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Abstract: Cracks are widespread in infrastructure that are closely related to human activity. It is very
popular to use artificial intelligence to detect cracks intelligently, which is known as crack detection.
The noise in the background of crack images, discontinuity of cracks and other problems make the
crack detection task a huge challenge. Although many approaches have been proposed, there are still
two challenges: (1) cracks are long and complex in shape, making it difficult to capture long-range
continuity; (2) most of the images in the crack dataset have noise, and it is difficult to detect only
the cracks and ignore the noise. In this paper, we propose a novel method called Transformer-based
Multi-scale Fusion Model (TransMF) for crack detection, including an Encoder Module (EM), Decoder
Module (DM) and Fusion Module (FM). The Encoder Module uses a hybrid of convolution blocks
and Swin Transformer block to model the long-range dependencies of different parts in a crack image
from a local and global perspective. The Decoder Module is designed with symmetrical structure to
the Encoder Module. In the Fusion Module, the output in each layer with unique scales of Encoder
Module and Decoder Module are fused in the form of convolution, which can release the effect of
background noise and strengthen the correlations between relevant context in order to enhance the
crack detection. Finally, the output of each layer of the Fusion Module is concatenated to achieve
the purpose of crack detection. Extensive experiments on three benchmark datasets (CrackLS315,
CRKWH100 and DeepCrack) demonstrate that the proposed TransMF in this paper exceeds the best
performance of present baselines.

Keywords: crack detection; convolutional neural network; transformer; multi-scale fusion

MSC: 68T45

1. Introduction

With the development of Deep Learning (DL), Artificial Intelligence (AI) has ushered
in great prosperity. It has become a popular trend to find ways to solve tasks automatically
instead of manually, permeating all aspects of our lives, such as Facial Recognition (FR) [1],
Vehicle License Plate Recognition (VLPR) [2], Image Classification [3–5] and so on. More
importantly, AI has been able to provide support for the safety of life and property, in
which a relatively popular task is crack detection. A crack is a line structure and crack
detection is a kind of segmentation task, or object detection task, which detects cracks on
the object surface in an automatic way, and has practical significance for human survival
and life. Public service infrastructures, such as bridges [6–8], and pavements [9–12], are
directly related to the safety of human life, and cracks on the surface of which, to some
extent, represent the degree of damage of these public facilities. Therefore, it is critical and
important to detect cracks more quickly and efficiently.

The encoder–decoder framework is a popular method to solve crack detection, which
has been widely used in an image segmentation domain. The encoder takes an input image
and generates a high-dimensional feature vector and the decoder takes a high-dimensional
feature vector and generates a semantic segmentation mask. High-dimensional features
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can be aggregated with at multiple levels. U-Net [13] is a pioneering work in the field
of crack detection, using a symmetric encoder–decoder framework with skip connec-
tion firstly, where both the decoder and encoder are implemented with Convolutional
Neural Networks (CNNs). Based on U-Net [13], many excellent methods have been pro-
posed [12,14,15]. However, the network framework of the above methods is relatively
simple, and requires a large amount of data augmentation to improve the segmentation
effect [16]. In addition, the Convolutional Neural Networks (CNN) have the limitation of
the receptive field. During the convolution process, the weight calculation is performed
in the receptive field of a certain size. Generally speaking, the receptive field is not very
large, and combined with the slender feature of cracks, the convolution cannot capture the
long-range dependencies of cracks, which may result in performance degradation. Recently,
Transformer [17] was proposed to model long-range dependencies for contextual encoding
of natural language, which has developed rapidly in the field of computer vision in the last
2 years, and a number of variants have been proposed, such as Vision Transformers [18],
Swin Transformer [19], Star-Transformer [20], etc. CrackFormer [21] is a Crack Transformer
network (CrackFormer) with a transformer encoder–decoder structure, which proposes
a self-attention block and scaling-attention block for fine-grained crack detection. Today,
there has been some research using a transformer-based multi-scale method on many
applications. Kong et al. [22] proposed a multi-scale temporal transformer for skeleton-
based action recognition.Xiao et al. [23] proposed a multi-scale spatiotemporal transformer
to efficiently aggregate contextual information in long-time sequences of video frames.
Yuan et al. [24] proposed a multi-scale adaptive segmentation network based on Swin
Transformer for remote sensing image segmentation.

In addition, Deep Learning can obtain the deep contour features of an image, but
the shallow features are rich in texture information of the image that contains unwanted
noise. Noise is a thorny problem in crack detection [25], and how to design robust network
architecture is very important for crack detection. A very common method is to simply fuse
shallow features and deep features using a skip connection. For example, YOLOv3-Lite [26]
adopts depthwise separable convolution, feature pyramid, and YOLOv3 to detect cracks
in aircraft structures. CrackSeg [27] introduces a novel multi-scale dilated convolutional
module to learn rich deep convolutional features under complex background. Although
the above methods have achieved good results in solving the problem of background
noise, they still cannot pay more attention to the detection object while removing the
background noise.

Overall, there are two challenges that need to be addressed in order to effectively
model crack detection:

• Challenge 1: Cracks on the surface of objects are thin and long with complex shapes,
which makes it difficult to detect cracks. At present, many methods use Convolutional
Neural Networks (CNNs) to extract deep features of cracks, but the convolutional
features can only model local features, and ignore the global feature relationship that
can capture long-range dependencies. The long-range dependencies can coordinate
the overall characteristics of the cracks. Therefore, we conclude the first challenge is:
how can we model the long-range dependencies of different parts in a crack image
from a local and global perspective for a better crack image understanding?

• Challenge 2: Images of cracks are taken from various facilities, such as bridges,
buildings, railways, roads and other public building facilities, or household items
such as cups and tables. Therefore, the actual scene of cracks is complex and diverse,
and the crack detection task cannot ignore these background noises, which leads to
incorrect detection of cracks and reduces the detection efficiency. The crack features
extracted by convolution are divided into shallow low-level features and deep high-
level features. Shallow low-level features contain the texture information of cracks, and
deep high-level features contain the general contour information of cracks. However,
shallow low-level features are highly affected by the background noise, while deep
high-level features are less affected by background noise. So, we concluded that the
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second challenge is: how can we remove the effect of background noise from the
low-level features of crack images, which is an important prerequisite to enhance the
crack detection?

Motivated by the above discussions, we propose a novel method called Transformer-
based Multi-scale Fusion Model (TransMF) for crack detection, which consists of three mod-
ules: Encoder Module (EM), Decoder Module (DM) and Fusion Module (FM). For Challenge
1, we use a hybrid of convolution and transformer approaches, combining global and
local perspectives, to explore the long-range dependencies of various parts in the crack.
Specifically, we design an Encoder Module (EM) and Decoder Module (DM), which are
symmetrical and contain multiple layers of Conv-Block and Swin Transformer block, re-
spectively, as shown in Figure 1. For Challenge 2, we design a Fusion Module (FM) to fuse
the multi-scale features from different layers in the encoder and decoder to mitigate the
effect of background noise through fusing low-level and high-level features in the form
of convolution, which can assist in strengthening the correlations between the relevant
context for enhancing the crack detection. In general, the contributions in this paper are
summarized as follows:

• We propose a novel Transformer-based Multi-scale Fusion Model (TransMF) for crack detec-
tion, including an Encoder Module (EM), Decoder Module (DM) and Fusion Module
(FM), which performs encoding and decoding symmetrically, and fuses at different levels
to preserve the information of the underlying features and deep features.

• Both the Encoder Module (EM) and Decoder Module (DM) utilize a hybrid architecture
of Convolutional Neural Networks (CNN) and Swin Transformers, which can capture
both detailed spatial information from local features and the global context encoded
by Transformers.

• In this paper, a multi-scale Fusion Module (FM) is designed, rather than a simple skip
connection, to effectively fuse the encoder and decoder features of each layer with different
scales to form a comprehensive representation, preventing wrong detection of noise.

• We evaluate TransMF on three benchmark datasets (CrackLS315 [28], CRKWH100 [28]
and DeepCrack [14]). Experimental results demonstrate that the proposed TransMF
exceeds the best performance of present baselines.

Figure 1. The overall framework of the proposed TransMF, which consists of three modules: an
Encoder Module (EM), Decoder Module (DM) and Fusion Module (FM). Both the Encoder Module
(EM) and Decoder Module (DM) utilize a hybrid of Convolutional Neural Networks (CNNs) and
Swin Transformers, which are symmetrical. The Fusion Module (FM) fuses multi-scale features to
form a comprehensive representation.
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2. Related Work
2.1. Crack Detection

Surface cracks are everywhere around us, being on things such as daily necessities,
public building facilities, transportation tools and so on. The existence of cracks brings
us great inconvenience and will endanger our lives and health to a certain extent. Crack
detection has thus become a popular research field. The traditional crack detection method
is that the inspector goes to the scene to detect cracks using the detection instrument, which
is time-consuming, laborious and costly, also bringing great danger to the inspector. As
Machine Learning [29] evolved, people designed manual features to train models for initial
automatic detection. As Deep Learning [30] then came to a boom, models were learned in
a black-box manner, facilitating the further development of crack detection, during which
Convolutional Neural Networks (CNNs) [31] were widely used. In recent years, much
excellent crack detection work has been proposed, such as [13,14,28,32].

Currently, crack detection based on deep learning can be divided into two kinds of
methods [33] as shown in the left part in Figure 2: (1) image processing-based method for
crack detection; (2) machine learning method for crack detection. In the first method, which
utilizes handcrafted features, high-resolution images are preprocessed to remove noise and
shadows using filters, segmentation and other approaches. Edge detection, segmentation,
or pixel analysis are used to highlight or segment the cracked part in the image. In the
second method, the dataset is preprocessed and a machine learning model is used to classify
the cracked regions.

Figure 2. On the left are two methods of crack detection, including: (1) image processing-based
method for crack detection, which utilizes handcrafted features; (2) machine learning method for
crack detection, which utilizes learned features by the model. The right side shows that the methods
based on machine learning include two categories, object detection method for crack detection and
segmentation method for crack detection.

Among them, the methods based on machine learning include two categories, object
detection method for crack detection and segmentation method for crack detection. The
former detects regions containing cracks, and the latter segments crack contours, including
semantic segmentation and instance segmentation, as shown as the right part in Figure 2.
YOLOv3-Lite [26] uses the deep separable convolution to extract features, and utilizes the
feature pyramid to preserve semantic information at different levels. A crack detection
method based on the YOLOv4 algorithm is proposed in [34], which achieves good crack
detection results with a lower trained model weight. To overcome the complicated and
uneconomical disadvantages of traditional crack detection methods, a pavement crack
detection network [35] is proposed to combine YOLOv5 and Transformer. Zhou et al. [36]
propose a novel network architecture with richer feature fusion and attention mechanism
and mixed pooling module for crack detection. Qu et al. [37] propose a deeply supervised
convolutional neural network for crack detection via a novel multiscale convolutional
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feature fusion module. A more fine-grained method is utilized in [38], where raw images
are cropped into smaller images, and cracks are detected with a trained CNN classifier
and an exhaustive search with a sliding window. U-Net [13] utilizes Convolutional Neural
Networks (CNNs) to design encoder and decoder forming a ‘U’-shaped net and detect a
crack in form of segmentation. Based on U-Net [13], many excellent methods have been
proposed [12,14,15]. For example, Liu et al. [14] utilize an encoder–decoder architecture
to learn hierarchical features of cracks in multiple scenes and scales effectively for crack
detection. CrackU-net [12] uses a ’U’-shaped model architecture to achieve crack detection,
including convolution, pooling, transpose convolution, and concatenation operations in
it. Liu et al. [15] propose a two-step pavement crack detection and segmentation method
based on modified U-Net, in which a residual neural network (ResNet-34) pre-trained
by ImageNet [39] is used as the encoder and convolution layers as the decoder. Dense
Attention U-Net [40] proposes a encoder with multi-stage dense blocks to improve its
capability for extracting informative contextual features. In this paper, we mainly focus on
the segmentation method for crack detection.

2.2. Semantic Segmentation for Crack Detection

Semantic segmentation is a computer vision task, which performs binary classification
for each pixel according to its semantics: ‘0’ for the background and ‘1’ for the foreground [5].
Generally speaking, the segmentation network designs a feature extraction network to
obtain a feature map which is the same size as the original image, and performs a class
prediction operation on each pixel. To enrich the channel information, down-sampling
and up-sampling are chosen to form a feature extraction network. With the development
of Convolutional Neural Networks (CNN), the down-sampling and up-sampling parts
are replaced by various convolutional networks, called encoder and decoder. In recent
years, transformers [17], originally used for Natural Language Processing (NLP), have
set off a boom in the field of Computer Vision (CV), and more and more methods use a
transformer [17] to complete segmentation tasks.

The object detection method for crack detection can only achieve the classification
and rough location of cracks. More intuitive and accurate detection results are obtained by
pixel-level crack detection [41]. There are three major types of approaches in the field of
Semantic segmentation for Crack Detection, namely thresholding-based, edge-based, and
data driven-based methods [42]. The first two are rule-driven segmentation methods. In
this paper, we mainly focus on data-driven segmentation methods using neural networks.
The fully connected segmentation method is popular with many researchers [41,43]. Dung
et al. [43] propose a crack detection method based on deep Fully Convolutional Network
(FCN). To solve time-consuming and labor-consuming problems, Yang et al. [41] propose a
Fully Convolutional Network (FCN) with multiple steps to realize automatic pixel-level
Crack Detection and Measurement. A modified FCN architecture is proposed in [44] to
provide pixel-level detection of multiple damages. The U-Net [13] network expresses the
encoding and decoding with a ’U’-shape and becomes the basis of many works [45–48], in
which Convolutional Neural Networks (CNNs) make a good effect. As transformer [17] is
widely used in the field of Computer Vision (CV), many works [21] also use transformer for
crack segmentation, in which self-attention block and scaling-attention block are utilized
for fine-grained crack detection.

Unlike the above methods, Convolutional Neural Network (CNN) and Transformer
are both used in TransMF to jointly coordinate feature learning from both global and local
perspectives, and to predict cracks by integrating features of different scales, in which
long-range dependencies can be grasped and the impact of noise is minimized as much
as possible.

3. Methodology
3.1. Problem Definition

Generally speaking, crack detection is a kind of image segmentation task, which
applies image segmentation to the scene of detecting cracks on objects. Therefore, the
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dataset and evaluation metrics of crack detection are basically the same as the requirements
of image segmentation. Given an image I ∈ RW×H×C, its label image is L ∈ RW×H , which
is a binary image, and each pixel of the image belongs to a category, where W is image
width, H is image height and C is the channel of the image. In this paper, the total number
of categories is m. The trained model is used to predict the class of each pixel of the image
and statistically evaluated using an evaluation metric.

3.2. Overall Framework

In this paper, we propose a novel Transformer-based Multi-scale Fusion Model
(TransMF) to detect cracks on objects by designing an Encoder Module (EM), Decoder
Module (DM) and Fusion Module (FM).

• Encoder Module (EM) : The Encoder Module (EM) proposed in this paper is stacked
by N Conv-Block and one Swin-Trans-Encoder Block. Each layer of Conv-Block has
different image scales. By extracting deep features of images with convolution, and
extracting feature relations with Swin-Trans-Encoder Block, the features with deep se-
mantic relations are obtained. In this way, we can model the long-range dependencies
of different regions in the crack image from a local and global perspective.

• Decoder Module (DM): The Encoder Module (EM) and Decoder Module (DM) in
TransMF proposed in this paper are symmetric, that is to say, the Decoder Module
(DM) is also composed of Swin-Trans-Encoder Block and Conv-Block, and is consistent
with the parameter Settings of the Encoder Module (EM). It is worth noting that the
feature dimension of the Encoder Module (EM) decreases layer-by-layer, while the
dimension of the Decoder Module (DM) increases layer-by-layer. The output of each
layer of the Encoder Module (EM) and Decoder Module (DM) are jointly input to the
Fusion Module (FM).

• Fusion Module (FM): In order to achieve the representation fusing both low-level
features and deep features, in this paper, we design a Fusion Module (FM), which
fuses the outputs of encoder and decoder where images are different scales. To fuse
those multiple scales feature maps, we concatenate the fusion features of different
levels together to form the comprehensive representation, which can mitigate the
effects of background noise for crack detection.

In this section, we will introduce our Transformer-based Multi-scale Fusion Model
(TransMF) in detail.

3.3. Encoder Module (EM)

To model the long-range dependencies relation of different parts in the crack image
from a local and global perspective, we propose a method which is a hybrid of convolution
and Transformer, to explore those relationships of various parts in the crack, in which
Conv-Block and Swin-Trans-Encoder Block are proposed.

As mentioned as Section 3.1, the input of our model are image label pair: {I, L}, I ∈
RW×H×C, L ∈ RW×H . Encoder Module (EM) is consists of Conv-Block and Swin-Trans-
Encoder Block, the output feature is fen.

Conv-Block: In order to alleviate the influence of noise and obtain the local feature
from a local perspective, in this paper, we design Conv-Block to obtain multi-scale feature
maps. In Encoder Module (EM), Nx Conv-Block is used to extract the features of crack
image I forming different scale feature maps. The structure of Conv-Block is shown in
Figure 3a: each convolution operation is followed by a RELU activation function called
Conv-RELU Block, in which the size of the convolution kernel is 3 × 3. After Mx convolu-
tions, the max-pooling feature is sent into the next Conv-Block. The i-th output feature of
Conv-Block is Ii

enconv , i ∈ [1, N] as Equation (1)

Ii+1
enconv = MaxPooling(RELU(Conv(Ii

enconv))︸ ︷︷ ︸
M×

) (1)
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where Ieni
conv
∈ RWi×Hi×Ci

and I1
enconv = I.

Swin-Trans-Encoder Block: In order to model the long-range dependencies relation
of different crack regions from a global perspective, in this paper, we divide the output
feature map of the last Conv-Block and design a Swin-Trans-Encoder Block to explore this
relationship. The structure is shown in Figure 3c, in which ST block [19] is shown as (e).

The Swin-Trans-Encoder Block is composed of a Patch-Embedding layer and two ST
blocks (Swin Transformer Block). Through the Patch Embedding operation, we split the
feature map into 4 × 4 patches following Swin Transformer [19] and embed the feature

getting Iem ∈ RWN
4 ×

HN
4 ×CN

. However, we only use two ST blocks to encode these patch
features. The ST block is calculated as Equation (2)

ẑl = W-MSA(LN(zl−1)) + zl−1

zl = MLP(LN(ẑl)) + ẑl

ẑl+1 = SW-MSA(LN(zl)) + zl

zl+1 = MLP(LN(ẑl+1)) + ẑl+1

(2)

where ẑl is the output for (S)W-MSA and zl for MLP.
In summary, the Swin-Trans-Encoder Block is described by Equation (4).

fenst = ST_Block︸ ︷︷ ︸
4×

(PosEmbed(IN
enconv)) (3)

where IN
enconv is the output feature of the N-th Conv-Block.

(a) (b) (c) (d) (e)

Figure 3. Subfigure (a) is Conv-Block, which consists of M convolution-activation blocks. The
output in Encoder Module (EM) is the pooled feature, but the output in Decoder Module (DM) is
the upsampling feature. Subfigure (b) is Conv-Fusion Block, which fuses the encoding feature and
the decoding feature by concatenating, and then uses convolution fusing deeply. Subfigure (c) is
Swin-Trans-Encoder Block, which uses Patch Embedding for image slicing and positional encoding,
and uses two swin transformer blocks to extract features containing relationships, and uses Patch
merging to merge image slices. Subfigure (d) is the Swin-Trans-Decoder Block, which uses the same
number of swin transformer blocks as the Swin-Trans-Encoder Block. Subfigure (e) is the architecture
of the swin transformer block.

3.4. Decoder Module (DM)

To decode the features from Encoder Module (EM), we design the Decoder Module
(DM) symmetrically, including Swin-Trans-Decoder Block and Conv-Block, where the layer
configuration of Conv-Block is symmetric to that in the Encoder Module (EM). Then we
obtain the feature fde.
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Conv-Block: For details, refer to the explanation of Conv-Block in Encoder Module
(EM). It should be noted that the pooling operation is performed when encoding, and the
up-sampling operation is performed when decoding.

Swin-Trans-Decoder Block: The Swin-Trans-Decoder Block consists of two ST blocks
and Patch Expanding, where the ST block is calculated as Equation (2). It is worth noting
that the dimensions of the ST block in the Swin-Trans-Decoder Block and Swin-Trans-
Encoder Block are the same.

For up-sampling, we design Patch Expanding through which we obtain the Swin-
Trans-Decoder feature. The specific implementation is to use linear layers and normaliza-
tion. After the Patch Expanding operation, the feature dimension is W

′ × H
′ × C

′
.

fdest = PatchExpanding(ST_Block︸ ︷︷ ︸
4×

( fenst)) (4)

Then, the output feature Ii
de, i ∈ [0, N] of Swin-Trans-Decoder Block is sent to the

stacked Conv-Block layers and the i-th layer is calculated as Equation (5).

Ii
deconv

= UpSampling(RELU(Conv(Ii−1
deconv

))︸ ︷︷ ︸
M×

) (5)

where I1
deconv

= fdest

3.5. Fusion Module (FM)

In order to better fuse the encoding features and decoding features of different scales, in
this paper, we design a Fusion Module (FM), as shown as Figure 3b. First, the concatenated
features of encoding and decoding of each scale from different layers are fused in the form
of 1× 1 convolution, and deconv is as up-sampling to obtain the same scale feature map.
Finally, the convolutional fusion features at different scales are concatenated to obtain the
final feature as described in Figure 1.

Given the encoding feature f i
en and decoding feature f i

de of the i-th layer, the fusion
feature Ii

f usion is calculated as Equation (6).

Ii
f usion = Deconv(RELU(Conv(Concat( f i

en, f i
de)))) (6)

where i ∈ [1, N + 1]. Note that when i ∈ [1, N], fen = Ii
enconv , fde = Ii

deconv
, and when

i = N + 1, fen = fenst , fde = fdest . As shown as Equation (7).

f i
en =

{
Ii
enconv , i ∈ [1, N]

fenst , i = N + 1
f i
de =

{
Ii
deconv

, i ∈ [1, N]

fdest , i = N + 1
(7)

Finally, the predicted feature is calculated according to the following Equation (8)
referring to Figure 1.

I f usion = Concat(Ii
f usion), i ∈ [1, N + 1] (8)

3.6. Loss Function

Given predicted feature I f usion, we chose Binary Cross Entropy to calculate the loss as
Equation (9). Given the number of pixels in an input image, denoted as M = W × H × C,
the value of the j-th pixel on the feature map is Fj, and its label is Lj, the loss is calculated as
Equation (9).

l(Fj; W) =

{
log(1− Sigmoid(Fj; W)), i f Lj = 0
log(Sigmoid(Fj; W)), i f Lj = 1

(9)
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Then, the final loss is calculated as Equation (10).

Loss =
M

∑
j=1

(
N

∑
i=1

l(Fi
j ; W) + l(F f usion

j ; W)) (10)

4. Experiments

Extensive experiments are performed on three public datasets, and the results are
compared with the current state-of-the-art baselines. In this section, the experimental
results and result analysis will be presented in detail.

4.1. Dataset

To demonstrate the effectiveness and robustness of the method TransMF proposed in
this paper, we compare it with the state-of-the-art baselines on three benchmark datasets
(CrackLS315 [28], CRKWH100 [28] and DeepCrack [14]). Data augmentation is used in
these three datasets all in form of random blur and random color jitter. The details are
shown in Table 1.

Table 1. The statistics of two benchmark Datasets .

Split CrackLS315 CRKWH100

# train 252 80
# test 63 20
# total 315 100

4.1.1. CrackLS315 Dataset

In CrackLS315 [28], 315 asphalt road pavement images are captured under laser
illumination with a line-array camera at the same ground sampling distance. The size of
each image is 512 by 512 pixels. This dataset is divided into 265 images for train, 10 images
for validation and 40 images for test in [28]. In this paper, for simplicity, we randomly
shuffle the dataset and divide it into a train set and test set in a ratio of 4:1.

4.1.2. CRKWH100 Dataset

CRKWH100 [28] consists of 100 road pavement images of size 512 × 512 pixels, all of
which are captured by a line-array camera at a ground sampling distance of 1 millimetre
under visible-light illumination. In [28], this dataset is used as a validation set, and in this
paper, this dataset is divided into a train set and test set according to the same rules as
CrackLS315 [28].

4.1.3. DeepCrack Dataset

In DeepCrack [14], a public benchmark dataset with cracks in multi-scale and multi-
scene is established, which consists of 537 RGB color images with manually annotated
segmentations. The images in this dataset are of a fixed size of 544 × 384 pixels. In our
experiments, we divide it into a train set and test set in a ratio of 4:1 following [28].

4.2. Evaluation Metrics

In order to compare with the current baseline methods quantitatively, in this paper,
several evaluation metrics are selected and calculated referring to [14], including Global
accuracy, Class average accuracy, Mean intersection over Union, Precision, Recall and
F-score.

Given an image I, the label image of which is L. The number of pixel categories is m,
and in the background of Crack Detection in this paper, m = 2. For the i-th class pixels
which are predicted to class j, the number of pixels is denoted as nij and i, j ∈ [0, m− 1].
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4.2.1. Global Accuracy (G)

The percentage of the pixels correctly predicted is measured by Global accuracy (G),
which is calculated as following Equation (11)

G =
∑m

i=0 nii

∑m
i=0 ∑m

j=0 nij
(11)

4.2.2. Class Average Accuracy (C)

The predictive accuracy over all classes is called Class average accuracy (C), which is
calculated as Equation (12).

C =
1
m
× ∑m

i=0 nii

∑m
j=0 nij

(12)

4.2.3. Mean Intersection over Union (I/U)

Mean intersection over union (I/U) over all classes is calculated as Equation (13).

I/U =
1
m
× ∑m

i=0 nii

∑m
j=0 nij + ∑m

j=0 nji − nii
(13)

Intersection-Over-Union is a common evaluation metric for semantic image segmenta-
tion. For an individual class, the IOU metric is defined as Equation (14):

IOU =
TP

TP + FP + FN
(14)

Mean intersection over union first computes IOUs for all individual classes, then
returns the mean of these values, which is the standard metric of segmentation and widely
used in crack detection

4.2.4. Precision (P)

According to the definition of the confusion matrix of machine learning, the Precision
(P) is calculated as Equation (15).

P =
nTP

nTP + nFP
(15)

where nTP is the number of True Positives, nFP is the number of False Positives.

4.2.5. Recall (R)

According to the definition of the confusion matrix of machine learning, the Recall (R)
is calculated as Equation (16).

R =
nTP

nTP + nFN
(16)

where nTP is the number of True Positives, nFN is the number of False Negatives.

4.2.6. F-Score (F)

Given Precision (P) and Recall (R), F-score (F) is calculated as Equation (17).

F =
2PR

P + R
(17)

4.3. Baselines

In order to prove the effectiveness of TransMF proposed in this paper, with the above
datasets and evaluation metrics, we select several strong baseline methods for comparison,
including: HED [49], U-Net [13], SegNet [50], DeepCrack [14]. The details of the baseline
methods are as follows:
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• HED [49]: HED is an edge-detection algorithm consisting of fully convolutional neural
networks and deeply-supervised nets, which can detect edges at a speed of practical
relevance.

• U-Net [13]: U-Net consists of a contracting path to capture context and a symmetric ex-
panding path that enables precise localization, which achieves very good performance
due to data augmentation.

• SegNet [50]: SegNet detects cracks using semantic pixel-wise segmentation, which
consists of an encoder network, a corresponding decoder network followed by a
pixel-wise classification layer, eliminating the need for learning to upsample.

• DeepCrack [14]: DeepCrack predicts pixel-wise crack segmentation in an end-to-end
method, which proposes a CNN-based learning method for semantic segmentation
using the ’U’-shaped model architecture.

• DAUnet [40]: DAUnet is proposed to use the dense attention with U-Net, and uti-
lizes a encoder with multi-stage dense blocks to improve its capability of extracting
informative contextual features.

• MPRA [36]: MPRA uses a novel network architecture with richer feature fusion and
attention mechanism and mixed pooling module for crack detection.

To demonstrate the effectiveness of all components in TransMF, several variants are
designed, which are introduced in detail in Section 5.2.

4.4. Experimental Setting

We use three datasets, CrackLS315 [28], CRKWH100 [28] and DeepCrack [14], which
are often used as test sets. Six evaluation strategies are used to evaluate the prediction
effect, including Global accuracy (G), Class average accuracy (C), Mean intersection over
Union (I/U), Precision (P), Recall (R) and F-score (F). The first three are widely used to
evaluate semantic segmentation, and the latter three are commonly used for crack detection.
A better I/U can highlight the superiority of our method in the field of image segmentation,
and a better F1 score can be a convenient comparison in the field of crack detection, because
crack detection is not only implemented by the method of image segmentation, but also
the method of image detection, which is introduced in related work section.

We implement the network using the PyTorch deep learning framework. The initial
value of the learning rate is 1 × 10−3, which decays every 1000 iterations with a decay
rate of 0.1. The momentum is set to 0.9 and withou weight decay. We use Adam as the
optimizer and a NVIDIA GeForce GPU for training.

5. Discussion
5.1. Quantitative Results

Detailed results on three datasets are shown in Table 2. In addition, we also draw PR
curves to qualitatively compare the performance of different methods, as shown in Figure 4.
From which we can obtain the subsequent observations:

(1) As can be seen from Table 2, our proposed TransMF achieves the best results on
all metrics except Precision (P) on both CrackLS315 [28] and CRKWH100 [28] datasets.
However, the F1 score indicates that our method is the best, and the low Precision indicates
that many hard cases in the dataset are still problems to be studied in crack detection.
SegNet [50] is better than Unet showing that a simple skip connection cannot fuse feature
information of different scales. HED [49] is implemented by a full connection network and
contains rich information, but there is still redundant information. Our TransMF is better
than DeepCrack [14], indicating that the proposed Transformer-based Multi-scale Fusion
Model could grasp long-range relation information from a local and global perspective.
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Table 2. The results of comparison among baselines of TransMF on three datasets. The bold means
that the best result for each baseline method.

Dataset Methods
Metrics

G C I/U P R F1

CrackLS315 [28]

HED 99.81 74.08 69.34 69.34 48.22 55.99
Unet 99.75 72.32 65.42 50.45 44.75 47.43

SegNet 99.81 69.15 66.79 73.93 38.34 50.5
DeepCrack 99.60 73.99 61.51 31.28 48.25 37.95

DAUnet 99.77 73.91 67.13 55.17 47.91 51.29
MPRA 99.80 79.72 71.27 60.32 59.53 59.88

TransMF 99.81 80.78 72.24 61.84 61.67 61.75

CRKWH100 [28]

HED 99.83 75.13 71.91 77.82 50.30 61.10
Unet 99.78 72.84 67.54 60.72 45.75 52.18

SegNet 99.84 73.97 72.40 87.79 47.96 62.03
DeepCrack 99.59 73.97 61.83 32.48 48.22 38.81

DAUnet 99.77 71.73 66.53 58.56 43.54 49.94
MPRA 99.83 83.20 75.37 68.5 66.49 67.48

TransMF 99.85 84.08 77.37 73.76 68.22 70.88

DeepCrack [14]

HED 98.55 90.54 81.76 75.86 81.97 78.80
Unet 98.46 88.71 82.12 80.68 78.16 79.40

SegNet 98.59 88.59 83.15 84.01 77.77 80.77
DeepCrack 99.17 94.57 88.74 86.14 89.64 87.85

TransMF 99.27 94.44 89.78 88.89 89.27 89.08
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Figure 4. The Precision–Recall (PR) curve for crack detection. (a) on CrackLS315 dataset,
(b) CRKWH100 dataset.

Compared to MPRA, which uses spatial attention and a channel-wise attention for
low-level features and high-level features separately, our proposed TransMF utilizes an
encoder–decoder structure to extract multi-scale visual features and construct the multi-
scale targets sequentially, which can capture both high-level semantics and low-level details
for crack detection. Compared to DAUnet, which utilizes a dense block for every encoder
layer to extract contextual features, our proposed TransMF integrates a Swin-Transformer
to capture long-term relations between all visual regions which can extract the richer
contextual information.

(2) It can be seen from the PR curve in Figure 4, that the PR curve of TransMF com-
pletely wraps the other curves, showing that TransMF is completely better than other
methods on the CRKWH100 [28] dataset. Although it cannot be distinguished from the
performance of SegNet and the others on the CrackLS315 [28] dataset, our curve is convex
and full, which means our method is better. Precision effectively describes the accuracy of
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our positive predictions, i.e., all objects that we predicted in a given image. Recall effec-
tively describes the completeness of our positive predictions relative to the ground truth.
However, Precision and Recall can be adjusted by changing the value of the classification
threshold. Usually, while the classification threshold increase, the Precision will increase
and the Recall will decrease. Therefore, comparing methods via only Precision or Recall is
not very meaningful and F-Measure is proposed to combine both Precision and Recall into
a single measure that captures both properties. Although the Precision of our method is
lower than SegNet and HED, both the Recall and the F1 score are optimal, which can prove
the superiority of our method.

In addition, we run all methods on the same server with a GeForce RTX 3090 GPU and
and a 2.3 GHz E5-2630 CPU. The results of time costs are reported in Table 3, where FPS
means frames per second. As the input images are scaled to the same size on two datasets,
the time costs of a specific method do not change on different datasets. While the proposed
TransMF achieves significant performance improvements, its FPS score does not decrease a
lot compared to baseline methods, which means the additional time costs are affordable.

Table 3. Time costs on two datasets.

Dataset Method FPS

HED 18
Unet 15

CrackLS315 SegNet 14
DeepCrack 10

TransMF 12

HED 18
Unet 15

CRKWH100 SegNet 14
DeepCrack 10

TransMF 12

5.2. Analysis of TransMF Components

In order to demonstrate the effectiveness of using Transformer and the Multi-scale
Fusion model in TransMF, we design several variants for a common comparative study
introduced as follows:

• TransMF¬ f : A variant of TransMF in which the Fusion Module is removed, and only
uses the a Conv-Block in an Encoder Module (EM) and Decoder Module (DM).

• TransMF¬st: A variant of TransMF which the Swin-Trans-Encoder Block and Swin-
Trans-Decoder Block are removed in the Encoder Module (EM) and Decoder Module
(DM).

• TransMF: the full TransMF.

Several variants of TransMF are performed and analyzed as follows, and experimental
results are displayed in Table 4, from which we observe and draw the following conclusions:

(1) Effects of Fusion Module: From the comparison results of TransMF and TransMF¬ f , it
can be seen that the Fusion Module plays a great role in feature representation for
crack detection. With the help of the Fusion Module (FM), we obtain good features
and the impact of noise can be minimized.

(2) Effects of Transformer part: We compare TransMF and TransMF¬st, and the result of
TransMF is higher than that of TransMF¬st, illustrating the effectiveness of the Swin
Transformer, indicating that TransMF can model the long-range dependencies relations
of different parts in a crack image.
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Table 4. The results of comparison among different variants of TransMF on CrackLS315 and
CRKWH100 datasets. The bold means that the best result.

Dataset Methods
Metrics

G C I/U P R F1

CrackLS315 [28]
TransMF¬st 99.76 74.04 66.59 52.16 48.19 50.1
TransMF¬ f 99.75 71.23 65.06 51.48 42.56 46.6

TransMF 99.81 80.78 72.24 61.84 61.67 61.75

CRKWH100 [28]
TransMF¬st 99.83 82.78 75.32 69.21 65.64 67.38
TransMF¬ f 99.76 71.45 66.13 57.12 42.98 49.05

TransMF 99.85 84.08 77.37 73.76 68.22 70.88

5.3. Impacts of the ST Block Layers

In our framework, 4-layer ST blocks are used in both Swin-Trans-Encoder Block and
Swin-Trans-Decoder Block. We conduct an experimental study on the number of layers
of the ST block denoted as c, and the results are shown in Table 5. Of course, the more ST
block layers are set, the better the effect will be. However, for the comprehensive time and
efficiency, we select c = 4 in this paper.

Table 5. The results of the number of the BT block layers on three datasets. The bold means that the
best result for different block layers.

Dataset c
Metrics

G C I/U P R F1

CrackLS315 [28]

c = 1 99.82 81.83 74.52 68.36 63.74 65.97
c = 2 99.85 81.02 75.83 75.78 62.09 68.25
c = 3 99.84 83.09 76.52 72.98 66.25 69.45
c = 4 99.85 84.08 77.37 73.76 68.22 70.88
c = 5 99.80 79.29 71.37 61.58 58.67 60.09

CRKWH100 [28]

c = 1 99.78 78.17 69.82 57.56 56.45 57.00
c = 2 99.8 79.49 71.09 60.01 59.08 59.54
c = 3 99.79 79.02 70.34 57.96 58.14 58.05
c = 4 99.81 80.78 72.24 61.84 61.67 61.75
c = 5 99.84 81.13 75.21 72.84 62.33 67.18

5.4. Case Study

We picked a few images, visualized the predicted pictures, and compared different
methods. As shown in the Table 6, it can be seen that U-Net [13] and DeepCrack [14] are
poor for continuity detection of cracks and cannot capture long dependencies. SegNet [50]
and HED [49] are better at capturing continuity, but still not as good as our proposed
TransMF, which shows that long-range dependencies relationships are grasped by TransMF.
As can be seen from the 4th image in Table 6, there is no noise crack in the image predicted
by TransMF but exists in the image predicted by SegNet, which shows the robustness to
noise of TransMF.
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Table 6. Visualization of original and predicted segmentation images by all the methods.

Original Image Ground Truth HED Unet SegNet DeepCrack TransMF

6. Conclusions

In this paper, we propose a novel crack detection method called Transformer-based
Multi-scale Fusion Model (TransMF), which detects a crack in form of semantic segmentation.
The framework of TransMF includes an Encoder Module (EM), Decoder Module (DM) and
Fusion Module (FM), in which the Encoder Module and Decoder Module use multiple
convolution blocks and a Swin Transformer block to model the long-range dependencies of
different parts in a crack image from a local and global perspective for a better crack image
understanding. The output of the Encoder Module and the output of the Decoder Module
at different scales are fused in the form of Convolution in the Fusion Module. The output of
each layer of the Fusion Module is spliced to alleviate achieve the effect of background noise
for the purpose of crack detection. Extensive experiments on three benchmark datasets
(CrackLS315, CRKWH100 and DeepCrack) demonstrate that the proposed TransMF in this
paper exceeds the best performance at present.
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Abbreviation Extension
EM Encoder Module
DM Decoder Module
FM Fusion Module
DL Deep Learning
AI Artificial Intelligence
FR Face Recognition
VLPR Vehicle License Plate Recognition
CNNs Convolutional Neural Networks
NLP Natural Language Processing
CV Computer Vision
FCN Fully Convolutional Network
ST Swin Transformer
G Global accuracy
C Class average accuracy
I/U Mean intersection over Union
P Precision
R Recall
F F-score
PR Precision-Recall
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