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Abstract: Feature Selection (FS) is a major preprocessing stage which aims to improve Machine
Learning (ML) models’ performance by choosing salient features, while reducing the computational
cost. Several approaches are presented to select the most Optimal Features Subset (OFS) in a given
dataset. In this paper, we introduce an FS-based approach named Reptile Search Algorithm—-Snake
Optimizer (RSA-SO) that employs both RSA and SO methods in a parallel mechanism to determine
OFS. This mechanism decreases the chance of the two methods to stuck in local optima and it boosts
the capability of both of them to balance exploration and explication. Numerous experiments are
performed on ten datasets taken from the UCI repository and two real-world engineering problems
to evaluate RSA-SO. The obtained results from the RSA-SO are also compared with seven popular
Meta-Heuristic (MH) methods for FS to prove its superiority. The results show that the developed
RSA-S0 approach has a comparative performance to the tested MH methods and it can provide
practical and accurate solutions for engineering optimization problems.

Keywords: classification; feature selection; metaheuristic algorithms; reptile search algorithm;
snake optimizer

MSC: 68Txx

1. Introduction

With the rapid development of contemporary enterprises and the digital world, the
transformation process of data into useful information has become more and more difficult
due to the large amount of data produced by different sources. Machine Learning (ML) can
play an essential role in Knowledge Discovery, which is categorized into a number of tasks,
including data preprocessing (data preparation, reduction, and transformation), pattern
evaluation, and knowledge presentation [1].

FS is a major preprocessing step, which can improve the ML model’s performance
by eliminating the size of features and simplifying the classification problem [2,3]. The
biggest concern of the FS process is to discard the irrelevant, redundant, and noisy features
from the whole set of features to derive a subset of representative features. This process
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is used in many areas of science such as data classification [4], image processing [5], text
categorization [6], data clustering [7], and signal processing [8]. The primary objective
of the FS process is to find OFS from highly discriminated features that result in high
classification accuracy.

Recently, several MH methods have been introduced in the literature to simulate the
behaviors of natural phenomena or living organisms for various problems. These methods
show potential in selecting OFS from a given dataset and solving diverse and complex
optimization problems, such as scheduling engineering design, production problems, and
ML [9-11]. MH methods use exploration and exploitation principles [12,13]. Exploration
refers to the ability to search the entire search space; this ability is linked to avoiding local
optima and resolving traps in local optima. On the other hand, exploitation is the ability to
investigate nearby prospective ideas to increase local quality. A proper balance between
these two properties gives an excellent algorithm performance [14].

Various MH methods such as Multi-Verse Optimizer (MVO) [15], Particle Swarm
Optimization (PSO) [16], Whale Optimization Algorithm (WOA) [17], Gray Wolf Optimizer
(GWO) [18], and Salp Swarm Algorithm (SSA) [19] are some of the commonly applied MH
methods for FS. However, the computational cost, classification accuracy, and finding a
global optimum by these methods still need more focus and efforts to improve.

One can combine two or more MH approaches to develop a new one with a higher
performance that can achieve a convincing balance between the two MH principles rather
than using each of them alone for the problem of FS [20-22]. In the present work, a novel
combined MH-based approach named Reptile Search Algorithm-Snake Optimizer (RSA-
S0) is introduced to solve FS. The RSA-SO approach utilizes the best characteristics and
capabilities of both the RSA [23] and SO [24] algorithms to obtain an optimal subset of
informative features, where both are collaborated in a parallel mechanism. RSA and SO
methods are among the most recent MH algorithms, and they show promising capabilities
to solve FS problems with efficient balance between exploration and exploitation aspects.
The parallel collaboration helps to decrease the chance of the two methods becoming stuck
at local optima and it boosts the capability of both of them in balancing between exploration
and explication. The contributions of this paper can be summarized as follows:

e  An efferent RSA-SO approach is introduced, which merges RSA and SO in a parallel
mechanism to enhance the selection process of the OFS.

e  The developed RSA-S0 is tested on twelve datasets from different fields and it is
applied to solve two well-known engineering optimization problems with constraints.

e  The results show that the RSA-SO performed well when it is compared to other
popular MH methods, and it can also provide a practical and accurate solution for
engineering optimization problems.

The structure of the paper is as follows. The next section gives an overview of RSA
and SO. The details of the proposed RSA-SO approach are described in Section 3, while
Section 4 analyzes and discusses the experimental results. Finally, the conclusion and future
research directions are given in the last section.

2. Materials and Methods
2.1. Reptile Search Algorithm (RSA)

RSA is a nature-inspired MH approach based on crocodiles” encircling and hunting
behavior, introduced by [23] in 2022. It is a gradient-free method that begins with generating
random candidate solutions. The ith candidate solution of the jth input feature x; ; can be
calculated as follows:

x;j = randcy o1y * (UB; —LB;) +LBj i€ {l,---, N}andje {1,---, M} (1)

where UB; and LB, are upper and lower boundaries of the jth feature, rand;( 1) stands
for uniformly distributed random number in the range [0, 1], N is the total number of
candidate solutions, and M is the feature dimension.
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Like the other MH algorithms, RSA works in two principles: exploration and exploita-
tion. These principles are facilitated by crocodiles” movement while searching for food.
In the RSA, the total iterations are split into four stages to take advantage of the natural
behavior of crocodiles. In the first two stages, RSA accomplishes the exploration based on
the encircling behavior comprising the high and the belly walking movements. Crocodiles
begin their encircling to search the region, facilitating a more exhaustive search of the
solution space, and this can be mathematically modeled as:

9

8 )
>

=0 IA

%ii(g+1) = [—ni;(g) - v -Bestj(g)] — {m”deu, N Ri,j(g)] ,
! ES(g) ' BEStj(g) ’ x(mnde[l’ N],j)/ 8 < % and 8
where Best;(g) is the best solution for jth feature, 1; ; refers to the hunting operator for the
jth feature in the ith solution (calculated as in Equation (3)), and parameter - controls the
exploration accuracy and is set as 0.1. The reduce function R; ; is used to reduce the search
region and is computed as in Equation (6), rand¢y, ] is a number between 1 and N used
to randomly select one of the possible candidate solutions, and Evolutionary Sense ES(g)
stands for the probability ratio which reduces from 2 to —2 over iterations, calculated as in
Equation (7).
I’Zi/]‘ = BESt]‘(g) X Pi,j/ (3)

where P; j indicates the percentage difference between the jth value of the best solution to
its corresponding value in the current solution and is calculated as:

o+ Xij— p(x;)

P — ,
K Bestj(g) x (UBj — LB;) +¢

4)

where 6 denotes a sensitive parameter that controls the exploration performance, € is a
small floor value, and yi(x;) refers to the average solutions and is defined as:

1

o Bestj(g) - x(mndgﬂ/ N]/j) (6)
Ly Bestj(g) +e€ '
ES(g) =2xrandc(_q 1y X (1—Cl;>, (7)

where the value 2 acts as a multiplier to provide correlation values in the range [0, 2], and
rande; 1 1y is a random integer number between {—1, 1}.

In the last two stages, RSA exploits (hunting) the search space and approaches the
optimal solution by using hunting coordination and cooperation. The candidate solution
can update its value during the exploitation stage using the following:

randg_yq) - Bestj(g) -Pij(g), g<Fandg> 3¢

8
€- Bestj(g) . ni,j(g)] — [nmde[,u] . Ri,j(g)}, g <Gandg> % ®)

xi,j(g+ 1) = { [

The quality of candidate solutions at each iteration is measured using the predefined
FF. the algorithm stops after G iterations, and a candidate solution with the least FF is used
as OFS.

2.2. Snake Optimizer (SO)

SO is a MH algorithm proposed by [24] in 2022 to mimic the mating behavior of snakes.
Mating happens when the temperature is low and food is available. The SO, like other MH
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methods, initializes random candidate solutions using Equation (1). This method divides
the swarm into male and female groups equally using the following:

Nmale ~ % (9)
Nf = N — Nuuate

where N is the number of individuals, Ny, refers to the male individuals, and N,
refers to the female individuals.
In each iteration, the best individual candidate solution (food position f,s4) is found
by analyzing each group for individual best male fyest, male and best female fyest, female-
The Temperature (T) and the Food Quantity (FQ) can be defined as:

T = exp (%g) 10)
FQ =rcjexp (g)
where g is the current iteration, T is the total number of iterations, and c; is a constant
equal to 0.5.
When FQ < Threshold (Threshold = 0.5), the snakes search for food by selecting a
random position and then update their position. To mathematically model the exploration
behavior of the male and female snakes, the following can be used:

e  For male snakes:

Xij(§ 1) = X(rand_py n 0) (8) £ €2 X Aipmale ((UB — LB) x randyo,1) + LB)/

7frand male (11)
where A; 5. = exp (#)
where x; ; is ith the male snake position, X(rand ey, N2 /) refers to the position of a random

male snake, rand is a random number between 0 and 1, A; ,,,4, is the ability to find the food
by the male, f,,,4 mal. is the fitness of the earlier selected random male snake, and f; 4 is
the fitness of ith male in the group. The flag direction operator =+ (i.e., diversity factor) can
be used to randomly scan all the possible directions in the given search space.

e  For female snakes:

Xij = x(runde[L N/2f) (g + 1) +cp X Ai,female ((UB — LB) X mndeu(orl) + LB)/ -
M) (12)

where A; female = exp( Fofemate

where x; ; is ith the female snake position, x is the position of a random female

randcy, N/2)0)
snake, A; femal refers to her ability to find food, fiand,female is the fitness of the earlier se-
lected random female snake, and f; a1 is the fitness of ith individual in the female group.

In the exploitation phase, SO uses two conditions to find the best solutions and they are:
1. If FQ < Threshold (T > 0.6), then the snakes move to find only:

Xij(§+1) = Xpooa £ 03 x T x rand x (xfogd — xi,j(g)> (13)

where x; ; is the position of individuals, either male or female; x4, is the position of
the best individuals; and c3 is a constant equal to 2.

2. If FQ < Threshold (Threshold < 0.6), then the snakes will be in two modes, either
fighting or mating. The fighting and mating models can be represented as the follows:

e  Fighting mode
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The fighting ability of the male agent F,,;;, can be written as:

Xij (g+1) = xi,]'(g) + 3 X Fj ypate X rand x (xbest,female — Xi,male (g)>,

_ (14)
where F; 4, = exp (%)

where x; ; refers to the ith male position and Xpest, femal Tefers to the position of the best
individual in the female group. Similarly, the fighting ability of the male agent F; ,,,;, can
be written as:

xi,j(g+ 1) = xi,j(g) +c3 X Fi,femule X rand X (xbest,mule - xi,f(g + 1))/ (15)

_fbest,male
i

where F; female = exp(

where x; ;, refers to the ith female position, Xpest,male refers to the position of the best
individual in the male group, and F; fepq. is the fighting ability of the female agent.

e Mating mode

In this mode, the male and female agents can update their positions as:

Xi,mule(g + 1) = Xim (g) +c3 X MMi,malg X rand X (Q X xi,female — Ximale (g))/
where MM 410 = exp(M)

fi,male
xi,femule(g + 1) = xi,f(g) =+ 3 X MMi,femule x rand X (Q X xi,male - xi,female(g + 1))/

—f,
where MM; femare = exp(ﬁ)

(16)

where x; ;,, and x; ; are the positions of ith of male and female agents, and MM,; ;4. and
MM; female refer to the mating ability of males and females.

3. Proposed RSA-SO Method

FS is a multi-objective problem where the minimal number of OFS and higher classifi-
cation accuracy are simultaneously achieved [25]. The literature survey on different MH
algorithms explores various nature-inspired phenomena to effectively search for the best
solutions in a given search space. A combination of these MH algorithms is reported to en-
hance the overall performance by complementing the other’s exploration and exploitation
processes, which in turn can decrease the probability of trapping in local optima.

RSA and SO methods are among the most recent MH algorithms, showing promising
capabilities to solve several problems with an efficient balance between exploration and
exploitation aspects. In this work, RSA and SO methods collaborate in a parallel strategy to
solve an FS problem. The primary objective of the parallel mechanism is that if one of the
algorithms cannot improve the candidate solutions or becomes stuck in local optima, the
other algorithm moves the current candidate solutions into another search region where
some better solutions might be found.

Figure 1 provides the procedural steps of the RSA-SO. At first, the hyper-parameters
of RSA, SO, and the shared ones are initialized. A uniformly distributed random number
generator in the range [—1, 1] is employed to initialize N candidate solutions for M features,
as described earlier in the RSA section (Equation (1)).

At the start of each iteration, the population (i.e., candidate solutions) is equally
divided into two parts between the RSA and SO algorithms. For the gth iteration, candidate
solutions { x;j(8),1<i<Nand1<j< M} are split into two parts. The first half is
passed to RSA and the second half is passed to SO. It can be mathematically seen as follows:

Rsa-so _ [x14, 1<i<N/2
% = {xlSO, N/2<i<N (17)

1
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In the first iteration, both RSA and SO are executed in a parallel manner on the
respective parts, and candidate solutions are updated according to Equations (2)-(8) in the
RSA and Equations (9)-(16) in SO methods. At the end of the first titration, the updated
candidate solutions from both algorithms are evaluated using the Fitness Function (FF). The
solutions are sorted in ascending order using the Quick Sort algorithm based on their fitness
values. The candidate solutions with the smaller fitness values are selected from each part
of the population. The top N /2 solutions from the entire population are found and passed
to both algorithms for the next iteration. The complete set of candidate solutions after each
iteration can be generated by merging solutions from both algorithms, as in Equation (17).

—-/
el O R R R L L L e R 1
I TRAINING DATA :
]
| 4 N UPDATE SOLUTIONS CALCULATE FITNESS (FF) 1
! INITIALIZE SO EQ. (18) EQ. 20) !
1 PARAMETERS ‘ !
1 P I
. L 1,253 ) |—T SO FIGHT & MATING MODE 1
! rand > 0.6 : Mating & hatch EQ. (16) | '
. ; . RSA EXPLOITATION else 1
! INITIALIZE RSA Hunting Coordination (g < 3G/4) Fight: Male & Female EQ. (14)-(19) :
: PARAMETERS & Hunting Cooperation (g> 3G/4) :
X T ) EQ. §)-8) |
] A 1
1 < SO EXPLORATION NO |
] INITIALIZE SHARED RSA EXPLORATION EQ. (13 |
i PARAMETERS High Walking (g < G/4) ’ 1
1 | 9= 1,N,M,G,UB, LBJ & Belly Walking (y> G/4) |
1 EQ. 2)-0) :
l '
X SO EXPLORATION '
" INITIALIZE CANDIDATE Male EQ. (11) 1
| SOLUTIONS & Female EQ. (12) 1

YES
1 ]
" \ EDR(D), J A NO |
1 Q<025? 1
. EQ. (10) 1
1 ]
1 afS4 i€ [1,N/2] '
1 SPLIT CANDIDATE 1
: SOLUTIONS jspm INTO MALE & FEMALE :
EQ. (17) ) 'L EQ. ©)
: 250 ;i€ [1,N/2 :
: TRAINING PHASE 1
e ooe o o s s e s mm e o S S S S S S S S SR G EE SR G GER SN SR GE GEE SEE GEE GEE SN GEE GEN GEE N G GEE G N GEE N G M G M e M e e e e e F
OPTIMUM FEATURE SET
(OFS)
EQ. 21)

Fmmm—————— { ______________________________

i YES y

1 EVALUATE CLASSIFIER

I TESTING DATA N SECECTROES PERFORMANCE

1

]

Figure 1. Structure of RSA-50O approach.
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The sorting finds the best N /2 solutions from the entire population with fitness values
smaller than any solution other than the selected ones. These found solutions may be
distributed differently amongst the RSA and SO algorithms. A set of improved low-fitness
candidate solutions %;(g) is obtained by swapping high-fitness candidate solutions with
the low-fitness candidate solutions found by the complementary algorithm. The candidate
solutions can be updated as follows:

g +1) =x0g+1) = 5i(g), 1<i<N/2 (1)

where £;(g) = Xargmin (fi(g)) (8)-

If the found candidate solutions comprise more solutions from RSA than SO, then the
high-fitness candidate solutions from SO are replaced by solutions found by RSA and vice
versa. Hence, the RSA will dominate the next iteration. On the other hand, if the found
candidate solutions comprise more solutions from SO than RSA, then the SO will dominate
in the next iteration. Lastly, if an equal number of low-fitness candidate solutions are found
by both algorithms, then the next iteration displays the codominance of both algorithms.
All three cases can be summarized as,

if dim(argmin f; < N/2) > dim(argmin f; < N/2) then RSA dominates (i + 1) iteration
if dim(argmin f; < N/2) < dim(argmin f; < N/2) then SO dominates (i + 1) iteration (19)
if dim(argmin f; < N/2) = dim(argmin f; < N/2) then RSA & SO codominates (i + 1) iteration

An example of candidate solution optimization using N = 8 is shown in Figure 2.
Candidate solutions from RSA (red) and SO (green) are identified using different colors of
the bounding boxes. The corresponding fitness value marks each candidate solution with a
maximum of 1 (darker shade fill) and a minimum of 0 (lighter shade fill). The top N/2 =4
found low-fitness solutions (ligher shade fill) are marked by an additional bounding box
(dotted black). In the case of Figure 2a, the gth iteration marks three solutions from RSA
and only one from SO as low-fitness. In the (g+1)th iteration, a high-fitness solution from
RSA is replaced with a low-fitness solution from SO, while three high-fitness solutions in
SO are replaced with three low-fitness solutions from RSA. Hence, the (g+1)th iteration is
dominated by RSA, as observed in Figure 2a’s selected solutions. A contradictory situation
is presented in Figure 2b, where three solutions from SO and only one from RSA are marked
low-fitness. Hence, solutions for the (g+1)th iteration are obtained by replacing three high-
fitness solutions from RSA with low-fitness solutions from SO, and vice versa. Hence, the
(g+1)th iteration is dominated by SO, as observed in Figure 2b’s selected solutions. Finally,
Figure 2c shows the equal number of solutions found by both algorithms. Hence, even
after the replacement, both algorithms have equal shares indicating the codominance of
both algorithms for the (g+1)th iteration. It should be noted that after optimizing, both
algorithms will continue the next iteration using the exact same set of low-fitness candidate
solutions, except for the sequence of solutions, as seen in Figure 2a,c. This can effectively
coordinate and improve global exploration and local exploitation in the search space.

In the next iteration, x;(g + 1), the generated population is first split into two parts
using Equation (19), and each part is passed as an input to the RSA and SO methods
to simultaneously search other regions in the feature space. After finishing the second
iteration, the obtained candidate solutions are sorted using FF. A new population that
is composed of the best candidate solutions is obtained from each population part. This
process continues until the termination condition is satisfied (i.e., the maximum number of
iterations is reached). The pseudo-code of the RSA-SO is provided in Algorithm 1.
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Algorithm 1: Pseudo-code of the interdicted RSA-SO approach.

1. Split the dataset into training and testing
Training Phase

O XN W

—_
— O

[a=y
N

13.
14.

Load training dataset

Initialize SO parameters c1, ¢, c3

Initialize RSA parameters vy, 6,n

Initialize shared parameters N, M, G, UB, LB
Initialize candidate solutions Equation (1)
forg=1to Gdo

Split candidate solutions for RSA and SO using Equation (17)

Revise candidate solutions £; using RSA Equations (2)—(8) and SO Equations (9)-(16)
Evaluate FF (f) using Equation (20) for revised candidate solutions
Update RSA and SO solutions for next iteration using Equation (18)
Calculate complete solution for next iteration

end for
Extract OFS for candidate solution with minimum FF using threshold of 0.5

Testing Phase

15.
16.
17.

Load testing dataset
Select only optimum features as described in OFS Equation (21)
Evaluate performance using KNN classifier

O
Finessvave [ [ o

(@)

(0)

(c)

RSA

Selected

]

Sorted
Solutions

]

RSA [ so, Sorted
e (g+1) @ (9+1) Solutions

]

Sorted

v T
<B4 (g 4 1) z%%(g+1) Solutions

Figure 2. Example of optimizing the low-fitness candidate solutions in the proposed RSA-SO

algorithm for dominance of (a) RSA, (b) SO, and (c) codominance of both, as shown in Equation (19).
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The K-Nearest Neighbor (KNN) classifier with k = 5 is used as the FF. The threshold
value is set to 0.5 to produce a small number of features, as recommended by the work
of [26,27]. The solution with the smallest number of features and highest accuracy is the
best one (smallest fitness f) and it is defined as:

fi=axytpx 20)

where 7 is the error rate of the KNN, SF; is the number of OFS, and M is the number of
features in the original dataset. « and f are two weights that control the importance of
classification quality and feature reductions; the value of « in the range of [0, 1] and the
value of §is 1— a. The parameters « and f3 are set to 0.99 and 0.01, respectively, in this
work [28,29], and each feature in the OFS follows:

(1 ifx > 05,
Sk = {0 otherwise, (21)

4. Experiments and Results

To assess the capability of the RSA-SO, its performance is compared with other MH
methods, including PSO [16], GWO [18], MVO [15], WOA [17], SSA [19], RSA [23], and
SO [24], on twelve datasets; the results are provided in this section. All the experiments are
implemented using Python scikit-learn and conducted on a 3.13 GHz PC with 16 GB RAM
and Windows 10 operating system.

4.1. Dataset

The RSA-SO is tested on eight datasets taken from the UCI data repository, and each
of them is split into 80% of the samples used for training and the remaining used for testing.
Table 1 summarizes the details of the used datasets.

Table 1. List of the datasets used in the experiments.

No. Dataset Instances Features Classes Domain
1 Breastcancer 699 9 2 Biology
2 BreastEW 569 30 2 Biology
3 Churn 3150 16 2 Telecom
4 HeartEW 270 13 2 Biology
5 IonosphereEW 351 34 2 Electromagnetic
6 KrvskpEW 3196 36 2 Game
7 SonarEW 208 60 2 Biology
8 SpectEW 267 22 2 Biology
9 Tic-tac-toe 958 9 2 Game

10 Vote 300 16 2 Politics
11 C}‘}f;:t‘ei;al 178 13 3 Chemistry
12 Zoo 101 16 6 Artificial

4.2. Parameter Settings

To compare RSA-SO with other methods, six popular methods in the field of FS are
selected. The population size and the maximum number of iterations are empirically set as
20 and 100, respectively. All the methods are run 20 times independently. The parameter
settings of these methods are defined according to their implementations in the original
work, and they are listed in Table 2.
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Table 2. Parameter settings.

Algorithm Parameters
PSO 1 =¢=2, Wyi,=0.1and wy,,=0.9
CWO « variable decreases lin.early from 2 to 0, C is a random value € [0, 2],
and A linearly decreases from 1 to —1

MVO WEPyax =1, WEP,,;,= decreases from2toOand p=6

WOA « decreases from 2 to 0 and a, decrease from —1 to —2

SSA ¢p and ¢, are random values € [1, 0]

RSA v =0.9, 8 = 0.5, UB and LB vary according to features in the dataset
SO c1 =05, cg =0.05, c3 =2, Xmax and x,,;, vary according to features

in the dataset

RSA-SO It uses the parameters of the RSA and SO

4.3. Results and Discussion

A set of widely used performance measures is employed to assess the obtained results
by the RSA-SO and other FS methods. These metrics include, classification accuracy,
number of selected OFS, fitness values (best, worst, average (Avg), and standard deviation
(STD)), and computational time consumed by each method. The Friedman ranking test is
applied to rank each method for a fair comparison. Moreover, the convergence behavior of
the introduced RSA-SO and other methods is provided in this section.

Figure 3 shows the distribution of the best-selected candidate solutions obtained by
RSA (in red color) and SO (in green color) for twelve datasets. It provides the number
of iterations on the x-axis and the selected solutions on the y-axis. It can be noticed in
Figure 2 that the RSA and SO begin by exploring the search space, followed by exploiting
the best candidate solution in the feature space. For example, in the initial 25 iterations
in the KrvskpEW dataset, more candidate solutions are selected from the first half of the
revised candidate solutions, indicating that high walking in the RSA is more effective
than SO. Similarly, the last 25 iterations indicate that the hunting cooperation process in
RSA exploits candidate solutions more effectively than SO. The dominance of SO during
iterations 25 to 50 and 50 to 75 shows that exploration using belly walking and exploitation
using hunting coordination in RSA are not very effective. Similar observations can be
made for SpectEW, Tic-tac-toe, and Chemical Water datasets. In IonosphereEW and Votes
datasets, most of the iterations are dominated by the SO. On the other hand, most iterations
for the Breastcancer dataset show approximately equal candidate solutions selected from
both methods, indicating the codominance of both algorithms. Similar codominance can be
observed in the first 25 and the last 25 iterations for BreastEW, Churn, HeartEW, Sonar, and
Zoo datasets.

Tables 3 and 4 compare all the FS approaches in terms of the average testing accuracy
and the number of OFS. In MA methods, the solution with the highest classification
accuracy and minimum number of features is the best one in the population that needs
to be accomplished. In Table 3, the RSA-SO scored the best accuracy compared to other
techniques in eight out of twelve datasets. This can be interpreted by the improved
capability of the RSA-SO in broadly searching the high-performance regions in the search
space. For IonosphereEW, SO is placed first, while for SonarEW and Zoo datasets, GWO
performed the best. Both WOA and RSA-SO achieved similar accuracy results on the
Chemical Water dataset.

As per the results in Table 4, the introduced RSA-SO had the smallest value of the
selected OFS in nine out of twelve datasets. This confirms the efficiency of the proposed
RSA-SO in eliminating irrelevant features in the datasets and reducing the search space.
However, RSA-SO had the same results in Breastcancer, IonosphereEW, and Tic-tac-toe
datasets, while the RSA method gained the best results only in the Churn dataset and the
SO attained the best results in SonarEW and Vote datasets. A similar number of OFS is
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Figure 3. Distribution of best selected candidate solutions between RSA and SO for different datasets.

Table 5 records a summary of the results obtained by the RSA-SO against the other
MH algorithms for different datasets. It also presents ranks of MH algorithms for each
dataset depending on average, STD, best, and worst of fitness values. From Table 5, it
can be observed that the RSA-SO earned the first rank in nine out of twelve datasets.
For Breastcancer, IonosphereEW, and Zoo datasets, PSO, MVO, and RSA achieved first
ranks while the proposed RSA-SO achieved ranks of 4, 4, and 2, respectively. The RSA-50
provides the best fitness values in eight datasets while all the methods have similar average
best fitness on the Tic-tac-toe dataset. RSA-SO has the smallest worst fitness value in seven
datasets, while it has similar average best fitness on the Breastcancer dataset. Moreover,
the RSA-SO has better Avg and STD of fitness values in eight and six datasets, respectively.
RSA-SO and SSA had the same Avg and STD of fitness values on the HeartEW dataset,
while WOA, SSA, RSA, and RSA-S0 had the same Avg and STD on the Chemical Water
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dataset. These results prove the capability of the introduced RSA-SO in sustaining a stable
balance between the two main principles of MH methods.

Table 3. Results of RSA-SO and other methods in terms of classification accuracy.

Dataset PSO GWO MVO WOA SSA RSA SO RSA-SO
Breastcancer 99.1401 99.1474 99.1473 99.1255 99.1620 99.1839 99.1766 99.2132
BreastEW 95.4001 95.5495 95.3739 95.3726 95.6496 95.7337 95.3722 96.1579
Churn 89.6476 95.6078 92.9740 95.5873 96.3150 94.5260 93.2201 96.4688
HeartEW 73.7800 80.9395 76.1839 84.5661 99.2293 99.1479 99.3587 99.7400
IonosphereEW 93.1179 93.4326 93.1345 92.3234 92.6408 92.9915 93.5485 92.5147
KrvskpEW 96.3220 95.8335 96.7343 96.0780 96.4841 95.5679 97.0928 97.1065
SonarEW 89.2195 91.0967 88.8637 87.3249 88.4737 87.5277 87.7426 90.2545
SpectEW 87.0948 85.8567 87.2818 86.0475 86.8869 86.0594 87.4435 87.5323
Tic-tac-toe 82.7718 82.7874 82.6882 82.7665 82.7874 82.6150 82.6934 82.8031
Vote 64.0552 64.3368 64.3513 63.2006 63.9436 63.3290 62.4167 64.5815
Ckxgéial 99.9503 99.9671 99.9607 99.9944 99.9837 99.9888 99.9713 99.9944
Zoo 96.7110 97.7109 96.9901 96.4038 97.3632 97.1310 96.8753 97.3928
Table 4. Comparison between RSA-SO and other methods in terms of average OFS.
Dataset PSO GWO MVO WOA SSA RSA SO RSA-SO
Breastcancer 9 9 9 9 9 9 9 9
BreastEW 3 3 3 9 3 7 2
Churn 14 10 13 9 11 8 12 11
HeartEW 13 10 11 5 2 5 1
IonosphereEW 4 4 5 4 4 4 4 4
KrvskpEW 31 32 29 31 29 29 27 23
SonarEW 27 17 28 26 27 28 20 23
SpectEW 11 11 11 14 11 13 10
Tic-tac-toe 9 9 9 9 9 9 9 9
Vote 6 5 7 5 7 6 3 6
Clet‘;al 9 6 7 2 3 2 5 1
Zoo 13 8 11 8 9 6 10 5

The average computational time in seconds for the RSA-SO and the other MH methods,
which is computed over 20 independent runs on all the datasets, is provided in Table 6.
According to the results in Table 6, the average computational time consumed by the
RSA-SO is lower than PSO, GWO, MVO, WOA, SSA, RSA, and SO in five datasets. This is
because both the RSA and SO run at the same time in a parallel manner at each iteration,
which decreases the running time. Taking into account the accuracy rate and running time,
the introduced RSA-SO proves to be superior since it gained a high accuracy rate and
competitive execution time on most of the datasets. WOA ranked first for BreastEW, while
SSA placed first for HeartEW and Tic-tac-toe datasets. GWO does not need much effort on
SpectEW and Chemical Water, and PSO needed lower time on the Zoo dataset.

The convergence behavior of the introduced RSA-SO is shown over 100 iterations on
the x-axis in Figure 4 and the average fitness values on the y-axis. Figure 4 presents the
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convergence curves of the best solution obtained after executing each method 20 runs. In
Figure 4, one can observe that RSA-SO has a faster and better convergence than the other
methods among the used twelve datasets except three of them, namely, IonosphereEW,
SpectEW, and Zoo datasets. However, RSA-SO has the fastest convergence speed on nine
out of twelve datasets, which proves its suitability for the problem of FS.

Table 5. Best, worst, Avg, and STD fitness values obtained by different methods.

Dataset Metric PSO GWO MVO WOA SSA RSA SO RSA-SO
Best 0.0160 0.1605 0.0160 0.1605 0.0160 0.1605 0.0160 0.1605
Worst 0.1895 0.1895 0.1895 0.1895 0.1895 0.1895 0.1895 0.1895
Breastcancer Avg. 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161 0.0161
STD. 0.0008 0.0008 0.0010 0.0010 0.0011 0.0010 0.0011 0.0010
Rank 1 2 3 4 5 4 5 4
Best 0.0492 0.0439 0.0473 0.0436 0.0401 0.0385 0.0491 0.0382
Worst 0.0562 0.0579 0.0579 0.0578 0.0579 0.0473 0.0578 0.0491
BreastEW Avg. 0.0492 0.0439 0.0473 0.0436 0.0421 0.0486 0.0491 0.0401
STD. 0.0019 0.0045 0.0028 0.0044 0.0044 0.0019 0.0026 0.0018
Rank 8 4 5 3 2 6 7 1
Best 0.0418 0.0421 0.0422 0.0403 0.0406 0.0403 0.0415 0.0393
Worst 0.1346 0.0638 0.1345 0.0817 0.0491 0.0996 0.1346 0.0484
Churn Avg. 0.0418 0.0421 0.0421 0.0403 0.0406 0.0403 0.0415 0.0393
STD. 0.0354 0.0058 0.0353 0.0119 0.0025 0.0220 0.0276 0.0018
Rank 5 6 7 2 3 2 4 1
Best 0.2865 0.2828 0.2864 0.1909 0.0002 0.0001 0.0003 0.0000
Worst 0.2692 0.1967 0.2440 0.1566 0.0001 0.0001 0.0002 0.0000
HeartEW Avg. 0.1983 0.1250 0.1323 0.1286 0.0000 0.0001 0.0001 0.0000
STD. 0.0248 0.0748 0.0528 0.0191 0.0000 0.0000 0.0001 0.0000
Rank 8 5 7 6 2 3 4 1
Best 0.0904 0.0734 0.0848 0.1045 0.0903 0.0819 0.0706 0.0932
Worst 0.0692 0.0661 0.0694 0.0773 0.0742 0.0706 0.0651 0.0753
IonosphereEW Avg. 0.0593 0.0594 0.0566 0.0650 0.0621 0.0621 0.0621 0.0594
STD. 0.0072 0.0039 0.0075 0.0094 0.0080 0.0069 0.0034 0.0082
Rank 2 3 1 8 7 6 5 4
Best 0.0500 0.0577 0.0518 0.0519 0.0546 0.0596 0.0453 0.0497
Worst 0.0451 0.0502 0.0404 0.0475 0.0428 0.0518 0.0362 0.0350
KrvskpEW Avg. 0.0264 0.0373 0.0236 0.0379 0.0264 0.0307 0.0230 0.0230
STD. 0.0049 0.0047 0.0077 0.0036 0.0099 0.0068 0.0089 0.0107
Rank 5 7 3 8 4 6 2 1
Best 0.0917 0.0723 0.1010 0.0957 0.0966 0.0868 0.1005 0.0775
Worst 0.1113 0.0910 0.1148 0.1291 0.1186 0.1282 0.1247 0.1004
SonarEW Avg. 0.0917 0.0723 0.1010 0.0957 0.0966 0.0868 0.1005 0.0775
STD. 0.0111 0.0091 0.0128 0.0135 0.0140 0.0211 0.0154 0.0113

Rank 4 2 8 5 6 3 7 1
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Table 5. Cont.

Dataset Metric PSO GWO MVO WOA SSA RSA SO RSA-SO
Best 0.1227 0.1300 0.1390 0.1338 0.1227 0.1301 0.1227 0.1190
Worst 0.1328 0.1450 0.1307 0.1444 0.1350 0.1438 0.1286 0.1271
SpectEW Avg. 0.1227 0.1300 0.1191 0.1338 0.1227 0.1301 0.1227 0.1190
STD. 0.0066 0.0102 0.0099 0.0088 0.0086 0.0117 0.0046 0.0061
Rank 5 7 2 8 6 5 3 1
Best 0.1832 0.1832 0.1832 0.1822 0.1832 0.1853 0.1832 0.1832
Worst 0.1806 0.1804 0.1814 0.1806 0.1804 0.1821 0.1813 0.1802
Tic-tac-toe Avg. 0.1749 0.1775 0.1780 0.1771 0.1770 0.1780 0.1776 0.1739
STD. 0.0022 0.0018 0.0021 0.0018 0.0025 0.0023 0.0017 0.0016
Rank 2 5 7 4 3 8 6 1
Best 0.3756 0.3688 0.3712 0.3824 0.3734 0.3848 0.3824 0.3620
Worst 0.3597 0.3564 0.3574 0.3674 0.3615 0.3665 0.3742 0.3546
Vote Avg. 0.3461 0.3483 0.3484 0.3484 0.3461 0.3484 0.3575 0.3461
STD. 0.0074 0.0055 0.0058 0.0082 0.0074 0.0101 0.0083 0.0046
Rank 3 4 5 6 2 7 8 1
Best 0.0006 0.0005 0.0006 0.0001 0.0002 0.0002 0.0004 0.0001
Worst 0.0005 0.0003 0.0004 0.0001 0.0002 0.0001 0.0003 0.0001
Chemical Water Avg. 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001
STD. 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000
Rank 6 4 5 1 2 2 3 1
Best 0.0731 0.0420 0.0731 0.0620 0.0421 0.0421 0.0623 0.0412
Worst 0.0406 0.0279 0.0369 0.0406 0.0315 0.0323 0.0373 0.0291
Zoo Avg. 0.0318 0.0209 0.0214 0.0311 0.0210 0.0209 0.0213 0.0209
STD. 0.0090 0.0077 0.0135 0.0109 0.0066 0.0074 0.0085 0.0078
Rank 8 3 6 7 4 1 5 2

Table 6. Comparison between RSA-SO and other methods in terms of computation time.

Dataset PSO GWO MVO WOA SSA RSA SO RSA-SO
Breastcancer 15.8043 15.7762 15.7891 16.9361 18.8809 12.2260 13.9439 11.3005
BreastEW 16.9211 17.0046 16.8496 15.4815 16.4994 17.4666 18.0835 20.7034
Churn 46.4102 65.7563 46.2434 44.2000 45.3247 45.1050 44.5310 44.1699
HeartEW 15.8490 16.1843 15.8615 16.1266 13.7198 14.8492 16.6837 14.7071
IonosphereEW 16.4906 16.3805 16.4499 16.0545 20.2799 18.3783 17.7728 12.0760
KrvskpEW 23.3375 22.7748 20.0801 20.7943 17.6028 26.9347 21.4032 15.1755
SonarEW 16.0206 15.8344 15.9396 15.6063 14.8404 13.0648 17.7407 15.8526
SpectEW 15.1340 12.7896 15.0302 14.5697 24.6677 13.6435 20.6525 15.6375
Tic-tac-toe 8.1686 8.2544 8.3290 15.0991 8.0667 8.5040 12.8882 8.4919
Vote 6.4341 6.4319 6.6094 6.9672 6.4030 6. 7186 9.1398 6.2819
Chemical Water 5.3900 4.7936 4.9758 4.8917 10.4849 16.3850 13.1670 14.0011

Zoo 11.6261 13.6194 12.1658 12.9702 11.7885 24.3258 19.8634 15.4363
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4.4. Performance of RSA-SO in Engineering

In this section, the performance of the RSA-SO is tested on well-known engineering
problems, which are Pressure Vessel Design (PVD) and Cantilever Beam Design (CBD).
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Figure 4. Convergence curves of the RSA-SO and the other methods.

4.4.1. Pressure Vessel Design (PVD)

The optimal design of a PVD aims to reduce the total of a pressure vessel constrained
by material, shaping, and welding costs [30]. The PVD problem consists of four variables,
as given in Figure 5: Ts; denotes the thickness of the shell, Tj, presents the thickness of the
head, R is the inner radius, and L provides the length of the cylindrical section of the vessel.
The objective function of this problem can be written as:
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Figure 5. The PVD problem.
Minimize:
f(x) = 0.6224x1 %2, x3 + 1.7781x223 + 3.1661x7 x4 + 19.84x7x3 (22)
Subject to:
g1(x) = —x1 +0.0193x3 <0,
g2(x) = —x3 +0.00954x3 < 0, )

g3(x) = —madxy — 37133 + 1,296,000 <0,
Qa(x) = x4 —240 <0,

Variable range (0 < x; < 100, i = 1.2) and (10 < x; <200, i = 3.4).

Table 7 lists the results obtained by the RSA-SO for the PVD problem and compares it
with the other methods. As listed in Table 7, the suggested RSA-SO provides a lower cost
than the PSO, GWO, MVO, WOA, SSA, RSA, and SO methods, and therefore, RSA-SO is
suggested as a helpful method for the PVD problem. GWO placed second, MVO and SO
placed third and fourth, and RSA placed last for the PVD problem.
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Table 7. Results of RSA-SO and other methods for solving the PVD problem.
Method Best Values for Variables Best Cost
T, T, R L

PSO 1.0000 0.0000 1.0000 1.0000 2758.9974
GWO 1.2591 0.0000 65.2298 10.0000 2613.1828
MVO 1.2614 0.0000 65.2280 10.1553 2630.2904
WOA 1.2679 0.0000 65.6966 13.7572 2878.7608
SSA 1.2738 0.0000 64.9012 11.4029 2734.5819
RSA 1.0000 0.0000 1.0000 1.0000 4277.1962
SO 1.2667 0.0000 65.4471 10.0000 2650.2554
RSA-SO 1.2588 0.0000 65.2252 10.0000 2611.9240

4.4.2. Cantilever Beam Design (CBD)

Figure 6 illustrates the design of the CBD problem. The problem tries to minimize the
total weight, and this problem has five parameters: x1, xp, x3, x4, and x5 [31]. The objective
function of the CBD problem can be mathematically presented as follows:

| . ® - @ - -*-
- |}
9.9 .
1
. T
1
1
+ 1
————— = '
4 - -
constant
Figure 6. The CBD problem.
Minimize:
f(x) = 0.6224( x1x2, X3, X4X5), (24)
Subject to:
60 27 19 7 1
g(x)=—3+—3+—3+—3+—3—1§0 (25)
oY X3y X3

In Table 8, the performance results of the RSA-SO for the CBD engineering problem
are given when it is compared with other MH methods. As per Table 8, the best weight
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obtained by RSA-SO is the smallest compared to the other methods. MVO, WOA, and SO
place second, third, and fourth, respectively, while SSA and RSA are in last place.

Table 8. Results of RSA-SO and other methods for solving the CBD problem.

Best Values for Variables Best
Method i xz X X xs Weight
PSO 1.0000 1.0000 1.0000 1.0000 1.0000 13.6384
GWO 5.5091 5.0942 4.5572 3.6607 2.2053 13.0869
MVO 5.9006 4.8694 4.4550 3.4898 2.1957 13.0146
WOA 5.9583 4.9565 4.4321 3.3923 2.1759 13.0176
SSA 6.3791 3.9871 8.6664 3.6680 1.7987 15.2484
RSA 1.0000 1.0000 1.0000 1.0000 1.0000 15.7689
SO 5.9832 4.7939 4.6247 3.4697 2.0584 13.0268
RSA-SO 5.9481 4.8974 4.4228 3.5007 2.1396 13.0135

Based on the previous results and discussion, the developed RSA-SO has a high ability
to explore the feasible region which contains the optimal solution. However, the time
complexity of RSA-S0O still needs more improvements, especially when applied to handle
high-dimensional data.

5. Conclusions and Future Works

FS is one of the key factors in improving the classifier capability in classification
problems. In this paper, an FS approach based on RSA and SO, named RSA-SO, is presented.
The introduced RSA-SO approach employs both RSA and SO in a parallel mechanism to
tackle the problem of FS. We tested the RSA-SO approach on twelve different public datasets
taken from UCI and two engineering problems. RSA-SO’s capability was evaluated using a
set of evaluation measures and compared with some recently reported MH methods for FS,
including SO, RSA, SSA, WOA, MVO, GWO, and PSO. The results verify that RSA-SO has
a comparative performance to other MH methods for FS, and it can provide practical and
accurate solutions for two engineering optimization problems. For future work, RSA-SO
will be applied to address other problems in different fields, such as sentiment analysis, Big
Data, smart cities, and other practical engineering problems.
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Symbols
Xij ith candidate solution for jth feature dimension
N Number of candidate solutions
M Feature dimension
G Total number of iterations for MH method
fi Fitness value of ith candidate solution
oy Hunting operator for the jth feature in the ith solution in RSA
foA ith candidate solution vector for RSA
xiso ith candidate solution vector for SO
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