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Abstract: Distribution centers are quite important for logistics. In order to save costs, reduce energy
consumption and deal with increasingly uncertain demand, it is necessary for distribution centers to
select the location strategically. In this paper, a two-stage model based on an improved clustering
algorithm and the center-of-gravity method is proposed to deal with the multi-facility location
problem arising from a real-world case. First, a distance function used in clustering is redefined to
include both the spatial indicator and the socio-economic indicator. Then, an improved clustering
algorithm is used to determine the optimal number of distribution centers needed and the coverage
of each center. Third, the center-of-gravity method is used to determine the final location of each
center. Finally, the improved method is compared with the traditional clustering method by testing
data from 12 cities in Inner Mongolia Autonomous Region in China. The comparison result proves
the proposed method’s effectiveness.

Keywords: multi-facility location problem; clustering algorithm; center-of-gravity method

MSC: 68T20

1. Introduction

Selecting a proper site for a distribution center can effectively save costs, increase
profits, improve customer satisfaction and reduce circulation time. Therefore, the location
problem has been one of the most important decisions in logistics system planning [1].
Among these, the selection of distribution center sites has become one of the most popular
research interests in logistics management. Readers interested in this field could refer to
some recent research [2–7].

As the logistics in real-world become increasingly complicated due to factors that sig-
nificantly increase the uncertainty in logistics planning, such as economy development, the
prevalence of online retailing, increasing natural disasters, etc. It is necessary to introduce
more indicators to deal with the uncertainty during the site selection process. This research
includes demand uncertainty in the model described in a proper mathematical function,
which takes both the spatial condition and the economic condition into consideration
when selecting the proper locations for distribution centers. Hopefully, this research could
provide a planning strategy for the selection of distribution center sites.

In this paper, all data is extracted from a real case of 12 cities in Inner Mongolia
Autonomous Region, China. The author proposes a two-stage model based on an improved
clustering algorithm and the center-of-gravity method to solve the location problem of
distribution centers and provides a strategy for the logistics transportation in this case. The
improved model proposed in this paper is compared with the traditional clustering method
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by testing data from 12 cities and is proved to be effective. The main work of this paper is
as follows:

1. Proposes a modified distance function takes both spatial indicators and socio-economic
indicators into consideration, which makes the model match the real case better.

2. Divides demand points into different regions using an improved clustering algorithm
first, then uses the center-of-gravity method to modify the clustering center to select
the location of the distribution center in each region.

3. Compares the new model with the traditional clustering method using the data from
a real case. The results indicate that the method proposed in this paper has a better
performance.

The remainder of this paper is organized as follows. Section 2 reviews the literature
on location problems. Section 3 presents the methodology of a two-stage model, including
the improved clustering algorithm and the center-of-gravity method. Section 4 describes
the obtained results using the proposed model. Section 5 compares the results between
proposed model and different clustering algorithms. Section 6 concludes the research.

2. Literature Review

The location problem (LP) is a classical problem. The original problem can be traced
back to the Fermat problem. The first industrial application of the Fermat problem was
proposed by Alfred Weber in 1909 and called the Weber problem [8]. The purpose of
the Weber problem is to find the location of a warehouse to minimize the total distance
among all customers. Ever since Weber’s seminal work, LP has been booming in both the
academical world and the industrial world. In previous researches, LP is well classified on
the basis of model assumptions, constraints and objectives functions [9].

Based on the number of facilities involved, the location problem could also be classified
into two categories, the single-facility location problem (SFLP) or the multi-facility location
problem (MFLP). The SFLP is to determine the location of a single facility using the criteria
of distance and cost. The common methods include the Weiszfeld method [10] and the
center-of-gravity method [11]. However, one single facility might not be able to meet the
increased service demand for its capacity is limited. This is where it becomes a multi-facility
location problem, which is the problem to be studied in this paper.

The MFLP is commonly seen in humanitarian relief [12,13], emergency response [14],
health care facility locations [15,16] and other fields. The objective function and criteria
for facility location are considered from different perspectives in many studies, such as
total cost, total transportation time and satisfaction [17]. Because MFLP covers a wide
range and need to consider many factors, it can be divided into different problems, for
example, it could be divided as the deterministic problem if the information in the problem
is determined, and the probabilistic and stochastic problem if not. The former mainly
focuses on coverage maximization [18,19] and resource minimization [20]. The latter had
been largely discussed in earlier researches on the uncertainties of location problems,
such as uncertain demand [21,22] and disruption risk [23]. Probabilistic and stochastic
location problems can be divided into stochastic programming problems [24] and robust
optimization problems [25]. For the detailed classification of MFLPs, interested readers can
refer to Wang et al. [26].

There are two commonly methodologies used in MFLP researches: exact methods and
heuristic algorithms [27]. In early researches, the scale of the location problem is usually
small. Branch-and-bound [28] and cutting plane [29] are quite popular. However, with the
expansion of the problem scales and the increase of the constraints, it becomes difficult
to obtain the accurate solution. Finding a proper solution of a large-scale problem in a
reasonable time has become the mainstream of LP researches, among which, the heuristic
algorithm has been proposed for this purpose. Commonly used heuristic algorithms
include genetic algorithm [30], particle swarm optimization [31], tabu search [32], cuckoo
search [33] and Lagrangian relaxation [34]. However, the most distinctive disadvantage of
heuristic algorithms is the computationally burdensome to find the best solution.
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How to deal with the computational burden has then become many researchers’
interests. One widely adopted perspective is the clustering-based algorithms. By defining
the location problem as a kind of clustering problem, the researcher would divide customers
or demand points into different clusters, each of which is supplied by one facility. Then there
would be only one SFLP in each cluster needs to be solved. Thus, by decomposing the multi-
facility location problem (MFLP) into multiple single-facility location problems (SFLP),
the researcher could simplify the complexity of calculation [35]. Among those researchers,
Esnaf and Kucukdeniz [36] proposed a hybrid method using the fuzzy clustering algorithm
to divide the whole region into certain number of areas, each supplied by one very facility,
then they used the center-of-gravity method to select the location point of each facility.
Kuecuekdeniz et al. [37] proposed a method which integrates fuzzy c-means and convex
programming for solving a capacitated MFLP, where fuzzy c-means is used to convert an
MFLP to an SFLP. Gupta et al. [38] used fuzzy c-means and particle swarm optimization to
optimize the locations of public service centers. Researches mentioned above proved that
the clustering-based algorithms are applicable in practice [39]. Nonetheless, few researchers
have dedicated to improving the distance function in clustering.

In this paper, an MFLP of distribution centers arising from a real-world case is studied
with clustering-based algorithms. The author uses the clustering algorithm to decompose
the MFLP into multiple SFLPs and then uses the center-of-gravity method to select the
locations of distribution centers by solving each SFLP. The work differs clearly from the
previous literature. In this paper, both spatial and socio-economic indicators are well
embedded in the clustering method. An improved distance function is proposed to explain
the clustering results affected by the two types of indicators. Furthermore, the effectiveness
of the proposed method is proved by a comparison on different methods.

3. Methodology

The proposed two-stage model (2SM) aims to compute the optimal number and
locations of distribution centers with minimal total transportation cost. The structure of the
model is composed of two sequential stages.

1. Determine the optimal number of distribution centers by improved clustering for
an MFLP.

In this stage, the author proposes an improved K-Medoids clustering algorithm to
classify the demand points and determine the optimal clustering strategy. The improved
clustering algorithm can be summarized as follows:

• Redefine the distance function by introducing three socio-economic indicators.
• Select the initial clustering center based on the density to improve the algorithm’s efficiency.
• Use the elbow method to determine the optimal number of clusters.

2. Determine the optimal distribution center location by the center-of-gravity method
for each SFLP.

After clustering, the location of each cluster distribution center is solved as a SFLP
by employing the center-of-gravity method, which optimizes transportation cost. The
framework of the model is given in Figure 1.
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Figure 1. Framework of the proposed model.

3.1. Improved Clustering Algorithm

The clustering algorithm [40] is a kind of unsupervised machine learning method. Its
main idea is to divide the objects into different clusters to maximize the object similarity
in each cluster and minimize the object similarity between any two clusters. To deal with
noise data and outliers effectively, the author employs the K-Medoids clustering algorithm
and modifies it to fit the work. The K-Medoids clustering algorithm [41,42] is an adjustment
of the classical K-Means clustering algorithm. The pseudocodes for the K-Medoids are
shown in Algorithm 1.

Algorithm 1 K-Medoids Clustering Algorithm

Input: Data points {xi}N
i=1, number of clusters K

Choose different xi as initial clustering center ck for k = 1 to K
Set Ck ← {ck} for k = 1 to K
for i = 1 to K do
Cp ← Cp ∪ {xi} , where p = argminp∈IK

1
d(xi, cP)

end
while allocation result of any xi changed do
for k = 1 to K

ck ← argminxi∈Ck
∑

xt∈Ck

d(xt, xi)

end
for i = 1 to N do

if xi ∈ Ck′ and d(xi, ck) < d(xi, ck′ ) then
Ck ← Ck ∪ {xi} and Ck′ ← Ck′\{xi}
end

end
end
Output: Clustering results {Ck}K

k=1

Different from the K-Means, in the iterative process, the K-Medoids selects the data
point closest to the data’s mean in the cluster as the new clustering center instead of
choosing the average of all data points.
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In the clustering algorithms, there are three factors affect the performance of clus-
tering directly: distance measurement, algorithm efficiency and number of clusters. In
consideration of the factors, an improved clustering method is proposed to meet the
real-world situation.

3.1.1. Redefine the Distance Function

Euclidean distance is a common distance function in clustering algorithm that mea-
sures the distance between two points in m-dimensional space. The two-dimensional
distance function considering the longitude and the latitude is as follows:

Dij =
√(

xi − xj
)2 −

(
yi − yj

)2 (1)

where Dij measures the distance between point i and point j; xi and xj are the longi-
tudes of point i and point j, respectively; and yi and yj are the latitudes of point i and
point j, respectively.

Euclidean distance is simple and effective when dealing with homogeneous indicators.
But when the indicators are different, it misses some practical interpretability. To cope with
this setback, the author redefines the distance function considering both spatial indicators
and socio-economic indicators. The spatial indicators represent the actual distance between
two points. The socio-economic indicators reflect the logistics-level score of each point. The
detailed computing process is as follows.

(1) Compute the logistics-level score.

The logistics-level score proposed in this research mainly considers three dimensions:
economy development, traffic congestion and total logistics demand, which is represented
respectively by the per capita disposable income of urban residents, the population density
and the permanent urban population, as shown in Table 1. Note that there is no available
data on population density. Instead, the ratio of permanent urban residents to urban
built-up area is used as in Equation (2).

population density =
permanent urban population

urban built up area
(2)

Table 1. The indicator composition of the logistics-level score.

Dimension Indicator

Economy development per capita disposable income of urban residents
Traffic congestion population density

Total logistics demand permanent urban population

As the actual data of the corresponding indicators is obtained, the author computes
each city’s logistics-level score using the entropy weight method, which is used to determine
the weight coefficient of each indicator by computing the information entropy. To a certain
extent, the entropy weight method can avoid subjective judgment when determining
weight coefficients [43]. The smaller the information entropy value of one indicator is,
the larger the weight coefficient assigned to it becomes [44]. The logistics-level score is
computed as Equations (3)–(8):

First, the data are normalized by Equations (3) and (4):

Yij =
Xij −min

i

(
Xij
)

max
i

(
Xij
)
−min

i

(
Xij
) (3)
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Yij =
max

i

(
Xij
)
− Xij

max
i

(
Xij
)
−min

i

(
Xij
) (4)

Equation (3) is the normalized formula of the utility indicator, and Equation (4) is
the normalized formula of the cost indicator. Xij is the jth (j = 1, 2 . . . , m) indicator of
city i (i = 1, 2 . . . , n). Yij is the indicator data after normalization. Since the greater the
population density is, the greater the traffic congestion becomes, population density should
be considered as the cost indicator. The other two indicators are utility indicators.

Then, the information entropy is computed by Equations (5) and (6):

Pij = Yij/
n

∑
i=1

Yij (5)

Ej = −
1

lnn

n

∑
i=1

PijlnPij (6)

where Pij is the weight of city i in the jth indicator and Ej is the information entropy of the
jth indicator.

After that, the weights of the indicators are computed by Equation (7):

Wj =
(
1− Ej

)
/
(

n−∑m
j=1 Ej

)
(7)

where Wj is weight of the jth indicator.
Finally, the logistics-level score of each city is computed by Equation (8):

Zi =
m

∑
j=1

YijWj (8)

where Zi is the logistics-level score of city i.

(2) Define the distance between two points:

D
(
Xi, Xj

)
=

D2
ij(

ZiZj
)u (9)

In Equation (9), D
(
Xi, Xj

)
measures the distance between any two cities, which is

affected by two distance indicators: spatial and socio-economic. D2
ij is the spatial distance

between any two cities, which represents the spatial indicators. The greater the spatial
distance is, the greater the distance between the two cities becomes. ZiZj is the logistics
score distance between any two cities, which represents the socio-economic indicators. Zi
and Zj are the logistics-level scores of city i and city j, respectively. The greater the logistics
score distance is, the closer the connection between the two cities at the logistics level
lies, and the smaller the distance between the two cities in the clustering process becomes.
u represents the degree of influence of the logistics-level score in the distance function
between any two cities. The larger u is, the greater the influence of the logistics-level score
becomes. When u is 0, the distance function is equivalent to the Euclidean distance.

3.1.2. Select the Initial Clustering Center

To reduce the time complexity of the clustering algorithm effectively and avoid the
interference of noise data, the author introduces the idea of density into the clustering
algorithm to determine the initial clustering center in this research. The steps of selecting
the initial clustering center are as follows.

First, the domain radius ra of the demand points Xi is computed by Equation (10):

ra =
1
2

max{‖Xi − Xk‖} (10)
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The domain radius ra measures the maximum distance between Xi and other de-
mand points.

Then, the density factor Di of Xi is computed by Equation (11):

Di =
n

∑
j=1

exp

[
−
‖Xi − Xj‖2

(2ra)
2

]
(11)

A larger Di means that more demand points surround Xi, i.e., Xi has a closer rela-
tionship with other points. The point with a greater density factor is more likely to be a
clustering center. The exponential function could make sure that the point surrounded by
more demand has a greater density factor.

After figuring out the density factors of all demand points, the factors are arranged in
the descend order. Then, the demand points are selected corresponding to the top k density
factors as the initial clustering center.

3.1.3. Determine the Optimal k

The clustering algorithm aims to divide the similar sample points into the same
cluster and effectively distinguish the dissimilar sample points. In this process, k will
significantly affect the final clustering performance. To obtain the optimal clustering results,
it is necessary to determine the optimal selection of k before clustering. In this research, the
elbow method is used to obtain the optimal k by computing the sum of the squares of error
(SSE) between the sample points and their respective clustering centers. The equation for
computing SSE is Equation (12):

SSE =
k

∑
i=1

∑
x∈Ci

(x− Pi)
2 (12)

where Ci represents the ith cluster, Pi is the clustering center of Ci and x is the point
belonging to the Ci.

The core idea of the elbow method lies in the following: With the increase in cluster
number k, sample division will be more refined, and the aggregation degree of each cluster
will be gradually improved; thus, SSE will gradually become smaller. In addition, when k
is less than the optimal cluster number, SSE decreases greatly because the increase of k will
greatly increase the degree of aggregation of each cluster. However, when k reaches the
optimal cluster number, the return of aggregation degree obtained by increasing k decreases
rapidly. This means decrease of SSE will tend to be gentler as k continues to increase.

3.1.4. The Flowchart of Clustering Algorithm

Based on the improvements discussed above, the clustering algorithm flow is
as follows:

Step 1: Obtain the data of each city required by the model, normalize the data for each
indicator to eliminate the dimensional influence.

Step 2: Compute the density factor of each city and arrange each city in the order of
density factor from large to small.

Step 3: Take the top k points in Step 2 as clustering centers and take the remaining
n− k points as sample points for clustering. Corresponding clustering results are obtained.

Step 4: Compute the sum of distances between each point in the cluster and the
remaining points in the same cluster, redetermine the center of each cluster according
to the principle of the minimum sum of distances. On this basis, obtain the results by
clustering again.

Step 5: Repeat Step 4 until clustering result obtained becomes stable. Take this result
as the result under k.

Step 6: Change the value of k (k ≤
√

n) and repeat Steps 3–5 to obtain clustering results
under different k.
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Step 7: Use the elbow method to obtain the optimal k and the optimal clustering scheme.
Step 8: Output the optimal clustering results.
Figure 2 shows the flow chart of the clustering algorithm.
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3.2. The Center-of-Gravity Method

The center-of-gravity method is used to obtain the optimal distribution center location
within each cluster after clustering. The point is to minimize the transportation cost between
any demand point and the distribution center.

In the logistics distribution system, the coordinate of each logistics demand point is
defined as i(xi, yi)(i = 1, 2, . . . ., n) according to geographical location, and the coordinate
of distribution center P is set as (x0, y0). Equation (13) shows the objective function:

H =
n

∑
i=1

hiwidi (13)

where H is total transportation cost, hi is demand of goods at point i, wi is transportation
cost from distribution center to point i and di is distance of distribution center to point i.

Here hi is defined as follows:

hi = ∑
s∈S

pisaisui = ui ∑
s∈S

pisais (14)

where S is the set of scenarios, pis is the probability of scenario s occurring at point i, ais is
the demand coefficient when scenario s occurs at point i, ais = 1 denotes a stable demand
case and ui is per capita disposable income of urban residents at point i.
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In the first stage of this method, the gravity centers of each cluster are computed by
the following formulas:

x0 =
∑n

i=1 hiwixi/di

∑n
i=1 hiwi/di

(15)

y0 =
∑n

i=1 hiwiyi/di

∑n
i=1 hiwi/di

(16)

di =

√
(x0 − xi)

2 + (y0 − yi)
2 (17)

P(x0, y0) is the extreme point, which is a necessary condition for the optimal solution.
If it is not optimal, the iterative method is introduced to find the optimal solution. The
solution formulas are as follows:

x(q+1)
0 =

∑n
i=1 hiwixi/d(q+1)

i

∑n
i=1 hiwi/d(q+1)

i

(18)

y(q+1)
0 =

∑n
i=1 hiwiyi/d(q+1)

i

∑n
i=1 hiwi/d(q+1)

i

(19)

d(q+1)
i =

√
(x(q+1)

0 − xi)
2
+ (y(q+1)

0 − yi)
2

(20)

This computing process ends when the difference between the last two coordinates of
distribution center is lower than a specific minimal value.

3.3. Evaluation Function

In this paper, the evaluation function’s object is evaluating the sum of the transporta-
tion costs from each distribution center to its responsible demand points. To describe the
function accurately, assumptions should be made and given as follows. The capacity of
each distribution center can always meet all the demands of the points covered by it. Each
demand point is supplied by only one distribution center. Omit the rental, maintenance
and other costs related to transporting vehicles during the transportation process. Trans-
portation costs include only freight rates and transportation distance, with the exclusion
of labor costs incurred from loading and unloading. Based on the assumptions above, the
evaluation function can be calculated as follows:

F =
k

∑
i=1

∑
j∈Ni

mijwij J (21)

where i indicates the distribution center, j indicates the demand point, Ni is the set of all
requirement points covered by i distribution center, mij is the transportation distance from
the distribution center i to the demand point j, wij is the total weight of goods transported
from distribution center i to the demand point j, and J is the unit rate from distribution
center i to the demand point j.

4. Case Study

In this section, taking Inner Mongolia Autonomous Region as an example, the author
analyzes the locations of distribution centers in 12 cities to provide a better solution for its
logistics transportation. The algorithm is implemented in Python version 3.8.

4.1. Data Collection and Processing

There are six indicators involved: the longitude, the latitude, the per capita disposable
income of urban residents, the permanent urban population, the urban built-up area and
the population density.
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The longitude and the latitude are obtained from Baidu Maps. The per capita dispos-
able income of urban residents, the permanent population and the urban built-up area of
each city in 2019 are downloaded from the official website of the Inner Mongolia Bureau of
Statistics. The population density of each city is computed by Equation (2). Table 2 shows
the initial data used in this case.

Table 2. The initial data.

City Name Longitude Latitude PCDIUR 1 PUP 2 Population
Density Z

Hohhot 111.7555 40.8484 49397 265.5 0.8019 0.7287
Baotou 109.8465 40.6629 50427 232.48 0.9408 0.6293

Hulun Buir 119.7814 49.1724 35482 116.41 0.5209 0.4503
Xing’an 122.0406 46.0893 30408 75.13 0.6744 0.2171
Tongliao 122.2505 43.6580 34127 143.03 0.8690 0.2561
Chifeng 118.8938 42.2608 34101 211.42 0.8636 0.3397
Xilin Gol 116.0486 43.9390 40778 80.2 0.4478 0.5496
Ulanqab 113.1314 41.0003 33042 100.29 0.4569 0.4218

Ordos 109.7886 39.6136 49768 165.04 0.5958 0.7352
Bayannur 107.3950 40.7494 32634 91.77 0.6942 0.2676

Wuhai 106.8010 39.6629 45010 52.9 0.8491 0.3668
Alxa 105.7354 38.8583 42983 21.06 0.3637 0.5696

1 PCDIUR: Per capita disposable income of urban residents. 2 PUP: Permanent urban population.

In order to eliminate the influence of data dimension on the results, all indicators are
normalized in advance.

4.2. The Location Problem’s Solution

According to the methodology proposed in Section 3, the location problem is solved
as follows.

Compute the domain radius ra and the density factor Di of each city using the latitude
and the longitude. Sort the density factor in the descend order, as shown in Table 3.

Table 3. Domain radius ra and density factor Di for each city.

City Name Domain Radius Density Factor Ranking

Hohhot 0.503365 4.328515 1
Baotou 0.468513 4.25465 2

Bayannur 0.520765 4.245805 3
Ordos 0.577318 4.18387 4
Wuhai 0.614253 4.003441 5

Ulanqab 0.43221 3.649514 6
Alxa 0.64415 2.272527 7

Tongliao 0.511665 2.100625 8
Xing’an 0.543144 1.842189 9
Chifeng 0.421892 1.756682 10
Xilin Gol 0.34472 1.590949 11

Hulun Buir 0.64415 1.275099 12

Select the top k cities in Table 3 as the initial centers for clustering. Use the elbow
method to evaluate the clustering results with different k.

Since it contains 12 demand points in total, the value range of k lies in [2, 4] according
to the principle of k ≤

√
n. Figure 3 shows the sum of the squares of error (SSE) when k

takes the values in [2, 6]. The optimal value is k = 3.
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After selecting the optimal k, clustering results are obtained according to the improved
clustering algorithm, which is shown in Table 4.

Table 4. The clustering results for the optimal k.

Regions Central City Covered Cities

Region 1 Xing’an Tongliao, Chifeng, Hulun Buir
Region 2 Hohhot Ulanqab, Baotou, Ordos, Xilin Gol
Region 3 Wuhai Bayannur, Alxa

The result is modified by the center-of-gravity method. In this process, the permanent
urban population is taken to represent the demand of each city. The modified results are
shown in Table 5 and Figure 4. C0, C1, C2 and Center are in different colors in Figure 4.

Table 5. The location results for the 2SM.

Clustering City Name Longitude Latitude Demand

C0

Xing’an 122.0406 46.08926 75.13
Tongliao 122.2505 43.65798 143.03
Chifeng 118.8938 42.26083 211.42

Hulun Buir 121.8592 50.18671 116.41
Center 0 121.2842 44.08581

C1

Hohhot 111.7555 40.84842 265.5
Ulanqab 112.2595 42.44243 100.29
Baotou 110.3877 42.15471 232.48
Ordos 109.7886 39.61359 165.04

Xilin Gol 114.1209 44.03614 80.2
Center 1 111.4345 41.1818

C2

Wuhai 106.801 39.6629 52.9
Bayannur 107.8949 41.73579 91.77

Alxa 101.339 41.36085 21.06
Center 2 107.849 41.68704
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Figure 4. The location results for the 2SM.

A distribution center cannot be set up outside the city because of its infrastructure
requirements. So, the distribution center is sited in a city closest to the location results for
the 2SM. The results are shown in Table 6.

Table 6. The final location results for the 2SM.

Regions Central City Covered Cities

Region 1 Tongliao Chifeng, Hulun Buir, Xing’an
Region 2 Hohhot Ulanqab, Baotou, Ordos, Xilin Gol
Region 3 Bayannur Alxa, Wuhai

5. Evaluation

To evaluate the effectiveness of the two-stage model (2SM), the author makes a com-
parison on the results of it with three models’ based on the traditional K-means algorithm.
For each model, k is set as 3. Details are shown in the following.

Model 1: Geographic clustering model (GCM). This model considers only the geo-
graphical indicator. It takes the linear distance between cities as the similarity measurement.
The distance between cities is computed based on the longitude and the latitude of each
city. The location results are obtained by K-means clustering. The results are shown in
Table 7 and Figure 5. C0, C1, C2 and Center are in different colors in Figure 5.

Table 7. The location results for the GCM.

Clustering City Name Longitude Latitude Demand

C0
Hulun Buir 121.8592 50.18671 116.41

Center 0 121.8592 50.18671

C1

Hohhot 111.7555 40.84842 265.5
Baotou 110.3877 42.15471 232.48

Ulanqab 112.2595 42.44243 100.29
Ordos 109.7886 39.61359 165.04

Bayannur 107.8949 41.73579 91.77
Wuhai 106.801 39.6629 52.9
Alxa 101.339 41.36085 21.06

Center 1 108.6037 41.11695

C2

Xing’an 122.0406 46.08926 75.13
Tongliao 122.2505 43.65798 143.03
Chifeng 118.8938 42.26083 211.42
Xilin Gol 114.1209 44.03614 80.2
Center 2 119.3265 44.01106
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Figure 5. The location results for the GCM.

Model 2: Five-indicator clustering model (5ICM). This model contains five normalized
indicators used in this paper: the longitude, the latitude, the per capita disposable income
of urban residents, the permanent urban population and the population density. Euclidean
distance is used to compute the distance between cities, the results are obtained by K-means
clustering as shown in Table 8 and Figure 6. C0, C1, C2 and Center are in different colors in
Figure 6.

Table 8. The location results for the 5ICM.

Clustering City Name Longitude Latitude Demand

C0

Hulun Buir 121.8592 50.18671 116.41
Xing’an 122.0406 46.08926 75.13
Tongliao 122.2505 43.65798 143.03
Chifeng 118.8938 42.26083 211.42
Center 0 121.261 45.5487

C1

Xilin Gol 114.1209 44.03614 80.2
Ulanqab 112.2595 42.44243 100.29

Bayannur 107.8949 41.73579 91.77
Alxa 101.339 41.36085 21.06

Center 1 108.9036 42.3938

C2

Hohhot 111.7555 40.84842 265.5
Baotou 110.3877 42.15471 232.48
Ordos 109.7886 39.61359 165.04
Wuhai 106.801 39.6629 52.9

Center 2 109.6832 40.5699

Model 3: Improved five-indicator clustering model (I5ICM). Based on the result of
Model 2, this model incorporates the center-of-gravity method to obtain lower transporta-
tion costs. The results are shown in Table 9 and Figure 7. C0, C1, C2 and Center are in
different colors in Figure 7.
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Table 9. The location results for the I5ICM.

Clustering City Name Longitude Latitude Demand

C0

Hulun Buir 121.8592 50.18671 116.41
Xing’an 122.0406 46.08926 75.13
Tongliao 122.2505 43.65798 143.03
Chifeng 118.8938 42.26083 211.42
Center 0 121.2842 44.08581

C1

Xilin Gol 114.1209 44.03614 80.2
Ulanqab 112.2595 42.44243 100.29

Bayannur 107.8949 41.73579 91.77
Alxa 101.339 41.36085 21.06

Center 1 112.2504 42.44865

C2

Hohhot 111.7555 40.84842 265.5
Baotou 110.3877 42.15471 232.48
Ordos 109.7886 39.61359 165.04
Wuhai 106.801 39.6629 52.9

Center 2 110.9376 41.0485

The total transportation costs of the four models are shown in Table 10.

Table 10. The transportation costs of the four models.

GCM 5ICM I5ICM 2SM

Transportation cost 3864.2391 4100.9813 3539.9559 3220.9834

As shown in Table 10, the 2SM proposed in this research has the lowest total trans-
portation cost. Furthermore, compared with the three traditional models, the following
conclusions can be drawn:

1. Compared with the result of the geographic clustering model (GCM), clustering with
five indicators (5ICM) has an increase in cost, this indicates that if the distance function
or algorithm is not adjusted, the result will be worse than the original method.

2. Using the center-of-gravity method to modify the clustering with five indicators
(I5ICM) significantly reduces the cost.
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3. If the distance function is modified reasonably and the algorithm is improved into the
two-stage model (2SM) proposed in this study, the cost will be further reduced.
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6. Results and Conclusions

In this research, a two-stage location selection model based on an improved cluster-
ing algorithm and the center-of-gravity method is proposed for an MFLP arising from
a real-world problem. This methodology is proved to be effective and contributing to
future logistics system planning strategy researches. The following conclusions are drawn
as follows.

First, the more indicators introduced into LP, the more realistic the research becomes.
In this paper, three socio-economic indicators, namely, economy development, traffic
congestion degree and total logistics demand, are introduced in defining a distance function
used in clustering, each of which could affect the decision on the site of a distribution
center. Different from most of the existing researches, which only used spatial indicators,
this research introduces three socio-economic indicators to evaluate a city’s potential to
accommodate a distribution center, described as the logistics-level score. This method
provides a more comprehensive perspective for decision-makers to choose proper sites
for distribution.

Second, an improved clustering algorithm is used to divide demand points into
different regions. The improved algorithm redefines the traditional distance function,
which could not reflect the distance result caused by the socio-economic indicators. The
improved distance function takes both the positive effect of the three socio-economic
indicators and the passive effect caused by the spatial indicators into consideration, and
proved to be more effective than GCM, 5ICM and I5ICM in the case study.

Third, based on the methodology discussed above, this research divides 12 cities in
Inner Mongolia into 3 regions and selects 1 city for each region as the regional distribution
center. This is consistent with the government’s current logistics center planning strategy.
Such consistency indicates that this methodology could be used as an optional reference
for local governments’ logistics planning.

The limitation of this paper may lie in the selection of the clustering indicators. Al-
though three socio-economic indicators are introduced in the 2SM, it is still impossible to
describe the complexity of the logistics in real world. This means more socio-economic
indicators or even more kinds of indicators should be introduced into LP researches. Be-
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sides, during the SFLP process, the author takes only the total transportation cost as the
final objective and omits some other influential decision making factors. In subsequent
research, other objectives/constraints such as carbon emission reduction and sustainable
development can be added to the existing research.
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