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Abstract: In this work, by introducing multiple parameters and utilizing the Euler-Maclaurin sum-
mation formula and Abel’s partial summation formula, we first establish a reverse Hardy-Hilbert’s
inequality containing one partial sum as the terms of double series. Then, based on the newly
proposed inequality, we characterize the equivalent conditions of the best possible constant factor
associated with several parameters. At the end of the paper, we illustrate that more new inequalities
can be generated from the special cases of the reverse Hardy—Hilbert’s inequality.

Keywords: reverse Hardy-Hilbert’s inequality; partial sum; multiple parameters; best possible
constant factor
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1. Introduction

Letp > 1, % %:1, am > 0,by, >0,0< Y% jap <ocoand 0 < ¥ b < co.
Then,
o0 o0 ambn 7_[ [ee] " o0 q a
< = , 1
m;lngl m-+n  sin(rt/p) mzl ; " (M)
where

W is the best possible constant factor. Inequality (1) is known in the literature
as Hardy-Hilbert’s inequality (see [1]).
By introducing parameters A; € (0,2] (i = 1,2),A1 + A, = A € (0,4], Krni¢ and

Pecari¢ [2] provided a generalization of Hardy—Hilbert’s inequality (1) as follows:

ambn B()\lr/\Z Z mp(l A)—1 P

m=1

an(l )= 1b‘7] 2)

m+7l n=1

m=1n=1
where the constant factor B(A1, Ay) given by the beta function is the best possible one.
By introducing more parameters, Yang, Wu and Chen [3] established a further gener-

alization of Hardy-Hilbert’s inequality (1) as follows:

[e BN oe]

Amby 1
n=1 mgl (m'“F”ﬁ)A < (ﬂk ()\2))

==
Q=

(k, (A1)
N 1 3)
PRI

X{Zmp[l a2 ]1P}{Zn‘1[1ﬁ

wher

e-+==1p>1apc(01,rec(0,6], A € (0, ]
ka(Ai) :=

B(Ai A —A;) (i = 1,2).

% (0,A), Ay € (0,%] N(0,A),

/\&\H
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By constructing partial sums A, := }_/"; a; and B, := Y} _; by, Adiyasuren, Batbold
and Azar [4] presented the following analogous version of Hardy-Hilbert’s inequality with
the best possible constant factor A1A;B(A, Ap):

l 1
y ¥ M < AMA2B(A1,A2)( Z m~PM1AL) Zn ma-1g7)" )
m=1n=1 (Wl + 1’1) m=1 n=1
where A; € (0,1] N (0,A), A1 + A2 = A (A € (0,2];i = 1,2). Inequality (4) is the other kind
of (2) involving two partial sums inside the two terms of series.
Recently, Liao, Wu and Yang [5] considered a variation of inequality (3); one partial
sum B, = )Y} _; by was embedded inside the terms of series, i.e.,

[coluNe o}

=

1
amub 7
— b < A(Fky g (A2 +1))7 (3ky 4 (A1)
T B /\+1 A+1
m=1n=1 (m*+nP) |
q

©)
X{ z mp(1— ar)—1 P} {Z nill- B(14-A5)]— 1BQ}

where ; + 4 =1, p>1aﬁe(01]Ae(05] M€ (0,2]N(0,A+1),A € (0,5 —1]N

(0,A + 1),)\1 =22 A Ry = A 2k (A) = BALA+1—-4)(i = 1,2),
Yang, Wu and Huang [6] established a reverse Hardy—Hilbert’s inequality with one
partial sum B, = }}'_; by as the term of the double series, as follows:

1 1

DL e > q(phta) o) ©

As a further study of the development methods of Hardy-Hilbert-type inequalities,
some unconventional methods are adopted. For example, a half-discrete Hilbert-type
inequality with the multiple upper limit function and the partial sums was provided by [7].
A reverse Hardy-Hilbert-type integral inequality involving one derivative function was
published by [8]. Inequalities (4)-(6) and the work of [7,8] are meaningful extensions of (2)
based on the Euler-Maclaurin summation formula, Abel’s partial summation formula and
the techniques of real analysis. Some applications of Hardy-Hilbert-type inequalities in the
real analysis and operator theory can be found in the monograph [9]. In [10], Hong gave an
equivalent condition between the best possible constant factor and the parameters in the
extension of (4). Some other similar results are provided by [11-13].

Inspired by the work of [4-10], in this paper, we construct a reverse Hardy—Hilbert’s
inequality which contains one partial sum and some extra parameters inside the weight
coefficients, the reverse Hardy—Hilbert’s inequality has different structural forms by com-
paring with existing results mentioned above. Our method is mainly based on some skillful
applications of the Euler-Maclaurin summation formula and Abel’s partial summation
formula. By means of the newly proposed inequality, we then discuss the equivalent
conditions of the best possible constant factor associated with several parameters. As
applications, we deal with some equivalent forms of the obtained inequality and illustrate
how to derive more reverse inequalities of Hardy—Hilbert type from the current results.

2. Preliminaries

For convenience, let us first state the following conditions (C1) that would be used
repeatedly in subsequent section:
CYp<0,5+;=L2€ (03], 7 €0z, € (03N(0OAN)(3G=12),n+

N =1, Ay := /\;)‘Z—i—ﬁ Ay = —’\_M—i—& Ay, by > 0(m,n € N = {1,2,---}),0 <

of) (m—m)p(l_xl) Ih < 00,0 < Z (n—m ya-= Aa)= 1 < o0, Ay = Yty aj with

m=1 n=1

Am = o(etm=m)) (t > 0).
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Lemma 1. (cf. [9] (2.2.3)) (i) If (—1)il;’l—;ig(t) > 0,t € [m,o0)(m € N) with g)(c0) = 0
(1=0,1,2,3), Pi(t), Bi(i € N) are Bernoulli functions and Bernoulli numbers of i-order, then

0o B2
/ Py 1(H)g(t)dt = —e, zqg( m) (0<e,<1;9=1,2-")
m
In particular, forq =1, By = %, we have:

— 11—2g(m) < /moo Py(t)g(t)dt < 0; (7)

forq=2,By = it follows that:

30’
0< [Pttt < p(m). ®)

(i) (cf. [9], (2.3.2)) If f(t)(> 0) € C3[m,0), lim FO() = fi(e0) =0 (i=0,1,2,3),

then we have the following Euler-Maclaurin summation formula:

moo Py(t)f'(t)dt = 6/ Py(1)f ()d. )

Lemma 2. Suppose that s € (0,3], 52 € (0,3]N(0,5), ks(s2) := B(sa,s — s2), we define the
following weight coefficient:

Sy — 1
@s(s2, ) 12) meN 11
)= (m gy L I e ) )
Then, we have the following inequalities:
0< ks(sz)(l — O](W)) < ws(sz,m) < kS(SZ) (m S N) (12)
1=
L m—yl ys2—1 . . 1 1 1— 52
where Oy (G 72) = (e o (g it Wi satifies 0 < Oy (7 37) < ey Gmy)

Proof. For fixed m € N, we set the following real function: ¢(m, t) := ((tm '737) o (t>n). In

the following, we divide two cases of s, € (0,1) N (0,s) and s, € [1,3] N (0,s) to prove (12).
(i) For s; € (0,1) N (0,s), since (—1)'¢g\)(m,t) > 0 (t > np;i = 0,1,2), by using

Hermite-Hadamard'’s inequality (cf. [10]) and setting u = '372 we find:

@s(sp,m) = (m =) Z glm,n) < (m—m)°"> [1" g(m, t)dt

s 52 521 us2—1
m — %
( 171 fz (m—m+t—1m2)° f%*’?z l+u
m—iq

00 sn—1
0 (qju) du = B(sp,s —s2) = kx(s2).
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—g'(m,t)

(2= (-2 s(t—p)2!

. . . . . o t—172
On the other hand, in view of the decreasing property of the series, setting u = ;. — e
we obtain:

@s(s2,m) = (m —1m1)°"" X g(mn) > (m =i )2 [y g(m, t)dt

1-mp
S—1 = Sy—1
= e = Bloas —s2) = ot
= ks(s2)(1 Ol(W)) >0,
1-n2

where Oy ( o *1771)52) =L (152) 0 M (‘{ju) du > 0, which satisfies the following inequality:

1-n2 1-32

m— sp—1 m— _ 1—12 52
0< [y " qju) du < [ w2 du = %(mj]l) (m € N).

Hence, we obtain (12).
(i) For s, € [1,3]N(0,s), by (9), we have:
Zlg(m,n) = [ g(m, t)dt + Fg(m, 1) + [° Pi(t)g' (m, t)dt
n=
= fﬁz g(m, t)dt — h(m),

where h(m) is indicated as

h(m) = /ﬂlg(m,t)dt—;g(m,l) - /1°° Py(£)g (m, £)dt.

2

sp—1
It is easy to observe that —1¢(m, 1) = ZUom)?

2y 17 Furthermore, integrating by parts,
it follows that

1 ol (22t el d(t—)22
f,72 g(m, t)dt = fryZ (m— ;7+t) At =g | (m—y+t)°
1

_ 1 (H/)f‘2 ton22dt 1 (1-)2%2 1 d(t=n)22*!
T s (m—ytt) 2T 5 f’ﬂ (m—y+t)"Tt 52 (m—p+1)° + 52(52+1)f772 (m—n+t)*1
1
1 (- nzrz (b)) s(s+1) _ gyt
- (m—y+1)° t3 (52+1) [(m—11+t)5+1],72 . s2(s24+1) (m—n+1)°T2 112 (t 2) dt
_ 1 (1-mp)7 4 (1-1p)2*" s(s+1)(1-1p)*2 "2

82 (m—n+1)° Sz($2+1) (m—n+1)"T1 T sy (sp+1)(52+2) (m—ny+1)*T2"

We find that:

i _ (=s)(t=m) 272 s(t=)2 2 (m—ryt) — (m—ip1)]
(m—n+t) (m—p+t)*1 (m—n+t) (m—n+)"

_ (s (t—mp)2 2 + s(t=12)2 7% s(m—my) (t—12)2 ">

(m—n+t)’ (m—n+t)° (m—n+t)°T

_ (sHl=sp) (=) s(m—mpy) (t=1p)2 2

(m—n+t)° (m—y+t)T 7
and for s, € [1, 3] (0,s), we deduce that

pd (t—1p)? 77 cd L (t— )P

(-1) dtl[(m ]7_|_t)s]>01( 1) — a m]

>0 (t>ni=0,1,2,3).



Mathematics 2022, 10, 2362 50f 13

By utilizing (8)-(10), for a := 1 — 11, € [3,1], we obtain:

(s+1—s2) [ Py (1) )2 Ty st gs2

(m— f7+t) 12(m—n+1) , R
(i — il (t=1p)™2 (m—my)sa2=2 _ (m—py)st (t=1p)2"% ;"
(m Ul)sfl Pl(t (m 7]+t)s+1dt > 12(m—y+1) 1 720 [(m*’]th)sH]t:l
(m—n+1)s—as g, 2  (m—ny+1)s (s+1)(s+2)a272 | 2(s+1)(2—sp)a®273 | (2—s5)(3—s)a2 "4
12(m717+1)s+1 a 7 [ (m ;7+1)s+3 (m—i’]+1)5+2 (m77]+1>s+1 }
_ _ sa27? - sa®2”1 s [(s+l)(s+2)a52_2 2(s+1)(2—sp)a%2 73 + (2752)(3752)252_4]
20m—n+1)°  12m—y+1)*TT 700 (uoyr1)*T2 (m—p+1)°*! (m—n+1)°
and then we have:
h(m) > a2 I+ sas2~3 N s(s+1)a%272
1 2 3/
(=g +17" " =y + 1) (m—y 1)
where h; (i = 1,2,3) are formulated as h; = g — % — (171522)[12 — 5(275%83752),
Myt @2 (5H)Q2=s) g a* _ 542
27 5+ 12 360 /13T 5y(sp+1)(sp42) 720"

Moreover, for s € (03], 5 €[1,3]n(0,5),a € [3,1], we find iy > %[s% — (6a +

1)sy + 12a%] — 35
In view of au 3 — (6a+1)sp + 124%] = 6(4a —sp) > 6(4-3 —3) > 0,and 5= [ s5 —

6a+1)sp +12a2] =2sp — (6a+1) <2-3—(6-3 +1 <O,weobta1n.
2 1

(B/4)* (3 3 3 3
h = 12(3/2)[(2)_(6 1tz +12(3) 20 128 ~ 120
1 1 3\2714 (32 1 1 _ 3 1
h2>”(15*ﬁ)*%24(1)[ﬁ(1)*ﬁ}*%—%*%>01
8 5 8 /3 1 27 1
hy> 8 — 5 > () - =% >0

and hence we have h(m) > 0.
On the other hand, we have:

Zlg(m,n) = [ g(m, t)dt + Sg(m, 1) + [° Py(t)g (m, t)dt
n—=
= [ g(m, t)dt + H(m),

where H(m) is indicated as H(m) := 3g(m,1) + [{~ Pi(t)g'(m, t)dt.
We have already obtained that 4g(m,1) = 1 1F and

/ _ (s+1=s) (=) | s(m—) (t-1p)2 2
g'(mt) = (m—ny+t)° (m—n+t)*

Fors; € [1, %] N(0,s),0 < s < 3, by (7), we acquire:

t— ’IZ) - *(mﬂll)sasz_z _ —(m—n+1)s+as ¢, —2
m — S P t ( = a2
( ) f1 1 ( (m777+t)s+1 2(m—y+1) 1 2(m—y+1)7 1

— —s sp—2 s sp—1 —s Sp—2
2(m—y+1 " + 12(m—r]+1)5“a Z By

Then, we have:

2521 sas2—2 _(a _ s
H(m) > 2(m—y+1)° 12(5,17,7+1)s B (2 12)(2mfr]+1)S
3 S

[eclleN)
Y
Nl

> (33— ) sy = (

Therefore, we derive the inequalities:

/1 g(m, t)dt <n;g(m,n) </7]2 g(m, t)dt.
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By virtue of the results of the case (i), we obtain (12). The proof of Lemma 2 is complete.
O

Lemma 3. Under the assumption (C1), we have the following reverse Hardy—Hilbert's inequality:

= £ E b s (kg (02)7 (ky (1)

R 1 (13)
‘J(l—/\z)—lbz] "

XX (=)’ (8 (1= 0a( =) (n = 12)

m=1 n=1 (717

Proof. By symmetry, for s; € (0,3] N (0,s), ks(s1) = B(s1,s — 51), we can obtain the
following inequalities for the next weight coefficient:

0 < ks(s1)(1 OZ((n ,7)51)>

s—s 14
< ws(sy,n) = m—1n2) 1 Z 7(17;1+77; 0 < ks(s1)(n €N), 14)
1 1 1:7”1 s1—1
where OZ((n—qz)Sl) = et Jo 2 (lf+u)s du(>0).

By applying the reverse Holder’s inequality (cf. [14]), we obtain:

SV Y gV (ng) 1)
= nzlmzl (m+n—77)/\[(”—'72)<17/\2)/pam][(1 —’71)(17/\)1/[1 n] .
(m—y) PR P 2 2 1 (nopp) T2 g
[mzl nzl m+n ’7) (n_72)17A2 ] ][ngl mE] (m+n—17)/\ (m_ﬁl)17A1 ;
= 21 @ (A, m)(m —y)P gl | L wa(A,1n)(n - )12l
m= n=

Now, by using (12) and (14) (fors = A, s; = A; (i =1,2)),inviewof p <0, 0 < g < 1,
we obtain (13). Lemma 3 is proved. [

Lemma 4. If t > 0, then we have the following inequality:

Y e tm=mg,, <tz e tm=ma, (15)

m=1 m=1

Proof. In view of Aye (") = o(1)(m — o), using Abel’s summation by parts formula,
we find:

Y e tmom)g, = Lim Ayetm) 4 Y Agfet0nm) — e tHmomt1))
m=1 mc:oo m=1 o
— Z Am[g_t(m_ﬂl) _g_t(m_771+1)] — (1 _g_t) Z g_t(m_’h)Am_
m=1 m=1

Since 1 —e~' < t (t > 0), we acquire inequality (15). This completes the proof of
Lemma 4. [
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3. Main Results

Theorem 1. Under the assumption (C1), we have the following reverse Hardy—Hilbert's inequality:

==
=

= ¥ L el 3k (42)7 (ky (A1)

m=1n=1 (m+n—y

1 1 (16)
[} AN P I R q
<L (=)™ ) [ E (1= 0L - )
1-y51
where OZ((n—;z)Al) = kA(l/\l)fO" " (LllJ:u) du. In particular, for Ay + Ay = A, we have
0< Y (m—m)PT Ml < 00,0 < Y (10 =) (1 — )T 1] < oo,
m=1 n=1 (11 - 772) !

and the following reverse inequality:

1= 21 21# >1B(A1, A7)
m=1n=

o o 1 (17)
)[ X (m— )P Y (1= 0a (L)) (1 — )1 1)
m=1 n=1 (n—m2)"1

Proof. In view of the formula (m+n117))‘+1 = r(/\l+1) 1o tAD)Le=(mtn=nt s by using (15),
it follows that:

oo

[ = ()\1+1) 2 ZAmb f (A1) =1 = (mtn—n)t 74

= oo 1 1t2e mmt A ]ze (n=12)tp, it
> Tﬂfo -1 E e~ (m=mlty E e (n 12)tp,, dt
m=1 n=1
— A+1) 2 Z ﬂmbnfo A=Lp—(m+n—n)t g4
— ()‘) E OO Ambn — Ij
T+ = = (mn—p)t A7

Furthermore, by means of (13), we obtain (16). The proof of Theorem 1 is complete. [

Remark 1. Fors = A+1 € (1,3],s5, = Ay € (0,%] N (0,A+1) from (11) and (12), we have
A € (0,2], and the following inequality:

L~ o Aa—1
~ _ n — ~
@y 41(Ag,m) = (m — )17 ("—Z)M <k1(A)(meN).  (18)
-1 (m+n—mn)
Theorem 2. If A1 + Ay = A € (0,2], A1 € (0,1]N(0,A), Ay € (0,3]N (0, A), then the constant

factor 1 (kA(Az))% (k)\()xl))% in (16) is the best possible.

Proof. (i) For the case of A1 € (0,1) N (0, 1), we prove that the constant factor 1 B(A1,A5)
in (17) is the best possible.

For any 0 < ¢ < min{|p[(1 —A1),qA2}, we set dy, := mM T by =
N). Since 0 <& <[p[(1— A1), wehave 0 < Ay — 5 < 1(p <0), and f(t) =t

Ap—E—1
21 (mn e
M—E-1 .
™ " is
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strictly decreasing with respect to t > 0. Thus, by the decreasing property of the series, we
have A, := f a; = f Ml < I Mg = = LMy,

If therelej(ists a constant M > 1B(Aq,12) such that (17) is valid when we replace
%B (A1,A2) by M, then, in paNrticular, fory; = 1 = 0 (i = 1,2), using a substitution of
Ay = Gy, by = by, and Ay, = Ay in (17), we have:

1

o [e9) A b () D (o) _ o~ q
Z 2 m n/\+1> M[ Z mp(l A)—1 P Z 1 _02 )nq(l A2) 117?1] ) (19)
n=1m=1 m + 1’l m=1 n=1

By (19) and the decreasing property of the series, we obtain:

1
T > ML mr0=2)=typhi-e-p) [E (1 — Oy (-L))na1-A2) =1 pata—e—q)’
m=1 n=1 n
1 0 1
= M(1+ zzm-H)”( zln z Oy ( wmq
m= n=
1

By (18), for; =5 =0(i =1,2), A = A, — £ € (0, 3)N(0,A), we have:

q
~ 1 & A—(Ap—£)+1 & 1 Aa—g=1y o1
I< /\lfémgl [m 1 = (m+n)A+1” 7 m
= 11_5 Y @yi1(Ag,m) (A2)1+ ¥ m=e)
P m=1 _m=2
<3 kA+1()\2) 1T+ 7 xe 1dx) % Tk (A2) (e +1).
P
This yields:
1 ~ ~ 1 1

Putting ¢ — 0" into the above inequality, by virtue of the continuity of the beta
function, we obtain 1B(A1,A0) = £+ BA+1,12) = )3 kri1(A2) > M.

Hence, M = A B(Aq,Ap) is the best possible constant factor in (17).

(ii) For the case of A; = 1(1 < A < 2), forany 0 < ¢ < 1, replacing A by A — e in (17),
setting Ay =1 —¢,A» = A — 1, by case (i), we have the following inequality with the best
possible constant factor y2-B(1 —¢,A — 1):

1

(e} (e} b 1 o0 B [
> B(1—¢gA—1 m—n )P al] K., 20
mZ:: ; m+n 17))\ P R ( )[17;1( 771) m] q,e (20)

1
where K¢ := [0 1 (1 — Oz((nfﬂl?))(n _ ,72>q(27A) p7)7.

Since for A; = 1 we have:

7

m— )P < (m )= ()P0

(m—m
(m — )P al, < E (m — )P < oo,

ng,—\

m=

it follows that 1im 1 Y1 (m — )Pl = Y, (m — 51)P1 "V 71ab, and in the same way,

we conclude that lim K, . = K, ¢ is valid.
e—0t 9 v
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If there exists a constant factor M > %B(l, A— ) = ﬁ (1 < A <2), such that (17)

(for Ay =1,A; = A — 1) is valid when we replace TO=T) /\ 0 by M, namely
n -1 p r
SM[) (m—m) ay] Kgo, (21)
Z:; ; (m+n-— 17)AH rn;l o

Then, by using Fatou lemma (cf. [15]) and (20), it follows that

1 > Amb S pe—1,p

im —Anby___ m— K

=0+ m=1n=1 (m+n ’7)\ e [mzz:l( 171) ] qe}
1

>y Y —Aub /(Y ()] Ky > M.

= mgl ngl (m+n_,7)/\+1 [mgl ( 771) m] q,0

By the property of limitation, there exists a constant §y € (0,1), such that for any

o€ (0,50),
pli-(1-8)]-1_p;”
(m—m)? ay) K > M,
m;lngl (m—+n— U)A w1/ m:1 o
namely,
Awb ,
(e} (e} (e} p
— > MY (m— )P K.
mg’uz; (m+n—n)* mZ::l o

Since the constant factor Al 5B(1—9,A — 1) in (20) (for e = J) is the best possible,
we have t15B(1—65,A — 1) > M. Letting 6 — 0", we have )\(A 7= IB(1,A -1 ) > M,
which implies that M = TO=T) A 0 is the best possible factor of (17) (for Ay =1, A, = A —1).
This completes the proof of Theorem 2. [J

1 1
Theorem 3. Under the assumption (C1), if the constant factor %(k)\()\z))? (kx(A1))7 in (16) is
the best possible, then for

A= di = € (A= h =30, (A= A)N(—hag, G~ A0 o)), @)

we have A + Ay = A.

Proof. Note that for A; = A= % Ay = A_TM + %, we find Ay + A, = )‘_p)‘z + % +

Z
Ah o h oy
7 .

IFA— Ay — Ay € [(A= A2 —3)q, (A — A2))(D {0}), then we have 0 < Ay = 222 +
% < 3 A — A1 — Ap € (—A2q, (3 — A2)gq](D {0}), then we have 0 < A, < 3. By using
(22), we obtain 0 < A; < A (i = 1,2), and then we deduce that A; € (0,3] N (0, /\) (i=1,2).
By applying (17), we have

1 R 1 (23 )
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If the constant factor 1 (k A(/\2))% (k /\(/\1))% in (16) is the best possible, then by using
(23), we have the following inequality: %(k)\()\z))%(k)\()tl))% > 1B(A1, A2) = Lka(Ay)

1 1 A
(€ Ry = (0,00)), namely, (k; (A2))7 (ky (A41))7 = ka(A1).
By employing the reverse Holder’s inequality (cf. [14]), we obtain:

ky(A1) = kA(A_Az + Al)

A—/\z )\717 - AAp=1 M-l
_fo 1+u +3 1du:f0 7(1:@/\ (u 7 )(u 7 )du
1 1

A—Ar—1 I A—1 q
> fo (1+u))‘u 2 dlu]P[fo (H_u)/\“l dl”]q (24)
™ 1 Ao—1 oI [® 1 A—1 q
= [fo (H_v)l,\v 2 dv]ll’ [fo (1+u)Au 1= du] 1
= (k) (A2)) 7 (ky(A1))7,

which implies that ky (A1) = (kx(A2)) , (k /\(/\1))%, namely, (24) keeps the form of equality.

Note that (24) keeps the form of equality if and only if there exist constants A and
B such that they are not both zero satisfying (cf. [15]) Au*~"2~1 = BuM~! ge. in R;.
Assuming that A # 0, we have urMM = ﬁ ae.inRy,and A — Ay — Ay = 0. Hence, we
have A; + A, = A. Theorem 3 is proved. U

4. Equivalent Forms and Some Particular Inequalities

Theorem 4. Under the assumption (C1), we have the following reverse inequality equivalent
to (16):

1

& )Pl ® P

J={ L o[ ] )
=1 (170((;1 o NPT =1 (mtn—n) 25)

(k3 (A2)7 Uy ()T E (o= )"0 )

>\H
T

In particular, for Ay + Ay = A, we have 0 < Y. (m — 171)’7(1_’\1)_101’,0,1 < oo, and the

following reverse inequality equivalent to (19):

l 1
N (e = Am : 1 = p(-A1)-1 pyP
{ =103 1Y > TBO AL (m D-1gr)", (26)
n=1 (1— O((rHl]Z)Al NP s (m+n— )™t —

Proof. Suppose that (25) is valid. By using the reverse Hoder’s inequality (cf. [14]), we have

—1 3
T Ao

_ OZOL [ (n—12)

00 1
)y - HJ[“*ﬁ(ﬁ))”(”*’?Z) an]
n=1 (1-0( n—=1s)

I 27)
> ][ (1- 0 )) (1 — )10 1)

x
=1 (”*7]1) 1

Then, from (25) and (27), we obtain (16).
On the other hand, assuming that (16) is valid, we set

b, == (n=mp)"2 7! 1 [ E Am Hl]p 1,71 € N. Then, it follows that
(1-0( (nf;ylz))‘l )) m=q (m+n—n)

. 1

J =Ty (1-0( ) (n = )10

1
(n—m)™
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If | = oo, then (25) is naturally valid; if | = O, then it is impossible that it makes (25)
valid, namely, | > 0. Suppose that 0 < ] < co. By virtue of (16), we have

(1= 0L ) ()0 ] = g — 1

e

1

(kn(A2))7 Uy ()T Z (o =)t

(X (=)0

m=1

>

i
3
==

==
e

J > 5 (ky(A2))7 (ky (A1)

Thus, we obtain (25), which implies that (25) is equivalent to (16). The Theorem 4 is
proved. [

Remark 2. By the same way as above, in view of assumption (C1),if 0 < p < 1,4 <0, % + % =1,
then we can obtain the following reverse equivalent inequalities containing one partial sums:

Ambn
mz—:1 n=1 (ern*’])/Hl 1
1 [e) 3y S Ay aq
> 1 (A2)7 Uy )7L (1= 01 (s )) m = )" T Tl [T (= )27
A p ?
_ pAz—1 Am
{X (n=m)" [T o]}

Theorem 5. If A1 + Ay = A(€ (0,2]) satisfying Ay € (0,1] N (0,A) and Ay € (0,311 (0,7),
then the constant factor 1 (k A()\z))% (k/\()q))% in (25) is the best possible. On the other hand,

by virtue of the assumption (C1), if the constant factor 1 (k, (1)) , (kA(/\l))% in (25) is the best
possible, then for

3 3
A=M=A € [(A =22 = 3)q, (A = A2)0)N (=224, (5 = A2)q](> {0}),
we have A1 + Ay = A.

Proof. If A + Ay = A(€ (0,2]) satisfying A; € (0,1]N (0,A) and Ay € (0,3] N (0, A), then
1

by using Theorem 2, we conclude that the constant factor 1 (k, (A2))7 (k, ()\1))% in (16) is
the best possible. By employing (27), we can prove that the constant factor in (25) is still the
best possible.

On the other hand, if the same constant factor in (25) is the best possible, then by the
equivalency of (25) and (16), in view of |9 = I (in the proof of Theorem 4), it follows that
the same constant factor in (16) is still the best possible. By applying Theorem 2, in view of
the assumption, we have A + A, = A. The proof of Theorem 5 is complete. [
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Remark 3. (i) Taking 1 = 1 = 12 = 0 in (17) and (26), we obtain the following reverse
equivalent inequalities:

Amby
m=1n=1 (m+n)A+l
v 1
y — _ q
> %B(/\l,)tz)[mg p(1=A1)-1 P] [ﬂgl(l—OZ(n%))nq(l x)-10)", o8
g 1
n”‘z | 2 'y > % L op(1-A)—1,p17
{2 (1-0(-4)" il El (m+n)“1] b /\B(Al’AZ)[mglm U]

Hence, (17) (resp. (16)) is an extension of inequality (28).
In particular, for A = 2, A1 = Ay =1, we have

1 1
[ee] [ee]

Y, Aubu (z m*la:i»”[i (1—0a())n18)",

m=1n=1 (m+n n=1

{ Z nP_ 1)p l[moo

-0(3) =1 m*”

1

Bl JOE mta)”.

(ii) Putting A = 1,A1 = Ay = % in (17) and (26), we obtain the following reverse inequalities
with the best possible constant factor rt:

1

==

I (=)l (L (1 Oa(————))(n— )8 29
LY oo >l L on= ) ) (L (- O S =) (29)
SN R P S e e @
{,;(1—0( 1 ))P‘l[m;(mm_q) by, mm)® e G0

("*'71)1/2

Choosing 111 = 112 = 11 = 01in (29) and (30), we have

1 1

Yoy (ntny Sr( ¥ milal) [T (1- 0p(Ly))nd 18],

m=1n=1 (m+n) m=1 1 n=1 ;
{Z L[E ] } >n(§m§‘1a”)ﬁ.
n=1 (lfO(nll2 (m+n e m

[e0] o0 o) E—l 00 ﬂ_l E
LY imbnl) >t Zl(m_%)z ah] [21(1—02(( L)mn—5H27el)",
m=1n=1 MTn—73 m= .= :
P4 n 1
v (n_%)z . Am P > & _1 %—1 pi?
(L o - [T el ) > Al =)

5. Conclusions

In this paper, inspired by the work of [4-10], we construct a reverse Hardy-Hilbert’s
inequality which contains one partial sum and some extra parameters inside the weight
coefficients in Theorem 1. Our method is mainly based on some skillful applications
of the Euler-Maclaurin summation formula and Abel’s partial summation formula. By
means of the newly proposed inequality, we then discuss the equivalent conditions of the
best possible constant factor associated with several parameters in Theorems 2 and 3. As
applications, we deal with some equivalent forms of the obtained inequality and illustrate
how to derive more reverse inequalities of the Hardy—Hilbert type from the current results
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in Theorems 4 and 5. The lemmas and theorems reveal rich connotations and significance
of this type of inequality.
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