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Abstract: The empirical likelihood ratio test (ELRT) statistic is constructed for testing the homogeneity
of several nonparametric populations in the presence of some auxiliary information. It is shown—
under some regularity conditions and under the null hypothesis that all distribution functions of the
populations are equal—that the asymptotic distribution of the ELRT is a chi-squared distribution.
The proposed ELRT could be more powerful than the Kruskal–Wallis test, as extra information can
be efficiently employed by ELRT. The advantage of ELRT over T&P (2006) is that researchers do
not need to select approximately normal statistics for inter-group comparisons, and ELRT is more
suitable for the multi-population consistency test with a small sample size.
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1. Introduction

Suppose that there are k (k ≥ 2) populations, and the distribution function of the
i-th population is F(x; θi)(1 ≤ i ≤ k), where θi ∈ A ⊆ Rp, θi are parameter vectors
(1 ≤ i ≤ k), and A is the parameter space. In other words, the k populations share the same
type of distribution but may have different structures as θi (1 ≤ i ≤ k) varies. Consider
the hypothesis

H0 : θ1 = θ2 = · · · = θk. (1)

This test for homogeneity arises, for example, in the comparison of a number of
different treatments, processes, varieties, or locations, when one wishes to test whether
these differences have any effect on an outcome X, where X can be a scalar or a vector.

If F is the normal distribution function, the standard analysis of variance (ANOVA)
for testing the above hypothesis has been widely used by a number of investigators.
For example, Dou [1] employed this method in a parametric study of a developed statistical
model. However, the standard ANOVA is not suitable for other distributions.

Due to the complexity of the real world, the form of F may not be known in many
applications. In this nonparametric setting, the Kruskal–Wallis test (KWT) provides tests
of the null hypothesis that independent samples from two or more groups come from
identical populations. Refer to Lehmann [2] for the theory and applications of KWT.

Here, we provide a brief definition for KWT and its limiting distributions. First,
the data of all samples in a single series are arranged in an ascending order, and a rank is
assigned to each data in the ascending order too. In the case of a repeated value, or a tie,
assign ranks to them by averaging their rank position.For example, if the sample number is
even, the rank of the median is the average rank of the two numbers before and after it.
The KWT statistics for the k independent samples, each of size ni, is
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where Rij is the rank (from all samples pooled) of the j-th observation in the i-th sample.
The null hypothesis of this test is that all k distribution functions are equal. It is shown,
under the null hypothesis and some regularity conditions, that

T d→ χ2
k−1.

As mentioned above, when the form of the F may not be known in many applications.
KWT can be used to perform consistency tests for multiple populations. As KWT constructs
statistics based on sample rank, its test efficacy is good when the sample size is large.
However, when the sample size is small, the statistics constructed based on sample rank
carry much less sample information. In other words, KWT is obviously going to be a lot
worse. So we introduce the empirical likelihood method; here, we provide a brief definition
for it.

The empirical likelihood method as a nonparametric technique for statistical inference
in the nonparametric setting was introduced by Owen [3,4] and has many advantages over
other nonparametric test methods such as the normal-approximation-based method and
the bootstrap method, as put forward by Hall and La Scala [5] and Hall [6]. The Wilks’
theorem, Bartlett correction and the ability of using auxiliary information are three striking
properties of the empirical likelihood methods. Chen and Qin [7] proved that the empirical
likelihood method can be seamlessly applied to finite population estimation problems,
and more accurate statistical inference can be obtained through the effective use of auxiliary
information. Zhang [8] developed a new class of M function estimators and quantile
estimators with some auxiliary information, using the empirical likelihood technique.
A natural question is whether and how an empirical likelihood method can efficiently
use the auxiliary information to decide whether several samples should be regarded as
those that come from the same population. In this paper, an empirical likelihood ratio
test (ELRT) statistics is constructed for testing the homogeneity of several nonparametric
populations in the presence of some auxiliary information. Since the auxiliary information
is not employed in the KWT method, KWT may be less powerful than ELRT in the field
of population distribution consistency. A comprehensive comparison between ELRT and
KWT was conducted and is presented in Section 3.

We note that there exist a few other approaches which allow to incorporate auxil-
iary information in statistics testing. For example, the method based on the auxiliary
information in a form of vectors of unbiased estimates in Tarima and Pavlov [9] (T&P
(2006)) may be used in the context of this article. The asymptotic properties of the above
work are analyzed by Albertus [10]. Tarima and Pavlov used additional information to
construct parameter estimation statistics, and completed parameter estimation by adding
data sources. Therefore, we will compare ELRT and T&P (2006) separately in the numerical
simulation part.

The form of F is unknown in the present study. However, it is assumed that some
auxiliary information about the distribution function F(x; θ) is available in the sense that
there exist r(r > p) known functions g1(x; θ), g2(x; θ), · · · , gr(x, θ) such that

E{g(X; θ)} = 0, (2)

where X ∼ F(x; θ) and g(x; θ) = (g1(x; θ), g2(x; θ), · · · , gr(x, θ))τ is an r-dimensional vector.



Mathematics 2022, 10, 2341 3 of 12

Equation (2) defines a group of estimating equations. Those equations are widely
applicable and particularly powerful when the data model is not specified by a full para-
metric likelihood function, as elaborated by Hansen [11] and Godambe and Heyde [12]
among many others. Qin and Lawless [13] showed that an empirical likelihood approach
produces a semiparametric efficient parameter estimate. In this study, r > p is required.
Excellent explanations related to this requirement are given by Qin and Lawless [13] and
Zhang [8]. More related results of statistical inference using the estimating equations can
be found in Wang and Chen [14] and Zhou et al. [15], among others.

This assumption (2) is natural in practice; as in most commonly used distribution
families, the distribution is usually determined by some of its moments, such as the mean,
variance, skewness, kurtosis and so on. For example, if X is the amount of a type of
grains and one suspects that there could be some differences in the amount of the grains,
among several populations, caused by the amount of fertilizer, we may set θ(1) = EX and
g1(x; θ(1)) = x− θ(1). On the other hand, if one suspects that the use of the fertilizer may
not only cause the change of amount of grains but also the change of the variance of X,
then we may set θ(1) = EX, θ(2) = EX2, g1(x; θ) = x− θ(1) and g2(x; θ) = X2 − θ(2), where
θ = (θ(1), θ(2))

′. These could be initially assessed by comparing the histograms of the
data sets of populations which are under consideration. In addition to the above (partial)
information, we may know some extra information. For example, we may know some
moments of X or may know that the distribution of X is symmetric about some points.

Based on (2), we will construct an empirical likelihood ratio test (ELRT) to test H0. It
is shown that the limiting distribution of the ELRT under H0 is χ2

(r−p)(k−1), and thus the

testing method for H0 is ready to use, where χ2
(r−p)(k−1) is the chi-squared random variable

with (r− p)(k− 1) degrees of freedom.
The rest of the paper is organized as follows. The main results of this study are

presented in Section 2. Results of a simulation study on the finite sample performance of
the ELRT are reported in Section 3. We conclude and give some remarks on our future
work in Section 4. Finally, the proof of the main results is presented in Section 5.

2. Main Results

For 1 ≤ i ≤ k, suppose that data Xij(j = 1, 2, · · · , ni) are independently distributed
as F(x; θi) (unknown) and that all Xij(j = 1, 2, · · · , ni; i = 1, 2, · · · , k) are independent. Let
n = ∑k

i=1 ni, θi ∈ Θ ⊂ Rp and Θ is the parameter space of θ and an open set of Rp. Let

B = {pij, j = 1, 2, · · · , ni; i = 1, 2, · · · , k|pij ≥ 0, ∑
i,j

pij = 1, ∑
i,j

pijg(Xij; θ) = 0},

Bi = {qij, j = 1, 2, · · · , ni|qij ≥ 0, ∑
j

qij = 1, ∑
j

qijg(Xij; θ) = 0}, 1 ≤ i ≤ k.

Here, pij is the probability mass, which represents the probability that the random
variable g(X, θ) values g(Xij, θ), both of which are non-negative, and the sum is 1. Simi-
larly, qij represents the probability that the random variable g(X, θ) values g(Xij, θ) when
1 ≤ i ≤ k.

Applying the method proposed by Qin and Lawless [13], the ELRT for testing H0 can
be defined as

λn =
supθ∈Θ sup{pij}∈B ∏k

i=1 ∏ni
j=1(npij)

∏i

{
supθ∈Θ sup{qij}∈Bi

∏ni
j=1(niqij)

} . (3)

The ELRT rejects H0 for large values of −2 log λn.
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For every 1 ≤ i ≤ k, assume that 0 is in the convex hull of {g(Xij; θ), 1 ≤ j ≤ ni}.
Then, according to the Lagrange multiplier method, one can obtain

sup
{pij}∈B

k

∏
i=1

ni

∏
j=1

(npij) = ∏
i,j
{1 + t′(θ)g(Xij; θ)}−1,

where t(θ) is the solution of the equation

1
n ∑

i,j

g(Xij; θ)

1 + t′(θ)g(Xij; θ)
= 0. (4)

Similarly, for 1 ≤ i ≤ k,

sup
{qij}∈Bi

ni

∏
j=1

(niqij) = ∏
j
{1 + t′i(θ)g(Xij; θ)}−1,

where ti(θ) is the solution of the equation

1
ni

∑
j

g(Xij; θ)

1 + t′i(θ)g(Xij; θ)
= 0. (5)

Hence,

λn =
supθ∈Θ ∏i,j{1 + t′(θ)g(Xij; θ)}−1

∏i

{
supθ∈Θ ∏j{1 + t′i(θ)g(Xij; θ)}−1

} . (6)

The log-empirical likelihood function for data Xij(j = 1, 2, · · · , ni) is therefore de-
fined by

`n(θ) =
k

∑
i=1

ni

∑
j=1

log{1 + t′(θ)g(Xij; θ)}−1. (7)

Suppose that there is a θ̂n that maximizes `n(θ), then the θ̂n is called the maximum
empirical likelihood estimator (MELE) of θ. Suppose that, in addition, `n(θ) is differentiable
in θ, then θ̂n will be a solution of the empirical likelihood equation

∂

∂θ
`n(θ) =

(
∂

∂θv
`n(θ)

)
p×1

= ∑
i,j

1
1 + t′(θ)g(Xij; θ)

(
∂gu(Xij; θ)

∂θv

)′
t(θ) = 0, (8)

where
∂gu(Xij ;θ)

∂θv
is the (u, v)-element of the r× p matrix

(
∂gu(Xij ;θ)

∂θv

)
.

Similarly, for 1 ≤ i ≤ k, the log-empirical likelihood function for Xij(j = 1, 2, · · · , ni)
is defined by

`ni(θ) =
ni

∑
j=1

log{1 + t′i(θ)g(Xij; θ)}−1. (9)

The MELE of θ under the i-th sample is denoted as θ̂ni, which is a solution of the
empirical likelihood equations

∂

∂θ
`ni(θ) = ∑

j

1
1 + t′i(θ)g(Xij; θ)

(
∂gu(Xij; θ)

∂θv

)′
ti(θ) = 0. (10)



Mathematics 2022, 10, 2341 5 of 12

We assume that all θ̂n and θ̂ni are consistent estimators of θ as min1≤i≤k ni → ∞. Then
the λn can be rewritten as

λn =
∏i,j{1 + t′(θ̂n)g(Xij; θ̂n)}−1

∏i

{
∏j{1 + t′i(θ̂ni)g(Xij; θ̂ni)}−1

} . (11)

Let X be a population with a distribution F(x; θ), θ0 be the true value of θ, and ||M||
be the L2-norm of a matrix M. To obtain the asymptotic distribution of λn, we need some
regularity conditions as follows Qin and Lawless [13] (pp. 305–306):

(A) E{g(X; θ0)g′(X; θ0)} is positive definite, ∂g(X; θ)/∂θ is continuous in a neighbor-
hood of θ0, ||∂g(x; θ)/∂θ|| and ||g(x; θ)||3 are bounded by a function G(x) in this neighbor-
hood, and the rank of E{g(X; θ0)g′(X; θ0)} is p, where E{G(X)} < ∞.

(B) ∂2g(x; θ)/∂θ∂θ′ is continuous in θ in a neighborhood of θ0 and ||∂2g(x; θ)/∂θ∂θ′||
is bounded by a function G(x) in this neighborhood, where E{G(X)} < ∞.

The main results of this study are presented as follows.

Theorem 1. Suppose assumptions (A) and (B) are satisfied, then, under H0, as min1≤i≤k ni → ∞,
we have

− 2 log λn
d→ χ2

(r−p)(k−1), (12)

where χ2
(r−p)(k−1) is the chi-squared random variable with (r− p)(k− 1) degrees of freedom.

Remark 1. If we use λn in Equation (11) in stead of Equation (6) as the original definition, where
θ̂n and θ̂ni are the roots of related likelihood equations, then Theorem 1 still holds true. This can be
seen from the proof of Theorem 1. In other words, θ̂n and θ̂ni do not need to be the MELEs to have
the results of Theorem 1.

To sum up, we constructed an ELRT statistic for testing the homogeneity of several
nonparametric populations in the presence of some auxiliary information when the pop-
ulation distribution is unknown, and proved the asymptotic distribution of ELRT as a
chi-square distribution under some regularity conditions when the null hypothesis is true.
Next we will begin the numerical simulation. In this section, we will calculate the rejection
rates of ELRT and compared with those of the Kruskal–Wallis test under several alternatives
and compare the powers of them.

3. Simulation Results

Several commonly used distribution families were used in our simulations. The
collective distribution and related parameter information are shown in Table 1.

Table 1. Distribution families investigated in simulations.

Density
Function

Distribution
Name Notation Parameter

Space Value

px(1− p)1−x Bernoulli(p) b(p) (0, 1) x = 0, 1
λx

x! e−λ Poisson(λ) P(λ) (0, ∞) x = 0, 1, · · ·
1
θ e−x/θ Exponential(θ) E(θ) (0, ∞) (0, ∞)

In this study, only three populations were compared. In the simulations, it was
supposed that we only know the means of the populations. On the one hand, under the
combination of sample size, we took the true value of the distribution under the null
hypothesis to generate three distribution populations, and calculated the value of−2 log λn.
The simulation was repeated 5000 times to obtain 5000 corresponding −2 log λn values.
Then, the quantiles of−2 log λn samples obtained were compared with the quantiles of the
Chi-square distribution in Theorem 1. Finally, the Q-Q diagram of ELRT was made as well
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as the Q-Q diagram of KWT under the same conditions (Figures 1–6). Here the abscissa
is the theoretical quantile value, and the ordinate is the quantile value of the distribution
population. It can be seen from Figures 1–6 that when the null hypothesis is true, the Q-Q
diagrams of ERLT and KWT can prove that the asymptotic distribution of the test statistics
given in this chapter obeys the Chi-square distribution when the null hypothesis is true.

At the same time, the simulated rejection rates of ELRT and KWT under several
alternatives were compared using 5000 Monte Carlo trials with various sample sizes. It
should be noted here that the rejection rate is calculated as follows:

reject.rate.KWT = sum(reslt.KWT > quantl.KWT)/m

where the reslt. KWT is calculated from the samples by KWT statistics, and quantl. KWT is
calculated from the samples under the alternatives by Chi-square distribution, and m is the
number of samples. The significant level was always set as 0.05 in the simulations. Results
of these comparisons were reported in Table 2. In addition, we simulated the rejection
rates of KWT and ELRT under the original hypothesis, and the results are shown in Table 3.
From these results, it can be seen that the simulated powers are quite good for both tests,
even for moderate sample sizes with better performance, as sample sizes increase and ELRT
performs better than KWT.

On the other hand, we consider that T&P (2006) also performs parameter estimation
research based on additional information, so we will separately compare the ELRT proposed
by T&P (2006) in this paper. The results are shown in Table 4. We can see some interesting
results from the comparison results. For example, T&P (2006) is more dependent on the
normal sample, that is to say, when the comparison sample is biased to the normal sample,
the test efficacy of T&P (2006) is very effective; when deviating from the normal condition,
T&P (2006) showed poor test efficacy compared with ELRT. In other words, the advantage
of ELRT over T&P (2006) is that researchers do not need to select approximately normal
statistics for inter-group comparisons. At the same time, from the perspective of the
sample size, ELRT is more suitable for the multi-population consistency test with a small
sample size.
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Figure 1. p0 = 0.25, the sample size is (30,30,40), the Q-Q plots of ELRT and KWT for the overall
comparison of the 3 Bernoulli distributions.
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Figure 2. λ0 = 1, the sample size is (30,30,40), the Q-Q plots of ELRT and KWT for the overall
comparison of the 3 Poisson distributions.
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Figure 3. θ0 = 1, the sample size is (30,30,40), the Q-Q plots of ELRT and KWT for the overall
comparison of the 3 exponential distributions.
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Figure 4. p0 = 0.25, the sample size is (110,110,120), the Q-Q plots of ELRT and KWT for the overall
comparison of the 3 Bernoulli distributions.
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Figure 5. λ0 = 1, the sample size is (110,110,120), the Q-Q plots of ELRT and KWT for the overall
comparison of the 3 Poisson distributions.
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Figure 6. θ0 = 1, the sample size is (110,110,120), the Q-Q plots of ELRT and KWT for the overall
comparison of the 3 exponential distributions.

Table 2. Rejection rates of ELRT and KWT under sample sizes (30, 30, 40) and (110, 110, 120) and
different alternatives indicated in terms of parameters.

(30, 30, 40) (110, 110, 120)

Distribution Alternative Hypothesis
Combination ELRT KWT ELRT KWT

b(p) (0.1, 0.3, 0.5) 0.8303 0.8154 0.9376 0.8952
(0.3, 0.3, 0.5) 0.8210 0.8103 0.9223 0.9109

P(λ) (0.1, 0.3, 0.4) 0.7756 0.7301 0.9012 0.8950
(0.2, 0.2, 0.4) 0.8020 0.7850 0.9051 0.8700

E(θ) (0.2, 0.3, 0.5) 0.8425 0.7866 0.9133 0.8806
(0.2, 0.2, 0.3) 0.8644 0.8157 0.9256 0.9102

Table 3. Rejection rates ELRT and KWT under sample sizes (30, 30, 40) and (110, 110, 120) and
corresponding null hypothesis.

(30, 30, 40) (110, 110, 120)

Distribution Alternative Hypothesis
Combination ELRT KWT ELRT KWT

b(p), p0 = 0.25 (0.25, 0.25, 0.25) 0.0490 0.0511 0.0510 0.0505
P(λ), λ0 = 1 (1, 1, 1) 0.0424 0.0455 0.0490 0.0510
E(θ), θ0 = 1 (1, 1, 1) 0.0415 0.0422 0.0480 0.0498
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Table 4. Rejection rates ELRT and T&P (2006) under sample sizes (30, 30, 40) and (110, 110, 120) and
different alternatives indicated in terms of parameters.

(30, 30, 40) (110, 110, 120)

Distribution Alternative Hypothesis
Combination ELRT T&P (2006) ELRT T&P (2006)

P(λ) (0.1, 0.3, 0.4) 0.7756 0.0.640 0.9012 0.9930
(0.2, 0.2, 0.4) 0.8020 0.3750 0.9051 0.7800

(2, 3, 4) 0.9260 0.3633 0.9722 0.9933
E(θ) (0.2, 0.3, 0.5) 0.8425 0.5230 0.9133 0.9820

(0.2, 0.2, 0.3) 0.8644 0.1730 0.9256 0.6120
(2, 3, 4) 0.6810 0.1100 0.8550 0.8610

4. Conclusions

In this study, we discussed the consistency test of the population when the popu-
lation distribution is unknown, and constructed an ELRT statistic for testing the homo-
geneity of several nonparametric populations in the presence of some auxiliary informa-
tion.Meanwhile, we proved the distribution of ELRT both theoretically and numerically
and calculated the rejection rates of ELRT and compared with those of the Kruskal–Wallis
test under several alternatives. In addition, the efficacy of ELRT and T&P (2006) were
compared separately.

The results show that, firstly, the asymptotic distribution of ELRT as a chi-square
distribution under some regularity conditions when the null hypothesis is true. Secondly,
the rejection rates of ELRT are bigger than those of KWT, as the sample sizes increase when
the sample is small. In other words, the proposed ELRT could be more powerful than
the Kruskal–Wallis test, as extra information can be more efficiently employed by ELRT.
Thirdly, the advantage of ELRT over T&P (2006) is that researchers do not need to select
approximately normal statistics for inter-group comparisons. At the same time, compared
with T&P (2006), ELRT is more suitable for multi-population consistency test with small
sample size.

This discussion will be applied to the field of biological information. For exam-
ple, when two samples are from the data of an experimental group and a control group,
the statistics we constructed will be able to test whether the experimental processing is ef-
fective. If the overall distributions of the two data are equal, it means that the experimental
processing is ineffective, otherwise it means that the experimental processing is effective.
Although some good main conclusions and simulation results were obtained in this paper,
there are still many problems to be further discussed in the future. On one hand, the study
presented in this paper is based on simple random samples, so more complex cases (such
as mixed cases or dependent samples) should be considered. On the other hand, the simu-
lations of one-parameter distributions were completed in this paper, while the simulations
of multi-parameter distributions still need to be completed. Therefore, in the future, we
will continue to complete the simulation of population consistency for multi-parameter dis-
tributions by ELRT and construct a new ELRT statistics above multi-population consistency
under complex samples.

5. Proofs

We first state a lemma which will be used in the proof of Theorem 1.

Lemma 1. Let Ak = (aij) be a k× k (k ≥ 2) symmetric matrix, ri > 0 for all 1 ≤ i ≤ k and
∑k

i=1 ri = 1, where aii = r−1
i − 1 for 1 ≤ i ≤ k and aij = −1 for i 6= j, 1 ≤ i, j ≤ k. Let

Bk = (bij) be a k × k diagonal matrix and Ck = Bk AkBk with bii = r1/2
i for 1 ≤ i ≤ k, then

Ck = C′k and Ck is an idempotent matrix with tr(Ck) = k− 1.
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Proof of Lemma 1. Let Rk = B2
k and 1k = (1, 1, · · · , 1)′. Then Ak = R−1

k − 1k1′k. It can
be shown that R1/2

k 1k1′kR1/2
k = ((rirj)

1/2)k×k, where (rirj)
1/2 is the (i, j) element of the

matrix. Combining with ∑k
i=1 ri = 1, one can show that ((rirj)

1/2)k×k is a idempotent
matrix. Notice that Ck = Ik − R1/2

k 1k1′kR1/2
k . It follows that Ck is an idempotent matrix

and tr(Ck) = ∑k
i=1(1− ri) = k − 1, it is clear that Ck = C′k. The proof of Lemma 1 is

thus complete.

Proof of Theorem 1. Let

S11 = −E{g(X; θ0)g′(X; θ0)}, S12 = E{∂g(X; θ)/∂θ|θ=θ0},

S21 = S′12, S22.1 = S21(−S11)
−1S12.

Throughout the proof, we assume that H0 holds true and the true value of θ is θ0.
Rewrite λn as

λn = λn1/

(
∏

i
λn2.i

)
,

where
λn1 = ∏

i,j
{1 + t′(θ̂n)g(Xij; θ̂n)}−1

and
λn2.i = ∏

j
{1 + t′i(θ̂ni)g(Xij; θ̂ni)}−1.

Employing the result in the proof of Theorem 2 in Qin and Lawless [13], we have

− 2 log λn1 =

(
n−1/2

k

∑
i=1

Yi

)′
A

(
n−1/2

k

∑
i=1

Yi

)
+ op(1), (13)

where

A = −S−1
11 {I + S12S−1

22.1S21S−1
11 }, Yi =

ni

∑
j=1

g(Xij; θ0), 1 ≤ i ≤ k,

with A being an identity matrix.
Similarly, for 1 ≤ i ≤ k,

−2 log λn2.i = (n−1/2
i Yi)

′A(n−1/2
i Yi) + op(1).

It follows that

− 2 log λn = n−1/2(Y′1, · · · , Y′k)
{

Mk
⊗

A
}
· n−1/2(Y′1, · · · , Y′k)

′ + op(1), (14)

where
⊗

is the Kronecker product and Mk = (mij) be a k × k symmetric matrix with
mii =

n
ni
− 1 for 1 ≤ i ≤ k and aij = −1 for i 6= j, 1 ≤ i, j ≤ k.

Let Nk = diag((n/n1)
1/2, · · · , (n/nk)

1/2)k×k and

Zn =
{

Nk
⊗

(−S11)
−1/2

}
(n−1/2Y′1, · · · , n−1/2Y′k)

′.

According to the central limiting theorem,

Zn
d→ N

(
0, Ipk

)
. (15)
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From (14), we have

− 2 log λn = Z′n
{

Nk
⊗

(−S11)
−1/2

}−1{
Mk

⊗
A
}{

Nk
⊗

(−S11)
−1/2

}−1
Zn + op(1). (16)

It can be shown, by the properties of the Kronecker product, that{
Nk
⊗

(−S11)
−1/2

}−1{
Mk

⊗
A
}{

Nk
⊗

(−S11)
−1/2

}−1

=
{

N−1
k

⊗
(−S11)

1/2
}{

Mk
⊗

A
}{

N−1
k

⊗
(−S11)

1/2
}

=S,

(17)

where S =
(

N−1
k Mk N−1

k

)⊗(
(−S11)

1/2 A(−S11)
1/2
)

. It is clear that (−S11)
1/2 ·A · (−S11)

1/2

is symmetric and idempotent with a trace equal to r− p. On the other hand, using Lemma 1,
we can see that N−1

k Mk N−1
k is symmetric and idempotent with a trace equal to k− 1. It

follows that S must be symmetric and idempotent with a trace equal to (r− p)(k− 1).
Theorem 1 is therefore proved by following Equations (14)–(17).
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