4.1. Adapting Questions to Expanded Functionality

The consultants all remarked on the constantly expanding functionality of the devices.
CAS can now give solutions to a greater range of question types and algebraic structures.
As discussed below, this has been a matter for ongoing monitoring and consideration by
examiners as they design questions. Additionally, as Consultant 2 noted,

“students have also been making increasing use of pre-prepared files on their device for
use in tests and exams. Many students go into exams with files that serve as organised
templates for carrying out the necessary computations for standard questions likely to
be on the examination. Some students have additional pre-prepared files and programs
for solving particular types of questions. For TI-Nspire users for example, the under-
appreciated ‘Notes’ application is ideal for this purpose.”

Over two decades, the technical design of examination questions has been under
constant review, to keep up with changes to functionality. The design of examination ques-
tions is motivated by three desires: to test mathematically important content, to encourage
students to learn mathematics deeply, and to test equitably considering the several brands
and models of devices that students can use. The policy in Victoria has always been to allow
schools a choice from approved devices or software, rather than prescribing one brand or
model that has to be used, but the capabilities of some of the functionalities of each vary,
leapfrogging each other over time. In the early years of the initiative, the examination paper
was vetted by experts on each approved technology to check that there was no overall
advantage to users of any one technology. Consultant 4 expressed a strong conviction that
this aspect of equity extends beyond examination questions to having all models of devices
well represented in textbooks and teacher support materials, so that all students can be
taught about the range of capabilities of their own device.

The consultants all commented that the types of questions in the examinations have
remained broadly the same over two decades (as expected because most of the content
of the subjects has not undergone major changes), but also that there are important dif-
ferences. Before CAS, examinations could include only relatively simple functions with
well-behaved coefficients suitable for by-hand calculation under the time restrictions of
an examination. Now a wider range of functions and combinations of functions are used,
and students can be asked to carry out a process (e.g., finding an area) for which they have
not been taught a specific by-hand technique (e.g., integration by parts). As predicted in
the preliminary studies in the 1990s ([4,20]), there is greater use of parameters replacing
numerical coefficients and questions focussing on the effect of varying the values of the
parameters. More questions require an expression as an answer, rather than a number. For
example, multiple-choice Question 17 of the 2019 Mathematics Methods Examination 2
asked students to select the algebraic expression giving the probability of drawing two
marbles of the same colour from a box of n marbles, of which k are red and the rest are green.
The marks (and implicitly the time) allocated to a specific process (e.g., solving a matrix
equation) have significantly reduced. As well as considering the hard-wired functionality in
each CAS device, examiners have had to be aware of the ever-changing additional apps that
students can upload to their devices (or perhaps only to certain brands or models). Some
questions remaining may have limited mathematical value in the technology-assumed
examination. For example, Consultant 3 cited a multiple-choice question (Mathematical
Methods Examination 2, 2019) where students had to identify an expression equal to logx(y)
+ logz(y). It is possible (although slow) to do this by testing the two or three most likely ex-
pressions, asking for the truth value of the equality. Consultant 3 commented that questions
like this now have limited mathematical purpose and have lost some of the opportunity to
show the mathematical elegance and prowess that can be tested when CAS is not permitted
(e.g., in Examination 1). Consultant 1, however, disagrees, observing that this question still
has significant value. Students who are fluent in changing the base of logarithms will find
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the answer much quicker than others. This is one example of the many technical design
decisions that confront those creating the examination questions.

Consultant 3 favorably identified that the greatest change that occurred in the Mathe-
matics Methods examinations due to CAS use is that there are more questions that have a
‘problem-solving’ or an ‘explorative’ structure (e.g., 2016 MM Exam 2 Q4 and 2017 MM
Exam 2 Q4). He noted that

“the inviting aspect of these questions is that they require a complete set-up of the question
from development of the equation to solving via a CAS, providing a very efficient means
for a solution”.

These questions require time to comprehend the solution pathway while also encour-
aging CAS use (slider options in some cases) to get a sense of the question and then a
solution where few marks are allocated to questions. Examination papers a decade or
more ago did not exhibit these. Consultant 3 also observed that the techniques of calculus
now receive much less emphasis and feels that the mathematics behind the derivative
is being lost. On the other hand, many questions now involve a deeper investigation of
derivative-related mathematics; for example, questions about tangents and normals.

4.2. Increased Question Demand with CAS Access Assumed

Each of the consultants commented that the overall level of demand across multiple-
choice and constructed response questions had increased with CAS assumed for Examina-
tion 2, due to the increased use of parameters and general forms, including the behavior of
families of functions, their key features, properties and algebraic relationships involving
these, and the capacity to handle a broader range of mathematical processes symbolically.

There are typically four or five constructed response questions in the Mathematical
Methods Examination 2. Typically, there will be one or two questions (with sub-parts)
involving modelling a real-world situation with a family of functions, one or two questions
about a family of functions in a theoretical context, and a question involving modelling with
the distributions of discrete and continuous random variables. In particular, the theoretical
context questions, involving gradients and tangents, areas of regions, and intervals over
which properties hold or not, were identified by the four consultants as being of increased
demand since CAS has been assumed.

The 20 multiple-choice questions of Mathematical Methods Examination 2 have also
evolved to involve more general and conceptual questions, with increased use of parameters
in question formulation and/or answer alternatives and the use of general or unspecified
functions. The following three multiple-choice questions from 2004, 2011 and 2012 provide
an illustration of how the level of demand in a particular type of multiple-choice question
has increased, as measured by percent of students correct. These questions are all based on
a polynomial function of low degree, their graphs, intercepts, and stationary points. All the
questions come from near the end of the multiple-choice section, so they could be expected
to be reasonably difficult.

Question 18, from the 2004 Mathematical Methods Examination 1, shown in Figure 2,
was answered correctly by 85% of students. It requires the identification of a feature of the
graph of a function, at a particular location, with a completely specified rule. While it can
be answered without any detailed calculation by drawing on a broad knowledge of the
nature of graphs of this kind of function, it can also be readily answered identifying the
relevant feature on a graph drawn by the graphics calculator.

For the CAS assumed examination in 2011, the most similar question (also numbered
Question 18 so in a similar position in the examination) was answered correctly by only
52% of students. It presented an equation with an undetermined parameter (the constant
term) as well as the variable, with no graph, and required finding an interval solution in
terms of the parameter. Figure 3 shows the question, followed by CAS software output
for solving the given equation, and then a screenshot of a graphics slider image showing
the function for w = −7. A significant number of students entered the equation and tried
to solve for x algebraically on CAS, likely as an automatic go-to strategy given the word
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‘solution’. The hand-held TI and CASIO devices of the era got ‘stuck’, while CAS software
such as Mathematica returned a complicated-looking explicit formula involving complex
numbers. Of course, this was not useful for students of this intermediate level subject.
Conceptually, given that the coefficient of x3 is positive, once it is identified that the function
has turning points, there is only one correct form of inequality. Calculus could be used to
identify the location of the turning points, with corresponding symbolic analysis carried
out by hand or using CAS to define the function and carry out and interpret the relevant
computations. Alternatively, a graphical approach could be taken. This was the first year
that assessors and teachers noted some students tackled the problem by using a slider to
animate the graph across the range for values for the parameter. Since then, sliders have
become increasingly often used.
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Question 16, from 2012 (see Figure 4), took this type of question one step further.
It was answered correctly by only 34% of students. It specified only the general type of the
function, information about the local maximum and local minimum with parameters for
the constant term, no graph, and an interval solution required. The underlying conceptual
analysis is the same, and it seems to be addressed very directly in the question, but explicit
computational approaches such as those used in the previous questions were not available.
The consultants all noted changes like these and expressed varying degrees of concern that
the increased demand of questions requires careful consideration so that the intermediate
subject does not become less suitable for the intended student cohort.

4.3. Increase in Variety of Approaches and Focus on Efficiency for Examinations
4.3.1. Increased Range of Methods Leading to a Deliberate Choice of Efficient Solutions

It is a long-standing observation that there is an ‘explosion of methods’ for solving
problems when technology with multiple representations is available. For example, to
find the maximum value of a function, a student might make a table of values, graph
the function, and trace along it until the maximum value is reached; use a built-in app
to find the maximum value; find where the derivative is zero by hand or by CAS and
decide which of these gives the maximum value; or even use an algebraic form that
reveals the maximum value through its structure. Further variation of the method arises
from the choice to do each step with or without technology. There was an initial strong
tendency for teachers to encourage students to use CAS like a calculator—providing step-
by-step assistance to essentially unchanged by-hand work, or just to check answers [3,21].
This avoids an explosion of methods. On the other hand, other teachers reported that they
almost immediately found great success when students shared various methods, with rich
class discussion forging connections between previously isolated topics [3,22].

Consultant 3 observed that there is a strong emphasis given in class to choosing the
most efficient CAS methods, especially to save as much time as possible in the examinations.
To counteract the sense that CAS can do everything, he sees a growing need to encourage
students to look for the best pathway to a solution (often best means the quickest), even
if this does not involve CAS, and to look for alternative paths in case a preferred path
becomes blocked. He cited a recent examination question where a set of simultaneous
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equations could be solved by hand quite simply through substitution. However, because of
the algebraic form, the calculator solution (chosen by many students) sometimes took a
very long time, and on some devices, it did not produce an output.
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Some techniques to save time on examinations seem to have little intrinsic value out-
side of the examination room, but others are mathematically valuable. One mathematically
valuable technique is defining functions, which supports an orientation to see a function as
an object in its own right, not just as the rule that defines it. For example, in Question 4 in
the Mathematical Methods Examination 2, 2021, a probability distribution function was
given as a hybrid (piecewise defined) function, and students were asked to find the median
and standard deviation. Students who separated the two rules of the hybrid function were
less successful than those who began by defining f (x). From a pragmatic point of view,
defining functions saves time and the students who did this could then spend more time
on later parts of the question. From an epistemological point of view, there is a chance that
it encourages students to see functions as mathematical objects. Screen shots of the CAS
calculations are shown in Figure 5.
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Another mathematically beneficial side effect of using CAS is that students must
become more versatile in recognizing mathematical expressions in a variety of formats.
Every computer algebra system has a slightly different protocol for how expressions are
presented, and these will be different sometimes to the standard output from by-hand
algorithms, or other brands of CAS devices. Consultant 4 noted this as a positive effect
on students, even though many students find it initially disconcerting. A simple example
is in Figure 6. Students learning by-hand algebraic division will calculate the first terms
in the quotient as 3x + 2 with one fraction term, whereas the output from this CAS gives
four terms in a different order: disconcerting initially for some students, but something they
learn to manage. The alternatives offered in multiple-choice examination questions present
the correct answer in ‘conventional’ mathematical forms (conventional at least in this
educational system), which may differ from the output format of commonly used devices.
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4.3.2. Changing Curriculum Content

The availability of technology has also resulted in a change to some of the methods
taught to students, as well as the approaches they use to solve examination questions. Tech-
nology often makes the more straightforward techniques viable. Financial mathematics in
the elementary mathematics study design is now explicitly linked with recursion. Consul-
tant 1, for example, explained how she uses recursion functionality to give students at that
level a better feel for concepts such as simple and compound interest and the difference
between them (see Figure 7). She has less focus on the formulas and encourages these
students to use recursion for relevant examination questions.
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4.4. CAS Technology as an Integrated Suite of Functionalities with a Display Interface
4.4.1. Increased Use for Visualiation by Students and Teachers

Scientific calculators assist with numerical computation only. However, from the
earliest experiments with graphics calculators, teachers appreciated the potential of tech-
nology as a dynamic mathematics tool for visualization [22]. All the consultants noted that
technology (both functionality and display) has improved over time and consequently the
use of visualization has expanded. This expansion is by students exploring and solving
problems, and also by teachers when developing students’ understanding of concepts.
Sliders have been especially useful. Of course, not all teachers use this. Consultant 4, for
example, commented that some teachers still choose to teach functions with the algebra
and the graphing quite separate, perhaps especially if they do not have strong technology
skills. Consultant 3 gave examples of

“considering the effect of changing the value of a parameter in an exam question, inves-
tigating specific and general cases in a modelling task or gaining a sound conceptual
understating of the meaning of the average value of a function by manipulating an
interactive file prepared by the teacher”.

Figure 8 shows two examples used by Consultant 1 to get students to think and
to become more engaged in the learning process. She commented that good classroom
discussion is supported by the slider visualization on the top row, when she asks questions
such as what changes when a changes, and why are there two stationary points when a
is negative and none when a is positive. The second row shows two images in a series
used to teach that; when the sample size is large, the sample proportion from a binomial
distribution is approximately normal. Students can observe and discuss the differences
in the distribution of the sample proportion starting with the left-hand screen showing
data from 100 samples of size 4 and gradually increasing to end at the right-hand screen
showing 1000 samples of size 1000.
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Students were also reported using visualization to assist in solving problems, espe-
cially in the initial stages of understanding the problem. This is especially so for the tasks
that are set in the school-based assessments, as these are more substantial than examination
questions. However, Consultant 1 discussed a very difficult problem on a recent exami-
nation (only 2% of students received full marks). Using a slider to visualize the situation
was a very helpful first step. She comments that it would be helpful if more students used
such visualizations to support developing constructed responses in future examinations.
Figure 9 gives the question statement and shows the relevant regions for three different
values of a using the slider. For small values of a, the area can be found by integrating on the
interval [0, a]. However, when a > 1, the area needs to be found in two parts. The calculator
screen insert shows a composition of CAS commands first establishing that the area as a
function of its endpoint at x = a, creating the equation that puts the integral equal to 1

3 , and
then solving this equation for a as a single process. Many students would work this out in
steps rather than by one composite command.
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4.4.2. Improved Integrated Functionality

The consultants commented on how improved technology in recent years has changed
their teaching. They especially liked the greatly improved display capabilities for use in
class, and the easy compatibility between applications when making electronic notes. CAS
software can create sophisticated CAS documents (notebooks) where text, graphics, and
symbolic material can be readily integrated, and worked on by students. CAS software
has been evolving these features for some time, while CAS calculators have developed
complementary emulators and computer links. These documents can be readily shared,
constructed to the style of the user, and employed as presentation tools. So rather than
the CAS being a computational device that is separate from written notes, it has become
the center of an integrated working environment. Presentation hardware and software
has enabled mathematical working to be shared and displayed for all to see, promoting a
common discourse. Consultant 4, for example, commented:

“I have my emulator projected onto the screen as part of my teaching using One-Note. I
copy a snipped CAS screen onto the work I’m doing at the time so they can look back [at
the notes]”.

Consultant 1 reported initial difficulties during the COVID19 pandemic, when schools
used remote learning until she mastered sharing CAS and notes screens within the learning
management system. However, the value of easily recording good electronic notes from
lessons was boosted in this time. Two decades ago, CAS was principally thought of as a
tool that could do algebra and calculus; it is now seen as general tool for both teachers and
students to do mathematics.

5. Discussion and Conclusions

The section above has reported the main themes in the consultants’ responses, with
discussion and additional commentary and examples from the authors on specific points.
Taking a wider perspective on the responses of the consultants, we see that they were in
broad agreement with each other about the changes, challenges, and advantages that the
introduction of CAS has brought to senior mathematics. The lists of changes that they
prepared individually had considerable overlap, with most of the major points made by
each consultant also being made by one or two others. This gives us increased confidence
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that similar changes may have been noticed by a wide group of teachers, and that they do
indeed arise from real changes in the examination questions and capabilities in technology
rather than discourse in the community changing over time. A comprehensive survey is
now warranted. When reviewing this article, the consultants (and authors) almost always
agreed with the comments attributed to others. Opinions seemed to differ most on judge-
ments of mathematical value at the technical level and about what mathematical practises
encourage the best learning. We see this as productive tension among professionals.

A second general observation of the consultants’ responses is that they have all steadily
adapted to the changing technological environment in schools, both the whole-school
systems and specifically with CAS devices. In Figure 1, we grouped the 13 years from
2010 to 2022 in one ‘CAS assumed’ category. However, whilst there has been little change
to strategic and tactical design, the consultants’ responses point to ongoing adjustments to
technical design in teaching and assessment.

This paper has outlined a long-term initiative introducing mathematically-able tech-
nology into senior secondary school mathematics. Although the tool underpinning the
change has been labelled as CAS, it is evident that ‘computer algebra’ is only one of the
capabilities of the technology that have been transformational to teaching and learning.
Other powerful capabilities are increased visualization for teaching and for solving prob-
lems, and multiple representations (algebraic, graphical, and numeric) supporting a variety
of approaches for explaining concepts and for solving problems. An increasing range of
‘apps’, for example for statistics and financial mathematics, have changed the problems that
students can investigate. What we call “CAS” is, in the terminology of Stacey and Wiliam,
acting as both a computational infrastructure and a communications infrastructure [23].

The paper has focused on strategic and technical design of the initiative. At the
strategic level, the success of the initiative was supported by a bi-partisan forward-looking
political environment; a positive policy framework within the VCAA; strong links with
research; and long-term practical support from across the Victorian mathematics community
in schools and universities, professional associations, and technology companies. The work
of the four consultants for this paper exemplifies these qualities. Whilst nearly all members
of the Victorian mathematics community accepted that students should be well prepared for
a world where mathematics is typically done in conjunction with technology, the initiative
nevertheless challenged mathematical values and long-standing curriculum practices of
both enthusiasts and skeptics, so it was essential to find a careful way forward. The strategic
design of the initiative was a multi-step evolution, enabling modifications large and small
to be implemented over time to achieve recognition of, and a balance between, previous
and emerging values. Burkhardt drew attention to several features of strategic design
such as incremental change, balancing ambition and realism, and the power of high-stakes
assessment that were features of this initiative [5].

At the technical design level, changes in the examination questions provide a good
window into the different mathematics experiences that students now have. The examples
provided by the four consultants give an insight into the changes that teachers believe are
most significant, for both teaching and learning. There seems to be good evidence that,
especially with the intermediate subject, there is less emphasis on routine computation
(as expected) and that there may be more emphasis on setting up a real-world problem
mathematically with a technology-supported solution following (as hoped). It seems
that many questions have become more general and abstract (for example asking about
properties of functions that are unspecified or include parameters), and this is of concern to
some teachers who feel the capacities of the student cohort are possibly being stretched
too far. We recognize the tentative nature of the findings about change in this paper,
because they arise from individual views of only six people, albeit very well informed.
We consider that the conclusions provide important hypotheses that can be investigated
with quantitative studies in the future.

Over the two decades, it has been a constant challenge to teachers and examiners
to keep up with the changes to CAS technology. Although we call this a ‘mature imple-
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mentation’ of the CAS initiative, it is likely that the pace of change in the mathematical
capability, usability, and integration of technology will not slow down. The challenge of
continuing to design; develop; and implement studies, subjects, and assessments that pre-
pare students to use their mathematics beyond school in a rapidly changing technological
environment remains.
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