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product, Hölder inequalities, and closure properties under integral transforms and subordination
results are discussed in detail.
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1. Introduction

Let A denote the class of functions f which are analytic in the open unit disc U = {z :
z ∈ C and |z| < 1}, with the normalization f (0) = 0 = f ′(0)− 1. The class A includes the
functions of the form

f (z) = z +
∞

∑
n=2

anzn, z ∈ U. (1)

Let S be the subclass of all univalent (i.e., one-to-one) functions in A.
A function f ∈ A is said to be a starlike function with respect to ω0 ∈ f (U) if f maps

U univalently onto a starlike region with respect to ω0. If ω0 = 0, we say that f is a starlike
function, and the class of those functions is denoted by S∗. The function f ∈ A is said to be
convex if f maps U univalently onto a convex region. That is, f (U) is a convex region.

For more details about analytic univalent functions, see [1,2].
We say that Y ⊆ C is called a starlike domain with respect to ω0 ∈ Y, if each line

segment joining ω0 to every other point ω ∈ Y lies entirely with in Y. Furthermore,
the domain Y is said to be a convex domain if, for ω1, ω2 ∈ Y, the line segment joining
these two points lies inside Y.

In 1936, Robertson [3] defined the following subclasses of S .
We know that a function f ∈ A given by (1) is starlike of order α (0 ≤ α < 1), if

R
(

z f ′(z)
f (z)

)
> α, z ∈ U,

and we denote this function class by S∗(α).
A function f ∈ A is said to be convex of order α (0 ≤ α < 1) if

R
(
(z f ′(z))′

f ′(z)

)
> α, z ∈ U,
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and this class is denoted by K(α).
We observe that K(α) = { f ∈ A : z f ′(z) ∈ S∗(α)}.
Moreover, we note that

S∗(0) =: S∗ = { f ∈ A : R
(

z f ′(z)
f (z)

)
> 0, z ∈ U}

and

K := K(0) = { f ∈ A : R
(
(z f ′(z))′

f ′(z)

)
> 0, z ∈ U}

represents the class of starlike and convex functions, (see [1], p. 41) respectively.
In 1915, Alexander [4] (also see [1], p. 43; [2] Volume I, Chapter 8) gave the analytic

connection between starlike and convex functions as f ∈ K, if and only if z f ′(z) ∈ S∗.
In view of the one-to-one correspondence between K and S∗, Alexander defined the

transform as J[ f ](z) =
∫ z

0
f (t)

t dt. That is, J[ f ] is convex if and only if f is starlike.
Geometric function theory properties fundamentally aim to categorize analytic func-

tions that are defined in U and have certain analytic criteria, such as being univalent, convex,
and starlike by connecting them to the geometric characterization. Moreover, the common
geometric characterization of functions belonging to a class gives very clear limitations
on the Taylor coefficients of the functions belonging to the class. Many results obtained
regarding class S or certain subclasses of S are due to the attempt to prove the famous and
easily stated Bieberbach conjecture, stating that |an| ≤ n, (n ≥ 2) for every function f ∈ S .

The Koebe function k(z) = z
(1−z)2 , |z| < 1 is the extremal function for class S (see [5]).

It gives sharp growth and distortion bounds and the coefficient estimates bounds [6].
In 1975, Silverman [7] introduced another subclass T , which denotes the subclass of

S consisting of all functions whose nonzero coefficients, from the second on, are negative.
That is, T the subclass of S comprises functions of the form

f (z) = z−
∞

∑
n=2
|an|zn, z ∈ U. (2)

In this case, the classes of starlike and convex functions of order α are denoted by
ST ∗(α) and KT (α) with α ∈ [0, 1), respectively, see [7].

A function of the form (2) belongs to class T if and only if the inequality
∞
∑

n=2
nan ≤ 1

is satisfied [7]. Similarly, the condition
∞
∑

n=2
n|an| ≤ 1 is sufficient for all functions f ∈ S of

the form (1) . In fact, such functions are also starlike since | z f ′
f − 1| < 1, (z ∈ U) (see [7]).

The class T can also be fruitful when constructing counterexamples for conjectures within
larger families. Solutions in T sometimes provide insight into problems for S or other
subclasses. The coefficient characterization makes T considerably more manageable than
the class S .

The elementary distributions, such as the Poisson, Pascal, binomial, beta negative bino-
mial, and logarithmic, have been partially studied from a theoretical point of view (for more
details, see [8–12]). Furthermore, there is increasing interest to study analytic functions
associated with certain polynomials [13,14]. Lately, Wanas and Khuttar in [15] consider
the power series whose coefficients are probabilities of Borel distributions, as below:

B(`, z) = z +
∞

∑
n=2

(`(n− 1))n−2e−`(n−1)

(n− 1)!
zn, (z ∈ U; 0 < ` ≤ 1).
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We conclude that the radius of convergence of the above power series is infinity
by using the ratio test. Wanas and Khuttar in [15] also defined

B(`, z) = 2z− B(`, z) = z−
∞

∑
n=2

(`(n− 1))n−2e−`(n−1)

(n− 1)!
zn, (z ∈ U; 0 < ` ≤ 1).

Moreover, Wanas and Khuttar in [15] defined the linear operator B` : A → A as:

B` f (z) = f (z) ∗ B(`, z)

= z−
∞

∑
n=2

(`(n− 1))n−2e−`(n−1)

(n− 1)!
anzn, (3)

= z−
∞

∑
n=2
B(n, `)anzn,

where

B(n, `) =
(`(n− 1))n−2e−`(n−1)

(n− 1)!
(0 < ` ≤ 1). (4)

and the symbol ∗ specifies the Hadamard product (convolution) of two series.
Many differential and integral operators can be written with regards to the convolution

of certain analytic functions. It is perceived that this formalism makes mathematical
exploration easier and also helps to improve understanding around the symmetric and
geometric properties of such operators. Silverman in [7] was the first to pave the way for
the study of functions with negative coefficients of the form (2), after which various forms
of such functions have been investigated by many researchers in the field of geometric
function theory. The study of operators plays a significant role in geometric function theory
(GFT). For more details about the importance of convolution in the geometric function
theory (GFT), we refer to [16–21] and references cited therein.

Inspired by the earlier works on analytic functions with negative coefficients, see [22–28],
and recent studies on analytic functions convoluting with Borel distributions conducted by
Wanas and Khuttar [15], Ahmad et al. [29], El-Deeb et al. [30,31], and Srivastava et al. [32], we
define the unified subclass of analytic functions with negative coefficientsWS`B(L, M, α, $, ϑ, λ)
concerning convolution structure f (z) ∗ B(`, z) assumed in (3).

Definition 1. For 0 ≤ λ ≤ 1, 0 < $ ≤ 1,−1 ≤ M < L ≤ 1, 0 ≤ ϑ ≤ 1, 0 ≤ α < 1,
we letWS`B(L, M, α, $, ϑ, λ) and we denote a new subclass of S concerning Borel distributions
comprising functions f of the form (1) and satisfying the analytic condition∣∣∣∣∣∣∣∣

zQ
′
λ(z)

Qλ(z)
− 1

(M− L)ϑ
[

zQ′λ(z)
Qλ(z)

− α

]
−M

[
zQ′λ(z)
Qλ(z)

− 1
]
∣∣∣∣∣∣∣∣ < $, z ∈ U, (5)

where
Qλ(z) = (1− λ)B` f (z) + λz(B` f (z))

′
.

Thus, we obtain

zQ
′
λ(z)

Qλ(z)
=

z(B` f (z))
′
+ λz2(B` f (z))

′′

(1− λ)B` f (z) + λz(B` f (z))
′ , (0 < ` ≤ 1), (6)

and B`( f (z)) is given by (3).

We also define

W `
B(L, M, α, $, ϑ, λ) ≡ WS`B(L, M, α, $, ϑ, λ) ∩ T .
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Example 1. For 0 ≤ λ ≤ 1, 0 < $ ≤ 1, 0 ≤ ϑ ≤ 1 and fixing L = 1 − 2ζ, (0 ≤ ζ <
1); M = −1, letWS`B(ζ, α, $, ϑ, λ). We denote a new subclass of S concerning Borel distributions
comprising functions f of the form (1) and sustaining the analytic condition∣∣∣∣∣∣∣∣

zQ
′
λ(z)

Qλ(z)
− 1

2ϑ(ζ − 1)
[

zQ′λ(z)
Qλ(z)

− α

]
+

[
zQ′λ(z)
Qλ(z)

− 1
]
∣∣∣∣∣∣∣∣ < $, z ∈ U, (7)

where Qλ(z) = (1− λ)B` f (z) + λz(B` f (z))
′
.

By fixing the parameters λ = 0 and λ = 1, we can state various new subclasses of S
which have not yet been investigated by association with Borel distributions. Furthermore,
by specializing the parameter α, $, ϑ, we can define certain new subclasses analogues to
the subclasses discussed in [7,22,27,33,34] (also see references cited there in) of analytic
functions associated with Borel distributions which are also new and have not yet been
studied. Thus, our new subclass includes many subclasses studied in the literature.

In the following sections, for f ∈ W `
B(L, M, α, $, ϑ, λ), we obtain the modified Hadamard

product, the Hölder inequality results, the closure properties under integral transforms,
and the subordination results.

2. Characterization Property for f ∈ W`
B(L, M, α, $, ϑ, λ)

Throughout our study, we let

0 ≤ λ ≤ 1, 0 < $ ≤ 1,−1 ≤ M < L ≤ 1, 0 ≤ ϑ ≤ 1; 0 ≤ α < 1, and 0 < ` ≤ 1.

In this section, we provide the necessary and sufficient conditions for
f ∈ W `

B(L, M, α, $, ϑ, λ).

Theorem 1. A function f of the form (1) is in the classWS`B(L, M, α, $, ϑ, λ) if

∞

∑
n=2
Mnan ≤ (1− α)(M− L)$ϑ,

where
Mn = (1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− α)]B(n, `)

and B(n, `) is defined by (4).

Proof. Since the function f (z) is of the form (1), we have

Qλ(z) = z +
∞

∑
n=2

(1 + nλ− λ)B(n, `)anzn,

zQ′λ(z) = z +
∞

∑
n=2

n(1 + nλ− λ)B(n, `)anzn.

For |z| = 1, we have∣∣∣∣∣∣∣∣
zQ
′
λ(z)

Qλ(z)
− 1

(M− L)ϑ
[

zQ′λ(z)
Qλ(z)

− α

]
− B

[
zQ′λ(z)
Qλ(z)

− 1
]
∣∣∣∣∣∣∣∣ < $, z ∈ U.

It is suffices to show that
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∣∣zQ′λ(z)−Qλ(z)
∣∣− $

∣∣(M− L)ϑ
[
zQ′λ(z)− αQλ(z)

]
− B

[
zQ′λ(z)−Qλ(z)

]∣∣ (8)

=

∣∣∣∣∣ ∞

∑
n=2

(1 + nλ− λ)(n− 1)B(n, `)anzn−1

∣∣∣∣∣
− $

∣∣∣∣∣(M− L)(1− α)ϑ +
∞

∑
n=2

(1 + nλ− λ)[(M− L)(n− α)ϑ− B(n− 1)]B(n, `)anzn−1]

∣∣∣∣∣
≤

∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− α)]B(n, `)an − $ϑ(M− L)(1− α)

≤ 0, by hypothesis.

Thus, by maximum modulus theorem, f ∈ WS`B(L, M, α, $, ϑ, λ).

Theorem 2. Let f be a function of the form (2) and f ∈ W `
B(L, M, α, $, ϑ, λ) if and only if

∞

∑
n=2
Mnan ≤ (1− α)(M− L)$ϑ, (9)

where
Mn = (1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− α)]B(n, `) (10)

and B(n, `) is given by (4).

Proof. In view of Theorem 1, we need only to prove the necessity. If f ∈ T is given by
(2), then ∣∣∣∣∣∣∣∣

zQ
′
λ(z)

Qλ(z)
− 1

(M− L)ϑ
[

zQ′λ(z)
Qλ(z)

− α

]
−M

[
zQ′λ(z)
Qλ(z)

− 1
]
∣∣∣∣∣∣∣∣

=

∣∣∣∣ ∑∞
n=2(1 + nλ− λ)(n− 1)anB(n, `)zn

(M− L)(1− α)ϑz + ∑∞
n=2(1 + nλ− λ)[(M− L)(n− α)ϑ−M(n− 1)]anB(n, `)zn

∣∣∣∣ < $. (11)

SinceR(z) < |z| for all z, we have

R
{

∑∞
n=2(n− 1)(1 + nλ− λ)B(n, `)an|z|n−1

(M− L)(1− α)ϑ−∑∞
n=2(1 + nλ− λ)[(M− L)(n− α)ϑ− B(n− 1)]B(n, `)an|z|n−1

}
< $.

By choosing the value of z on the real axis so that f ′(z) is real and letting z → 1−

through real values, we obtain

∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− α)]B(n, `)an ≤ $ϑ(M− L)(1− α)

and hence the proof is complete.

Example 2. For the function

f (z) = z +
∞

∑
k=2

(1− α)(M− L)$
Mn

vkzk (z ∈ U),
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whereMn is given by (10), and such that ∑∞
k=2 vk = 1, we have

∞

∑
k=2
Mn|ak|

=
∞

∑
k=2
Mn

(
(1− α)(M− L)$

Mn
vk

)
= (1− α)(M− L)$

∞

∑
k=2

vk = (1− α)(M− L)$.

Corollary 1. If the function f ∈ W `
B(L, M, α, $, ϑ, λ), then

|an| ≤
$ϑ(1− α)(M− L)

Mn
.

For functions

f (z) := z− $ϑ(1− α)(M− L)
M2

z2

where
M2 = (1 + λ)[(1− $M) + $ϑ(M− L)(2− α)]B(2, `),

the result is sharp.

Proof. The proof is quite straightforward, left for reader.

In the following section, employing the techniques of Schild and Silverman [35], we
determine some convolution properties for f ∈ W `

B(L, M, α, $, ϑ, λ).

3. Convolution Properties

Let the functions f j(z) (j = 1, 2) be defined by

f j(z) = z−
∞

∑
n=2

an,jzn (an,j ≥ 0; j = 1, 2). (12)

The modified Hadamard product of functions f1(z) and f2(z) is defined by

( f1 ∗ f2)(z) = z−
∞

∑
n=2

an,1an,2zn. (13)

Theorem 3. Let f1(z) given by the relation (12) be in the class W `
B(A, B, ξ1, $, ϑ, λ) and the

function f2(z) defined by (12) be in the class W `
B(A, B, ξ2, $, ϑ, λ). If the sequence {Mn} is

non-decreasing, then ( f1 ∗ f2)(z) ∈ W `
B(A, B,ℵ, $, ϑ, λ), where

ℵ = 1− (1− ξ1)(1− ξ2)[1− $M + $ϑ(M− L)]$ϑ(M− L)
(1 + λ)Λ($, ϑ, ξ1, 2)Λ($, ϑ, ξ2, 2)B(2, `)− [$ϑ(M− L)]2(1− ξ1)(1− ξ2)

, (14)

where
Λ($, ϑ, ξ1, 2) = [(1− $M) + $ϑ(M− L)(2− ξ1)]

and
Λ($, ϑ, ξ2, 2) = [(1− $M) + $ϑ(M− L)(2− ξ2)].

Proof. Suppose ( f1 ∗ f2)(z) ∈ W `
B(A, B,ℵ, $, ϑ, λ). Then, by Theorem 2, it is enough to

show that

∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ℵ)]
$ϑ(M− L)(1− ℵ) B(n, `)an,1an,2 ≤ 1, (15)



Mathematics 2022, 10, 2430 7 of 17

where ℵ is given by (14).
Since f1 ∈ W `

B(A, B, ξ1, $, ϑ, λ), in view of Theorem 2, we have

∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ1)]

$ϑ(M− L)(1− ξ1)
B(n, `)an,1 ≤ 1 (16)

and for f2 ∈ W `
B(A, B, ξ2, $, ϑ, λ), in view of Theorem 2 we have

∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ2)]

$ϑ(M− L)(1− ξ2)
B(n, `)an,2 ≤ 1. (17)

For brevity , we let

Λ($, ϑ,ℵ, n) = (1− B$)(n− 1) + $ϑ(M− L)(n− ℵ),

Λ($, ϑ, ξ1, n) = [(n− 1)(1− $M) + $ϑ(M− L)(n− ξ1)]

and
Λ($, ϑ, ξ2, n) = [(n− 1)(1− $M) + $ϑ(M− L)(n− ξ2)].

On the other hand, by the Cauchy–Schwarz inequality , we have

∞

∑
n=2

(1 + nλ− λ)[Λ($, ϑ, ξ1, n)]1/2[Λ($, ϑ, ξ1, n)]1/2√
(1− ξ1)(1− ξ2)

B(n, `)
√

an,1an,2 ≤ 1. (18)

From (16) and (17), it follows that

∞

∑
n=2

(1 + nλ− λ)2Λ($, ϑ, ξ1, n)B(n, `)Λ($, ϑ, ξ2, n)B(n, `)
[$ϑ(M− L)]2(1− ξ1)(1− ξ2)

an,1an,2 ≤ 1. (19)

Thus, we need to find largest ℵ, such that

∞

∑
n=2

(1 + nλ− λ)[Λ($, ϑ,ℵ, n)]
$ϑ(M− L)(1− ℵ) B(n, `)an,1an,2

≤
∞

∑
n=2

(1 + nλ− λ)[Λ($, ϑ, ξ1, n)]1/2[Λ($, ϑ, ξ2, n)]1/2B(n, `)
[$ϑ(M− L)]

√
(1− ξ1)(1− ξ2)

√
an,1an,2

or, equivalently, that

√
an,1an,2 ≤ 1− ℵ√

(1− ξ1)(1− ξ2)

[Λ($, ϑ, ξ1, n)]1/2[Λ($, ϑ, ξ2, n)]1/2

[Λ($, ϑ,ℵ, n)]
, n ≥ 2.

In view of (18), it is sufficient to find the largest ℵ, such that

[$ϑ(M− L)]
√
(1− ξ1)(1− ξ2)

(1 + nλ− λ)[Λ($, ϑ, ξ1, n)]1/2[Λ($, ϑ, ξ2, n)]1/2B(n, `)

≤ 1− ℵ√
(1− ξ1)(1− ξ2)

[Λ($, ϑ, ξ1, n)]1/2[Λ($, ϑ, ξ2, n)]1/2

[Λ($, ϑ,ℵ, n)]
,

which yields

ℵ[(1 + nλ− λ)Λ($, ϑ, ξ1, n)Λ($, ϑ, ξ2, n)B(n, `)− [$ϑ(M− L)]2(1− ξ1)(1− ξ2)]

≤ (1 + nλ− λ)Λ($, ϑ, ξ1, n)Λ($, ϑ, ξ2, n)B(n, `)− n[$ϑ(M− L)]2(1− ξ1)(1− ξ2)

−$ϑ(n− 1)(1− $M)(M− L)(1− ξ1)(1− ξ2).
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That is,

ℵ ≤ 1− [n[$ϑ(M− L)]2 − $ϑ(1− $M)(M− L) + [$ϑ(M− L)]2](1− ξ1)(1− ξ2)

(1 + nλ− λ)Λ($, ϑ, ξ1, n)Λ($, ϑ, ξ2, n)B(n, `)− [$ϑ(M− L)]2(1− ξ1)(1− ξ2)
.

Let

Φ(n) =
[n[$ϑ(M− L)]2 − (n− 1)$ϑ(1− $M)(M− L) + [$ϑ(M− L)]2](1− α1)(1− α2)

(1 + nλ− λ)Λ($, ϑ, ξ1, n)Λ($, ϑ, ξ2, n)B(n, `)− [$ϑ(M− L)]2(1− ξ1)(1− ξ2)
.

Since Φ(n) is non decreasing function of n(n ≥ 2), then we have ℵ ≤ 1−Φ(2).
That is,

ℵ ≤ 1− (1− ξ1)(1− ξ2)[1− $M + $ϑ(M− L)]$ϑ(M− L)
(1 + λ)Λ($, ϑ, ξ1, 2)Λ($, ϑ, α2, 2)B(2, `)− [$ϑ(M− L)]2(1− ξ1)(1− ξ2)

and hence the proof is complete.

Remark 1. Fixing ξ1 = α = ξ2, we have

ℵ ≤ 1− (1− α)2[1− $M + $ϑ(M− L)]$ϑ(M− L)
(1 + λ)[1− $M + $ϑ(M− L)(2− α)]2B(2, `)− [$ϑ(M− L)]2(1− α)2 . (20)

Theorem 4. Let the functions f j(z)(j = 1, 2) defined by (12) be in the classW `
B(L, M, α, $, ϑ, λ).

Then, the function

h(z) = z−
∞

∑
n=2

(a2
n,1 + a2

n,2)z
n (21)

belongs to the classW `
B(A, B, δ, $, ϑ, λ), where

δ = 1− 2(1− α)2[1− $M + $ϑ(M− L)]$ϑ(M− L)
(1 + λ)[1− $M + $ϑ(M− L)(2− α)]2B(2, `)− 2(1− α)2[$ϑ(M− L)]2

.

Proof. By virtue of Theorem 2, it is sufficient to prove that

∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− δ)]B(n, `)
$ϑ(M− L)(1− δ)

(a2
n,1 + a2

n.2) ≤ 1. (22)

Since f j(z)(j = 1, 2) ∈ W `
B(L, M, α, $, ϑ, λ) we have

∞
∑

n=2

{
(1+nλ−λ)[(n−1)(1−$M)+$ϑ(M−L)(n−α)]B(n,`)

$ϑ(M−L)(1−α)

}2
a2

n,j

≤
∞
∑

n=2

{
(1+nλ−λ)[(n−1)(1−$M)+$ϑ(M−L)(n−α)]B(n,`)an,j

$ϑ(M−L)(1−α)

}2
≤ 1

(23)

which yields that

∞

∑
n=2

1
2

{
(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− α)]B(n, `)

$ϑ(M− L)(1− α)

}2

(a2
n,1 + an,2) ≤ 1. (24)

Therefore, we need to find the largest δ, such that

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− δ)]B(n, `)
$ϑ(M− L)(1− δ)

≤ 1
2

[
(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− α)]B(n, `)

$ϑ(M− L)(1− α)

]2

, n ≥ 2.

That is
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δ ≤ 1− 2(n− 1)(1− $M)$ϑ(M− L)(1− α)2 − 2n[$ϑ(M− L)]2(1− α)2 + 2[$ϑ(M− L)]2(1− α)2

(1 + nλ− λ)[(n− 1)(1− $B) + $ϑ(M− L)(n− δ)]2B(n, `)− 2[$ϑ(M− L)]2(1− α)2 .

Since

Ψ(n) = 1− 2(n− 1)(1− $M)$ϑ(M− L)(1− α)2 − 2n[$ϑ(M− L)]2(1− α)2 + 2[$ϑ(M− L)]2(1− α)2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− δ)]2B(n, `)− 2[$ϑ(M− L)]2(1− α)2

is an increasing function of n, (n ≥ 2), we readily have

δ ≤ Ψ(2) = 1− 2(1− α)2[1− $M + $ϑ(M− L)]$ϑ(M− L)
(1 + λ)[1− $M + $ϑ(M− L)(2− α)]2B(2, `)− 2(1− α)2[$ϑ(M− L)]2

, (25)

which completes the proof.

Hölder-Type Inequalities

Recently, Nishiwaki, Owa, and Srivastava [36] have given some results of Hölder-type
inequalities for a subclass of uniformly starlike functions. Lately, Choi, Kim, and Owa
in [37] gave the following generalized convolution as

Hm(z) = z−
∞

∑
n=2

(
m

∏
j=1

a
pj
n,j

)
zn (pj > 0, j = 1, 2, . . . , m) (26)

For functions f j(z) ∈ W `
B(L, M, α, $, ϑ, λ)(j = 1, 2, . . . , m) given by (13), the familiar

Hölder inequality assumes the following form

∞

∑
n=2

(
m

∏
j=1

an,j

)
≤

m

∏
j=1

(
∞

∑
n=2

a
pj
n,j

) 1
pj

(pj > 1, j = 1, 2, . . . , m;
m

∑
j=i

1
pj
≥ 1). (27)

Our first result for the generalized convolution Hm(z) defined by (26) is contained in
the theorem below.

Theorem 5 (Hölder’s Inequality). If f j(z) ∈ W `
B(A, B, ξ j, $, ϑ, λ),−1 ≤ B < A ≤ 1, 0 <

$ ≤ 1, 0 ≤ λ ≤ 1, j = 1, 2, . . . , m, then Hm(z) ∈ W `
B(A, B, ξ, $, ϑ, λ) with

ξ ≤ 1−
∏m

j=i(1− ξ j)
pj − [(1− $B) + $ϑ(M− L)][$ϑ(M− L)]s

(1 + λ)s−1B(n, `)s−1 ∏m
j=i[1− $M + $ϑ(M− L)(2− ξ j)]

pj − [$ϑ(M− L)]s ∏m
j=i(1− ξ j)

pj
.

where S = ∑m
j=i pj ≥ 1; pj ≥ 1

qj
(j = 1, 2, . . . , m), qj > 1(j = 1, 2, . . . , m); ∑m

j=i
1
qj
≥ 1.

Proof. For f j(z) ∈ W `
B(A, B, ξ j, $, ϑ, λ)(j = 1, 2, . . . , m), Theorem 2 gives us that

∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ j)]

$ϑ(M− L)(1− ξ j)
B(n, `)an,j ≤ 1

which in turn implies

(
∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ j)]

$ϑ(M− L)(1− ξ j)
B(n, `)an,j

) 1
qj

≤ 1

with qj > 1 (j = 1, 2, . . . , m);
m

∑
j=i

1
qj

= 1.
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By applying the Hölder inequality (27), we have

∞

∑
n=2

 m

∏
j=i

(
(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ j)]

$ϑ(M− L)(1− ξ j)
B(n, `)

) 1
qj

a
1
qj
n,j

 ≤ 1.

Thus,

∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ)]

$ϑ(M− L)(1− ξ)
B(n, `)

(
m

∏
j=1

a
pj
n,j

)
≤ 1.

That is,

∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ)]

$ϑ(M− L)(1− ξ)
B(n, `)

(
m

∏
j=1

a
pj
n,j

)

≤
∞

∑
n=2

 m

∏
j=i

(
(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ j)]

$ϑ(M− L)(1− ξ j)
B(n, `)

) 1
qj

a
1
qj
n,j

.

Note that we have to find the largest ξ, such that

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ)]

$ϑ(M− L)(1− ξ)
B(n, `)

(
m

∏
j=1

a
pj
n,j

)

≤
m

∏
j=i

(
(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ j)]

$ϑ(M− L)(1− ξ j)
B(n, `)

) 1
qj

a
1
qj
n,j

which is equivalent to

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ)]

$ϑ(M− L)(1− ξ)
B(n, `)

(
m

∏
j=1

a
pj− 1

qj
n,j

)

≤
m

∏
j=i

(
(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ j)]

$ϑ(M− L)(1− ξ j)
B(n, `)

) 1
qj

, f or all n ≥ 2.

Since,

m

∏
j=i

(
(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ j)]

$ϑ(M− L)(1− ξ j)
B(n, `)

)pj− 1
qj

a
pj− 1

qj
n,j ≤ 1

(pj − 1
qj
≥ 0, j = 1, 2, . . . , m) we see that,

m

∏
j=i

a
pj− 1

qj
n,j ≤ 1

∏m
j=i

(
(1+nλ−λ)[(n−1)(1−$M)+$ϑ(M−L)(n−ξ j)]

$ϑ(M−L)(1−ξ j)
B(n, `)

)pj− 1
qj

. (28)

This last inequality (28) implies that

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ)]

$ϑ(M− L)(1− ξ)
B(n, `)

≤
∏m

j=i(1 + nλ− λ)pj [(n− 1)(1− $M) + $ϑ(M− L)(n− ξ j)B(n, `)]pj

∏m
j=i[$ϑ(M− L)(1− ξ j)]

pj
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which implies

[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ)]
m

∏
j=i

[$ϑ(M− L)]pj−1(1− ξ j)
pj

≤
m

∏
j=i

(1 + nλ− λ)pj−1B(n, `)pj−1[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ j)]
pj(1− ξ j)

pj .

Therefore, ξ should be

ξ ≤ 1−
nΥj + Υj − (n− 1)(1− $B)∏m

j=i[$ϑ(M− L)]pj−1(1− ξ j)
pj

∏m
j=i(1 + nλ− λ)pj−1B(n, `)pj−1[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ j)]

pj − Υj

and

Υj =
m

∏
j=i

[$ϑ(M− L)]pj(1− ξ j)
pj .

Let

Φ(n) ≤ 1−
nΥj + Υj − (n− 1)(1− $B)∏m

j=i[$ϑ(M− L)]pj−1(1− ξ j)
pj

∏m
j=i(1 + nλ− λ)pj−1B(n, `)pj−1[(n− 1)(1− $M) + $ϑ(M− L)(n− ξ j)]

pj − Υj

which is an increasing function of n; hence, we have

ξ ≤ Φ(2) = 1−
∏m

j=i(1− ξ j)
pj − [(1− $M) + $ϑ(M− L)][$ϑ(M− L)]s

(1 + λ)s−1B(n, `)s−1 ∏m
j=i[1− $M + $ϑ(M− L)(2− ξ j)]

pj − [$ϑ(M− L)]s ∏m
j=i(1− ξ j)

pj
.

This completes the proof of the theorem.

4. Closure Properties under Integral Transform

Fournier and Ruscheweyh in [38] introduced the operator for a function f ∈ S and
defined the integral transform

Vη( f )(z) =
∫ 1

0
η(t)

f (tz)
t

dt,

where η(t) a non-negative real-valued integrable function(weight function) satisfying
the normalizing condition

∫ 1
0 η(t)dt = 1. Interestingly, the general integral transform

Vη( f )(z) reduces to various well-known integral operators for specific choices of η(t). For
example, fixing

η(t) = (1 + c)tc, c > −1,

Vη gives the Bernardi operator [39].
While taking

η(t) =
(c + 1)δ

Γ(δ)
tc
(

log
1
t

)δ−1
, (c > −1; δ ≥ 0)

Vη gives Komatu operator (for more details, see [40]).
By definition, we have

Vη( f )(z) =
(c + 1)δ

Γ(δ)

∫ 1

0
(−1)δ−1tc(logt)δ−1

[
z−

∞

∑
n=2

anzntn−1

]
dt

Vη( f )(z) =
(−1)δ−1(c + 1)δ

Γ(δ)
lim

r→o+

[∫ 1

r
tc(logt)δ−1

[
z−

∞

∑
n=2

anzntn−1

]
dt

]
.
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A simple calculation gives

Vη( f )(z) = z−
∞

∑
n=2

(
c + 1
c + n

)δ

anzn.

We see that, for δ = 1, the Komatu operator reduces to the Bernardi operator.
In this section, we discuss the closure properties for f ∈ W `

B(L, M, α, $, ϑ, λ).

Theorem 6. Let f (z) ∈ W `
B(L, M, α, $, ϑ, λ). Then, Vη( f )(z) ∈ W `

B(L, M, α, $, ϑ, λ).

Proof. We need to prove that

∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− α)]

$ϑ(M− L)(1− α)

(
c + 1
c + n

)δ

B(n, `)an ≤ 1. (29)

On the other hand, by Theorem 2, f (z) ∈ W `
B(L, M, α, $, ϑ, λ), if and only if

∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− α)]

$ϑ(M− L)(1− α)
B(n, `)an ≤ 1.

Hence, c+1
c+n < 1. Therefore, (29) holds and the proof is complete.

The above theorem yields the following two results:

Theorem 7.

(1) If f (z) is starlike of order ϑ, then Vη f (z) is also starlike of order α.
(2) If f (z) is convex of order ϑ, then Vη f (z) is also convex of order α.

Theorem 8. Let f ∈ W `
B(L, M, α, $, ϑ, λ). Then, Vη f (z) is starlike of order 0 ≤ ζ < 1 in

|z| < R1, that is,R
(

z f ′(z)
f (z)

)
> ζ , (|z| < R1; 0 ≤ ζ < 1), where

R1 = inf
n≥2

{
(1− ζ)Mn

(n− ζ)(M− L)(1− α)$ϑ

} 1
n−1

(30)

andMn is given by (10).

Proof. For 0 ≤ ζ < 1, we have to prove that∣∣∣∣ z(Vη f (z))′

Vη f (z)
− 1
∣∣∣∣ < 1− ζ , |z| < R1,

where R1 is given by (30). Thus, we readily obtain

∣∣∣∣ z(Vη f (z))′

Vη f (z)
− 1
∣∣∣∣ =

∣∣∣∣∣∣∣
−∑∞

n=2(n− 1)
(

c+1
c+n

)δ
anzn−1

1−∑∞
n=2

(
c+1
c+n

)δ
anzn−1

∣∣∣∣∣∣∣
≤

∑∞
n=2(n− 1)

(
c+1
c+n

)δ
an|z|n−1

1−∑∞
n=2

(
c+1
c+n

)δ
an|z|n−1

which is less than 1− ζ if

∞

∑
n=2

(
c + 1
c + n

)δ(n− ζ

1− ζ

)
an|z|n−1 ≤ 1. (31)
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However, f ∈ W `
B(L, M, α, $, ϑ, λ), if and only if (by Theorem 2),

∞

∑
n=2

Mn

(M− L)(1− α)$ϑ
an ≤ 1. (32)

Relation (31) holds if:(
c + 1
c + n

)δ(n− ζ

1− ζ

)
|z|n−1 ≤ Mn

(M− L)(1− α)$ϑ

equivalently,

|z| ≤
{(

c + n
c + 1

)δ (1− ζ)Mn

(n− ζ)(M− L)(1− α)$ϑ

} 1
n−1

which yields the starlikeness of the family.

Using the fact that f is convex if and only if z f ′ is starlike, we state the following
theorem without proof.

Theorem 9. Let f ∈ W `
B(L, M, α, $, ϑ, λ). Then, Vη f (z) is convex of order 0 ≤ ζ < 1 in

|z| < R2, that is,R
(
(z f ′(z))′

f ′(z)

)
> ζ , (|z| < R2; 0 ≤ ζ < 1), where

R2 = inf
n≥2

{(
c + n
c + 1

)δ (1− ζ)Mn

n(n− ζ)(M− L)(1− α)$ϑ

} 1
n−1

. (33)

Proof. It is sufficient to prove∣∣∣∣ z(Vη f (z))′′

(Vη f (z))′

∣∣∣∣ < 1− ζ f or |z| < R2,

where R2 is given by (33).
Thus, we obtain

∞

∑
n=2

(
c + 1
c + n

)δ(n(n− ζ)

1− ζ

)
an|z|n−1 ≤ 1.

Proof follows on lines similar to the above theorem; hence, we omit it.

5. Subordination Results

For two analytic functions f1, f2 ∈ A, we say that f1 is subordinate to f2, and we
denote by f1 ≺ f2, if there is a Schwarz function ω(z) which is analytic in U, with ω(0) = 0
and |ω(z)| < 1, for all z ∈ U, such that f1(z) = f2(ω(z)) for z ∈ U. Note that, if the function
f2 is univalent in U, due to Miller and Mocanu [41] (see [42]), we have

f1(z) ≺ f2(z)⇐⇒ f1(0) = f2(0) and f1(U) ⊂ f2(U).

Now, we recall the following results due to Wilf [43], which are much more useful in
the sequel.

Definition 2 (Subordinating Factor Sequence). A sequence {bn}∞
n=1 of complex numbers is

said to be a subordinating factor sequence whenever f is analytic, univalent, and convex in U. We
have the subordination given by

∞

∑
n=1

bnanzn ≺ f (z), a1 = 1, z ∈ U. (34)
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Lemma 1. The sequence {bn}∞
n=1 is a subordinating factor sequence if and only if

R
{

1 + 2
∞

∑
n=1

bnzn

}
> 0, z ∈ U. (35)

Theorem 10. Let f ∈ W `
B(L, M, α, $, ϑ, λ) and g ∈ C the class of convex functions, then

M2

2[(1− α)(M− L)$ +M2]
( f ∗ g)(z) ≺ g(z) (36)

where
M2 = (1 + λ)[(1− $M) + $ϑ(M− L)(2− α)]B(2, `) (37)

and

R{ f (z)} > − [(1− α)(M− L)$ +M2]

M2
, z ∈ U. (38)

The constant factor M2
2[(1−α)(M−L)$+M2]

in (36) cannot be replaced by a larger number.

Proof. Let f ∈ W `
B(L, M, α, $, ϑ, λ) and suppose that g(z) = z +

∞
∑

n=2
bnzn ∈ C. Then,

M2

2[(1− α)(M− L)$ +M2]
( f ∗ g)(z)

=
M2

2[(1− α)(M− L)$ +M2]

(
z +

∞

∑
n=2

bnanzn

)
.

Thus, by Definition 2, the subordination result holds true if{
M2

2[(1− α)(M− L)$ +M2]

}∞

n=1

is a subordinating factor sequence, with a1 = 1. In view of Lemma 1, this is equivalent to
the following inequality

R
{

1 +
∞

∑
n=1

M2

[(1− α)(M− L)$ +M2]
anzn

}
> 0, z ∈ U. (39)

By noting the fact that Mn
((1−α)(M−L)$) is increasing function for n ≥ 2 and in particular

M2

(1− α)(M− L)$ϑ
≤ Mn

(1− α)(M− L)$ϑ
, n ≥ 2,

therefore, for |z| = r < 1, we have

R
{

1 +
M2

[(1− α)(M− L)$ +M2]

∞

∑
n=1

anzn

}

= R

1 +
M2

[(1− α)(M− L)$ +M2]
z +

∞
∑

n=2
M2anzn

[(1− α)(M− L)$ +M2]


≥ 1− M2

[(1− α)(M− L)$ +M2]
r−

∞
∑

n=2
|Mnan|rn

[(1− α)(M− L)$ +M2]

> 0, |z| = r < 1.
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Notice that the last but one inequality follows from the fact that

B(2, `)
∞

∑
n=2

(1 + nλ− λ)[(n− 1)(1− $M) + $ϑ(M− L)(n− α)],

is an increasing function in n, (n ≥ 2). Thus, (39) holds true for z ∈ U. This proves the
inequality (36). The equality (38) follows by taking the convex function

g(z) =
z

1− z
= z +

∞

∑
n=2

zn ∈ C

in (36). Next, to prove the sharpness of the constant M2
2[(1−α)(M−L)$+M2]

.

We consider the function F2 ∈ W `
B(L, M, α, $, ϑ, λ), given by

F2(z) := z− (1− α)(M− L)$
M2

z2

whereM2 is given by (37). For this F2(z), (36) becomes

M2

2[(1− α)(M− L)$ +M2]
F2(z) ≺

z
1− z

.

It is easily verified that

min
{
R
(

M2

2[(1− α)(M− L)$ +M2]
F2(z)

)}
= −1

2
, z ∈ U.

This shows that the constant M2
2[(1−α)(M−L)$+M2]

is the best possible scenario.

6. Conclusions

The study presented in this paper followed the line of research which introduces
new classes of univalent functions based on the well-known Borel series. Then, for this
newly defined function class, we presented the results of the studies carried out on co-
efficient estimates, the modified Hadamard product, Hölder inequality results, closure
properties, and subordination results. Furthermore, we believe that this study will motivate
a number of researchers to extend this idea for meromorphic functions, associated with
q-calculus and (p, q)-calculus (see [44–46]), also based on Borel distributions with special
functions [30,31,47]. Moreover, one can consider a function class Ap, comprising functions
of the form

f (z) = zp +
∞

∑
n=1

ap+nzp+n (p ∈ N = {1, 2, 3, . . .})

which are commonly known as p− the valent or multivalent functions of order p if
f (z) = w has at most p−roots in U and at least one value of the function is taken exactly
p times. We discuss the above results given in Theorems 1–10 . Further, by specializing
the parameters, our new subclassW `

B(L, M, α, $, ϑ, λ) yields many subclasses of analytic
functions which have not been studied yet in association with Borel distributions. It also
consists of many subclass analogues to classes studied [7,22,27,33,34] (see references cited
therein) in association with Borel distributions.
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