
Citation: Lin, Z.; Lai, J.; Chen, X.;

Cao, L.; Wang, J. Learning to Utilize

Curiosity: A New Approach of

Automatic Curriculum Learning for

Deep RL. Mathematics 2022, 10, 2523.

https://doi.org/10.3390/

math10142523

Academic Editors: Jiangping Hu and

Zhinan Peng

Received: 4 July 2022

Accepted: 15 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Learning to Utilize Curiosity: A New Approach of Automatic
Curriculum Learning for Deep RL
Zeyang Lin , Jun Lai *, Xiliang Chen *, Lei Cao and Jun Wang

Command Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China;
hunterlzy@aeu.edu.cn (Z.L.); feiyuewuxian2018@aeu.edu.cn (L.C.); wangjun920811@aeu.edu.cn (J.W.)
* Correspondence: zhangk@aeu.edu.cn (J.L.); lgd_chenxiliang@aeu.edu.cn (X.C.)

Abstract: In recent years, reinforcement learning algorithms based on automatic curriculum learning
have been increasingly applied to multi-agent system problems. However, in the sparse reward
environment, the reinforcement learning agents get almost no feedback from the environment during
the whole training process, which leads to a decrease in the convergence speed and learning efficiency
of the curriculum reinforcement learning algorithm. Based on the automatic curriculum learning
algorithm, this paper proposes a curriculum reinforcement learning method based on the curiosity
model (CMCL). The method divides the curriculum sorting criteria into temporal-difference error
and curiosity reward, uses the K-fold cross validation method to evaluate the difficulty priority of
task samples, uses the Intrinsic Curiosity Module (ICM) to evaluate the curiosity priority of the task
samples, and uses the curriculum factor to adjust the learning probability of the task samples. This
study compares the CMCL algorithm with other baseline algorithms in cooperative-competitive
environments, and the experimental simulation results show that the CMCL method can improve the
training performance and robustness of multi-agent deep reinforcement learning algorithms.

Keywords: deep reinforcement learning; automatic curriculum learning; curiosity; sparse reward

MSC: 68T07

1. Introduction

Deep reinforcement learning [1] combines the perception ability of deep learning with
the decision-making ability of reinforcement learning, and has been widely used in the
processing of complex decision-making tasks [2], such as Atari games [3], complex robot
action control [4,5], and the application of AlphaGo intelligence [6]. In 2015, Hinton, Bengio
and Lecun, famous experts in the field of machine learning, published a review paper on
deep learning in Nature, which considered deep reinforcement learning as an important
development direction of deep learning [7].

However, there is a significant problem in the application of deep reinforcement
learning algorithms in multi-agent systems [8]. With the increase in the number of agents
and the increase in the complexity of the environment, the coordination and cooperation
between agents becomes more difficult, which can easily cause a situation where the
Reinforcement Learning (RL) algorithm does not converge or even cannot be trained [9,10].

Curriculum learning [11], as a hot field of current artificial intelligence research, was
proposed by Bengio et al. at the International Conference on Machine Learning (ICML)
in 2009. Bengio et al. pointed out that the curriculum learning method can be regarded
as a special kind of continuous optimization method, which can start with smoother (i.e.,
simpler) optimization problems and gradually add rougher (i.e., more difficult) non-convex
optimization problems, and finally optimize the target task. In curriculum reinforcement
learning algorithms [12], manually set the tasks of different difficulty levels, and gradually
add more difficult tasks to the simple reinforcement learning tasks, so that the knowledge of

Mathematics 2022, 10, 2523. https://doi.org/10.3390/math10142523 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10142523
https://doi.org/10.3390/math10142523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5599-5856
https://doi.org/10.3390/math10142523
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10142523?type=check_update&version=1

Mathematics 2022, 10, 2523 2 of 20

the source tasks can be reused in the process of learning difficult tasks, thereby accelerating
the convergence of model to the optimal policy.

The above-mentioned predefined curriculum learning methods need to be manually
set in advance in the process of task generation and sorting, so the quality of the generated
curriculums will be directly affected by the experience of experts. However, the learning
method of pre-defined curriculums requires manual curriculum difficulty assessment and
sorting, and lacks task versatility. The current curriculum learning field gradually adopts
automatic curriculum learning (ACL) instead of predefined curriculum learning to train
reinforcement learning agents.

Before the agent learns the whole task, the difficulty of the experience samples in the
experience replay buffer is evaluated and sorted, and the experience samples are learned in
order from easy to difficult, so automatic curriculum learning [13] can realize the learning
of difficult tasks, shorten the training time, and improve the training performance of
task learning.

Traditional automatic curriculum learning often uses the temporal-difference error
method to evaluate and sort the difficulty of task samples, that is, to obtain the optimal
policy by maximizing the external reward value that appears in the process of interacting
with the environment, but in the reward sparsity environment, the agent is difficult to
obtain environmental reward feedback in long-lasting time steps. The lack of reward
signals will affect the iteration and update of the agent’s action policy, so it is hard for the
agent to learn an effective policy.

To solve the above problems, this paper proposes a curriculum learning method based
on curiosity module (CMCL), adding curiosity intrinsic reward in curriculum sorting
criteria, the curiosity reward value of the experience samples was evaluated to obtain
the curiosity priority, and the curriculum sequence of the experience samples was sorted
together with the temporal-difference error, and the selection progress of the curriculum
difficulty was adjusted by setting the curriculum difficulty factor, so as to enhance the ex-
ploration and training performance of the curriculum reinforcement learning algorithm for
the environment. The experimental results of two tasks in multi-agent particle environment
show that the CMCL method proposed in this paper can greatly improve the processing
performance of multi-agent tasks in sparse reward environments compared with the three
baseline algorithms.

The contributions of this paper are as follows:

(1) This paper proposes a curriculum reinforcement learning method based on the cu-
riosity module. By adding curiosity priority to the curriculum sorting criteria, it can
enhance the exploratory and robustness of reinforcement learning agents and avoid
the appearance of turn-in-place agent;

(2) This paper introduces a curriculum difficulty factor in the process of selecting the
curriculum difficulty of the model, and dynamically adjusts the difficulty of the
currently selected curriculum through the curriculum difficulty factor, so as to realize
automatic curriculum learning from easy to difficult priority experience.

The rest of this paper is organized as follows. Section 2 introduces related work,
Section 3 introduces the MADDPG algorithm and the theory of automatic curriculum
learning, Section 4 introduces the CMCL algorithm in detail, Section 5 presents exper-
imental results and analyzes them, Section 6 presents discussion and Section 7 draws
some conclusions.

2. Related Work

How to reasonably arrange the sequence of curriculums and select curriculums in
the process of curriculum learning is the main research problem of current automatic
curriculum reinforcement learning research. Carlos Florensa et al. [14] used generative
networks to propose tasks that the agent needs to implement to automatically generate
curriculums capable of learning many types of tasks without requiring prior knowledge.
Ren et al. [15] proposed an automatic curriculum reinforcement learning method that uses

Mathematics 2022, 10, 2523 3 of 20

a priority curriculum sorting method to extract experience samples from the experience
replay buffer to achieve automatic curriculum learning. Jiayu Chen et al. [16] used the
perspective of variational inference to automatically generate training curriculums for the
task environment and the number of agents from two aspects of task expansion and agent
expansion, which can be used to solve cooperative multi-agent reinforcement learning
problems in difficult environments.

Curiosity-driven agent exploration is an important approach in reward function design
for reinforcement learning. In supervised learning, curiosity is used to alleviate the problem
of imbalanced representation and distributional bias among data [17,18]. Pathak et al. [19]
used curiosity as an intrinsic reward value for agents, which can encourage the agent to
explore new environmental states. Our method is derived from the curiosity mechanism
of the human brain [20]. Curiosity is used as a reference standard for automatic curricu-
lum learning’s curriculum sorting, which can complement the priority experience replay
algorithm (PER). The selection probability of novel samples is increased in the samples to
balance the exploration of the uncertain state in the process of environmental exploration
of multi-agent system.

The most important works related to our method include the self-adaptive priority
correction algorithm proposed by Hongjie Zhang et al. [21], the High-Value Prioritized
Experience Replay proposed by Xi Cao et al. [22], and the Curriculum Guided Hindsight
Experience Replay proposed by Meng Fang et al. [4]. Hongjie Zhang et al. predicted the
sum of the real Temporal-Difference error of all samples in the experience replay, and
corrected it by an importance weight. Xi Cao et al. designed a priority experience replay
method based on the combination of temporal-difference error and value for the sparse
reward environment, Meng Fang et al. applied the curiosity mechanism to the Hindsight
experience replay algorithm (HER), and learned successful experience from failure through
the HER mechanism. Our method provides a further improvement on the basis of the above
methods. As one of the curriculum sorting standards in the priority experience replay
algorithm, the curiosity mechanism can compensate for the exploratory and randomness of
the agent in the sparse reward environment, thereby improving the training performance
and robustness of the algorithm.

3. Basic Concepts

This chapter will sequentially introduce some important concepts of Deep Reinforce-
ment Learning, Multi-Agent Deep Deterministic Policy Gradient algorithms (MADDPG),
and Automatic Curriculum Learning (ACL).

3.1. Deep Reinforcement Learning

Reinforcement learning [23] consists of two parts: agents and environment. To max-
imize agents’ total reward value, the agents observe the initial state in the environment,
take actions from an action set, and the environment accepts the action and gives the agents
a reward. This process can be modeled as a Markov decision quintuple (S, A, R, P, γ),
where S represents the state space, A represents the action space, R represents the reward
function, P represents the state transition function, and γ represents the discount factor.
The schematic diagram of reinforcement learning is shown in Figure 1.

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 20

The goal of agents is to maximize expected reward J(πθ) = Eτ∼πθ
[R(τ)] by continuously

optimizing the policy 𝜋𝜃, then the optimal policy is

𝜋𝜃
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥

𝜋𝜃

𝐸𝜏∼𝜋𝜃(∑𝛾𝑡𝑟𝑡

∞

𝑡=0

) (1)

where 𝑟𝑡 represents the reward of agents at time t.

agent

environment

state
Reward action

Figure 1. Schematic diagram of reinforcement learning.

Deep reinforcement learning algorithms can be divided into following three catego-

ries [26], deep reinforcement learning based on value function, deep reinforcement learn-

ing based on policy gradient, and deep reinforcement learning based on the actor-critic

(AC) framework. The DRL algorithm based on the structure of the AC framework uses

the error of the value function to guide the policy update and improve the performance

of the algorithm training. The policy 𝜋𝜃 is updated by policy gradient 𝛻𝜃𝐽(𝜋𝜃) of ex-

pected reward, the formula is as follows:

𝛻𝜃𝐽(𝜋𝜃) = 𝐸𝜏∼𝜋𝜃[∑𝛻𝜃 𝑙𝑜𝑔 𝜋𝜃 (𝑎|𝑠)𝑅(𝜏)

𝑇

𝑡=0

] (2)

where 𝜋𝜃(𝑎|𝑠) represents the actor Function and 𝑅(𝜏) represents the critic Function.

3.2. MADDPG Algorithm

Multi-Agent Deep Deterministic Policy Gradient algorithm [27] (MADDPG) is an im-

proved Multi-Agent Reinforcement Learning algorithm based on the AC network frame-

work, which can be considered as an extended application of the DDPG algorithm in a

multi-agent environment. To solve the problem of non-stationarity in Multi-agent Train-

ing Process [28], the MADDPG pioneered the principle of centralized training and distrib-

uted execution (CTDE), that is, in the training stage, the MADDPG algorithm allows the

agents to obtain global information during learning, only local information is used in the

decision execution. The AC training framework can be seen as an actor network for policy

exploration, critic network as an evaluator to evaluate the policy, and obtain the current

optimal policy. The algorithm structure consists of actor network, critic network, target

actor network and target critic network. The training framework of the MADDPG algo-

rithm is shown in Figure 2. The MADDPG algorithm stores experience tuples through the

experience replay mechanism:

𝐷𝑖 = (𝑜1, ⋯ , 𝑜𝑁, 𝑎1, ⋯ , 𝑎𝑁, 𝑟1, ⋯ , 𝑟𝑁, 𝑜1
′ , ⋯ , 𝑜𝑁

′) (3)

During the training process, experience tuples are stored in batches in the experience

replay buffer, and the experience replay buffer extracts small samples of experience in

stages and inputs them into the neural network for model training. This experience replay

mechanism can reduce the degree of association between experience tuples, thus improv-

ing the neural network training efficiency. The MADDPG algorithm updates the action

network of agents using the stochastic gradient descent method. The formula is as follows:

Figure 1. Schematic diagram of reinforcement learning.

Mathematics 2022, 10, 2523 4 of 20

Deep reinforcement learning approximates policy function and value function through
a deep learning multi-layer neural network, thereby solving the high-dimensional mapping
problem caused by continuous high-dimensional state-action pairs [24]. The goal of agents
is to maximize expected reward J(πθ) = Eτ∼πθ

[R(τ)] by continuously optimizing the
policy πθ , then the optimal policy is

π∗θ = argmax
πθ

Eτ∼πθ
(

∞

∑
t=0

γtrt) (1)

where rt represents the reward of agents at time t.
Deep reinforcement learning algorithms can be divided into following three cate-

gories [25], deep reinforcement learning based on value function, deep reinforcement
learning based on policy gradient, and deep reinforcement learning based on the actor-
critic (AC) framework. The DRL algorithm based on the structure of the AC framework
uses the error of the value function to guide the policy update and improve the performance
of the algorithm training. The policy πθ is updated by policy gradient∇θ J(πθ) of expected
reward, the formula is as follows:

∇θ J(πθ) = Eτ∼πθ
[

T

∑
t=0
∇θlogπθ(a|s)R(τ)] (2)

where πθ(a|s) represents the actor Function and R(τ) represents the critic Function.

3.2. MADDPG Algorithm

Multi-Agent Deep Deterministic Policy Gradient algorithm [26] (MADDPG) is an
improved Multi-Agent Reinforcement Learning algorithm based on the AC network frame-
work, which can be considered as an extended application of the DDPG algorithm in a
multi-agent environment. To solve the problem of non-stationarity in Multi-agent Training
Process [27], the MADDPG pioneered the principle of centralized training and distributed
execution (CTDE), that is, in the training stage, the MADDPG algorithm allows the agents
to obtain global information during learning, only local information is used in the deci-
sion execution. The AC training framework can be seen as an actor network for policy
exploration, critic network as an evaluator to evaluate the policy, and obtain the current
optimal policy. The algorithm structure consists of actor network, critic network, target
actor network and target critic network. The training framework of the MADDPG algo-
rithm is shown in Figure 2. The MADDPG algorithm stores experience tuples through the
experience replay mechanism:

Di = (o1, · · · , oN , a1, · · · , aN , r1, · · · , rN , o′1, · · · , o′N) (3)

During the training process, experience tuples are stored in batches in the experience
replay buffer, and the experience replay buffer extracts small samples of experience in
stages and inputs them into the neural network for model training. This experience replay
mechanism can reduce the degree of association between experience tuples, thus improving
the neural network training efficiency. The MADDPG algorithm updates the action network
of agents using the stochastic gradient descent method. The formula is as follows:

∇θπ J =
1
K

K

∑
j=1
∇θπ π(o, θπ)∇aQ(s, a1, a2, . . . , aN , θQ) (4)

In the formula, o and ai represent the observation value and action of the ith agent
respectively; π(o, θπ) represents the action of agent i obtained by inputting the observation
value into actor network.

Mathematics 2022, 10, 2523 5 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 20

𝛻𝜃𝜋𝐽 =
1

𝐾
∑𝛻𝜃𝜋𝜋(𝑜, 𝜃

𝜋)𝛻𝑎𝑄(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑁, 𝜃
𝑄)

𝐾

𝑗=1

 (4)

In the formula, 𝑜 and 𝑎𝑖 represent the observation value and action of the 𝑖th agent

respectively; 𝜋(𝑜, 𝜃𝜋) represents the action of agent 𝑖 obtained by inputting the observa-

tion value into actor network.

environment

agent 1

agent 2

agent N

agent i

o1

o2

oi

oN

a1

a2

ai

aN

actor target actor

calculated strategic
loss

critic actorcritic

+

Figure 2. MADDPG algorithm training framework diagram.

The critic network of agents is iteratively updated as follows to minimize the loss

function:

𝐿 =
1

𝐾
∑(𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎1, 𝑎2, … , 𝑎𝑁, 𝜃

𝑄))2
𝐾

𝑗=1

 (5)

In the formula, the function 𝑦 represents the cumulative average reward of agent 𝑖

in the target actor network.

The network parameters of target actor network and target critic network are repli-

cated and updated in stages:

𝜃𝑖
′ = 𝜏𝜃𝑖 + (1 − 𝜏)𝜃𝑖

′ (6)

In the formula, 𝜏 represents the control parameter of the network parameter updat-

ing frequency, which can stabilize the parameter network update process. 𝜃𝑖
′ represents

the target network parameter of the ith agent, and 𝜃𝑖 represents the initial network pa-

rameter of the ith agent.

In view of the good stability and convergence of the MADDPG algorithm, it can be

applied to various task scenarios such as cooperative, competitive and hybrid. The inno-

vation and experimental verification of the algorithm in this paper are partly based on the

MADDPG algorithm and its accompanying multi-agent particle environment (MPE).

Figure 2. MADDPG algorithm training framework diagram.

The critic network of agents is iteratively updated as follows to minimize the loss function:

L =
1
K

K

∑
j=1

(yj −Q(sj, a1, a2, . . . , aN , θQ))
2

(5)

In the formula, the function y represents the cumulative average reward of agent i in
the target actor network.

The network parameters of target actor network and target critic network are replicated
and updated in stages:

θ′i = τθi + (1− τ)θ′i (6)

In the formula, τ represents the control parameter of the network parameter updating
frequency, which can stabilize the parameter network update process. θ′i represents the
target network parameter of the ith agent, and θi represents the initial network parameter
of the ith agent.

In view of the good stability and convergence of the MADDPG algorithm, it can
be applied to various task scenarios such as cooperative, competitive and hybrid. The
innovation and experimental verification of the algorithm in this paper are partly based on
the MADDPG algorithm and its accompanying multi-agent particle environment (MPE).

3.3. Automatic Curriculum Learning

End-to-end deep reinforcement learning methods have led to breakthroughs in board
games, real-time policy games, and path planning problems. However, reinforcement
learning agents still face difficulties and challenges when dealing with many application
scenarios [13]. The reason is that agents need to fully interact with the environment to
obtain enough information to continuously modify its own policy, but the environment
itself has the problems of reward sparseness, partial observability, delayed reward, and too
high dimension of action space, which leads to the problem that the training time of the
agent is too long or even unable to converge when dealing with difficult tasks.

In response to the above problems, Curriculum Learning (CL) can utilize knowledge
from source tasks to speed up the learning of complex target tasks, thus improving the
training performance of reinforcement learning agents on fixed task sets [28]. As an

Mathematics 2022, 10, 2523 6 of 20

important paradigm in the field of machine learning, curriculum learning can imitate the
human learning sequence from easy to difficult. In the initial stage of reinforcement learning,
the curriculum learning algorithm trains the model in a simple simulation environment
(fewer obstacles and more reward values), and as the training progresses, the simulation
environment is gradually added with more and more difficult (sparse reward values and
more obstacles), and finally, the algorithm is validated in a full simulation environment.

Most traditional curriculum learning methods use predefined methods [13], that
is, using expert experience to evaluate the difficulty of task curriculums and formulate
curriculum plans from the perspectives of the number of agents, initial state distribution,
reward function, goals, environment distribution, opponent policy, etc., such as tasks with
a higher number of agents and more obstacles are generally considered more difficult
training environments. Because the predefined curriculum learning method requires
manual assessment and sorting of curriculum difficulties and lacks task versatility, the
current curriculum learning field gradually adopts automatic curriculum learning instead
of predefined curriculum learning to train reinforcement learning agents [29].

The current automatic curriculum learning process can be divided into curriculum
sorting stage and curriculum selection stage [30]. The main idea is to construct a task
curriculum sampler q(n, φ) based on the experience replay buffer, which can evaluate the
difficulty of the transitions in the experience replay buffer and sort them from easy to
difficult, and then the task M(n, φ) that is currently most suitable for agent training is
extracted in real time from the experience replay to maximize the cumulative reward value
of the reinforcement learning agent J(θ), φ represents the environmental factor variables
that affect the difficulty of task curriculum.

To prove that curriculum updating can increase the cumulative reward value of agents
in the process of automatic curriculum learning, in this paper, the proof is performed as
follows from the perspective of mathematics.

Proof. For a given number n of agents, J(θ) can be simplified as follows:

J = Eφ∼p[V(φ, π)] = Eφ∼q

[
p(φ)
q(φ) V(φ, π)

]
= Eφ∼q

[
V(φ, π) +

(
p(φ)
q(φ) − 1

)
V(φ, π)

]
≥ Eφ∼q[V(φ, π)]︸ ︷︷ ︸

J1:policy update

+ Eφ∼q

[
V(φ, π)log

p(φ)
q(φ)

]
︸ ︷︷ ︸

J2:curriculum update

(7)

�

In the formula, p(φ) represents the uniform distribution of φ in the range of possible
values. For all φ, the inequality is due to x − 1 ≥ logx, the equal sign of the inequality
holds if and only if p(φ) = q(φ).

Through the simplification of the above equation, the cumulative reward value J(θ)
can be composed of the policy update reward J1 and the curriculum update reward J2. The
policy update reward J1 represents that reinforcement learning agents update their own
policy functions iteratively to maximize their reward value obtained from the environment,
and the curriculum update reward J2 represents the task curriculum sampling sorting and
adjustment through the task curriculum sampler q(n, φ), which can improve the agent’s
ability to explore environment and the training performance of the model to maximize
agents’ cumulative reward value.

In traditional automatic curriculum learning algorithms, the ordering of task curricu-
lums often takes the environmental reward value of agents as the reference standard, that is,
it adjusts its own action policy according to the external reward value. However, in sparse
reward environments, it is difficult for an agent to obtain positive or negative rewards
from the environment during most of the exploration process. Under the framework of the

Mathematics 2022, 10, 2523 7 of 20

traditional automatic curriculum learning algorithm, selecting the task curriculum from
low to high according to temporal-difference error can easily lead to overfitting of the
model training, and agents stay in circles in the environment, making it difficult to train a
good policy.

4. Curriculum Reinforcement Learning Based on Curiosity Model

This paper proposes a general automatic curriculum learning framework—curiosity
module-based curriculum learning for deep RL (CMCL), which is divided into two stages:
curriculum sorting and curriculum selection. For all reinforcement learning tasks, suppose
D =

{
d1, d2, · · · , dj, · · · , dK

}
represents the experience sample set in experience replay

buffer, and the task curriculum sampler q(n, φ) is used to operate on experience sample set
D. The first stage is to evaluate and sort the difficulty of the samples in experience sample
set to generate a curriculum learning plan; the second stage selects curriculums according
to the set ability evaluation rules according to the curriculum plan.

The core of the curriculum difficulty sorting is to define the difficulty of the task
samples. To convert the task samples in the experience replay into a curriculum sequence,
a curriculum index function (CI) needs to be defined to calculate the priority pdj

of task
sample dj.

Definition 1. Curriculum Index Function (CI).

The function CI(dj)→ R is used to define the curriculum sequence of the task sample
dj in the experience replay D. For the task sample di and dj, if CI(di) < CI(dj), the
curriculum sequence of task sample di is before the task sample dj.

CI(dj) = KP(cj, λ) + ηCP(dj) (8)

In this paper, the curriculum sequence function is divided into two parts: KP() and
CP(). KP() represents K-fold-priority function, CP() represents curiosity-priority function,
and cj represents the K-fold teacher model score of task sample di, λ represents the curricu-
lum learning factor, η represents the hyperparameter, which is used to control the efficiency
and exploration of sample learning.

4.1. K-Fold Priority Experience Replay

In this paper, the absolute value of the temporal-difference error of the neural network
is used as a reference standard for the curriculum sequence function CI(dj), and the
difficult task is defined as the task with a large weight correction value for the current
neural network model. The reason is that tasks with large temporal-difference error may
have an adverse effect on the improvement of training model ability. For example, 1.
The random noise during the model training process is prone to data deviation, thereby
affecting the training accuracy of model; 2. In the stochastic gradient descent process of
deep neural network training, tasks with large temporal-difference error often require a
small update step size to obtain a better model convergence effect.

In this paper, the K-fold cross-validation method is used to evaluate the difficulty of
the samples in the experience replay buffer, and experience replay D is divided into K equal
parts

{
D̃i : i = 1, 2, . . . , K

}
, and trained separately to obtain K teachers Model network

θ = {θ1, θ2, · · · , θK}, since the experience replay D is divided, the obtained K teacher model
networks are independent of each other. The training formula of the teacher model network
is as follows:

θ̃i = argmin
θ̃i

∑
dj∈D̃i

L(dj, θ̃i)

i = 1, 2, . . . , K
(9)

where L represents the loss function of the temporal difference error.

Mathematics 2022, 10, 2523 8 of 20

The K teacher models obtained are cross-validated. For example, if sample dj belongs
to teacher model i, then the sample dj is scored on the K− 1 teacher models other than its
own teacher model i. The scoring process can be expressed as follows:

cji = (y−Qπ
teacher(s, a1, a2, . . . , aN))

2

y = rj + γQπ′(s′, a′1, a′2, . . . , a′N)
∣∣∣
a′v=π′v(ov)

(10)

In the formula, cji represents the difficulty score of the teacher model i to the sample dj,
Qπ

teacher represents the Q value obtained by inputting the state value s and the action value
a into the value function network, and Qπ′ represents the Q value obtained after state s and
the action values a are input into the policy function network, γ represents the discount
factor, and the final difficulty score of the task sample dj is the sum of the difficulty scores
of all other teacher models:

cj = ∑
i∈(1,...,K),i 6=k

cji (11)

Definition 2. K-Fold Priority Function (KP).

The function KP(cj, λ)→ [0, 1] is used to define the K-fold priority of task sample dj
in experience replay D, cj represents the final difficulty score of task sample dj after K-fold
cross-validation, λ represents the curriculum learning currently selected task curriculum
difficulty factor. The K-fold priority function KP(cj, λ) is expressed as follows:

KP(cj, λ) =

ecj−λ , cj ≤ λ

1
log(1−λ)

log(cj − 2λ + 1), λ < cj < 2λ

0 , cj ≥ 2λ

. (12)

where 1. KP(cj, λ) is monotonically decreasing when cj > λ; 2. KP(cj, λ) is monotonically
increasing when cj < λ; 3. KP(cj, λ) is the maximum value when cj = λ.

The K-fold priority function outputs a scalar with a value range of [0, 1] by inputting
the difficulty score cj of the task sample and the curriculum factor λ, thereby reflecting
the sample priority of the task sample in the dimension of temporal-difference error. As
the curriculum learning progresses, the curriculum factor λ can be gradually increased,
thereby increasing the priority of the task curriculum with higher difficulty score cj. Since
the selection probability of task samples is proportional to the K-fold priority, agents can
frequently select empirical samples which fit the current model capabilities. The graph of
the K-fold priority function is shown in Figure 3, where λ = 0.6 is shown in the figure.

The framework of the K-Fold Cross-Validation method is shown in Figure 4.

4.2. Curiosity Exploration Rewards

In the K-fold priority function KP(cj, λ), we use the temporal-difference error as the
reference standard for prioritization, which can improve the utilization efficiency of task
samples and the robustness of training. However, in a multi-agent system, the traditional
reinforcement learning algorithm uses extrinsic reward to guide agents to adjust their
own policy. The agents take actions in environment to interact with the environment.
When the policy is correct, it will get a positive reward value, otherwise it will get a
negative reward value. This extrinsic reward method can achieve good performance in
most RL environments, but in a sparse reward value environment, agents do not obtain
immediate reward value most of the time they explore in the environment, and then agents
are impossible to adjust their own policy according to their reward value, which will greatly
reduce their convergence speed and training efficiency of the algorithm.

Mathematics 2022, 10, 2523 9 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 20

Figure 3. K-Fold priority function.

The framework of the K-Fold Cross-Validation method is shown in Figure 4.

Replay Buffer

Meta-set 1 Teacher 1

Teacher 2

Teacher i

Teacher K

1jc

2jcMeta-set 2

Meta-set i

Meta-set K

Example j

jc
Difficulty

score

jKc

Figure 4. K-Fold Priority Cross Validation framework diagram.

4.2. Curiosity Exploration Rewards

In the K-fold priority function 𝐾𝑃(𝑐𝑗 , 𝜆), we use the temporal-difference error as the

reference standard for prioritization, which can improve the utilization efficiency of task

samples and the robustness of training. However, in a multi-agent system, the traditional

reinforcement learning algorithm uses extrinsic reward to guide agents to adjust their own

policy. The agents take actions in environment to interact with the environment. When

the policy is correct, it will get a positive reward value, otherwise it will get a negative

reward value. This extrinsic reward method can achieve good performance in most RL

environments, but in a sparse reward value environment, agents do not obtain immediate

reward value most of the time they explore in the environment, and then agents are im-

possible to adjust their own policy according to their reward value, which will greatly

reduce their convergence speed and training efficiency of the algorithm.

Inspired by the theory of intrinsic motivation, based on the curiosity exploration

mechanism [12], this paper uses the curiosity exploration reward as one of the reference

standards of curriculum sequence function 𝐶𝐼(𝑑𝑗) to enhance the agent’s exploration of

environment and avoid the over-fitting phenomenon of “turning in place” of agents.

The basic principle of curiosity exploration mechanism is that when the next state is

inconsistent with the predicted state of policy network, the intrinsic reward of curiosity is

generated. The greater the difference between actual state and predicted state, the greater

the value of curiosity reward.

Figure 3. K-Fold priority function.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 20

Figure 3. K-Fold priority function.

The framework of the K-Fold Cross-Validation method is shown in Figure 4.

Replay Buffer

Meta-set 1 Teacher 1

Teacher 2

Teacher i

Teacher K

1jc

2jcMeta-set 2

Meta-set i

Meta-set K

Example j

jc
Difficulty

score

jKc

Figure 4. K-Fold Priority Cross Validation framework diagram.

4.2. Curiosity Exploration Rewards

In the K-fold priority function 𝐾𝑃(𝑐𝑗 , 𝜆), we use the temporal-difference error as the

reference standard for prioritization, which can improve the utilization efficiency of task

samples and the robustness of training. However, in a multi-agent system, the traditional

reinforcement learning algorithm uses extrinsic reward to guide agents to adjust their own

policy. The agents take actions in environment to interact with the environment. When

the policy is correct, it will get a positive reward value, otherwise it will get a negative

reward value. This extrinsic reward method can achieve good performance in most RL

environments, but in a sparse reward value environment, agents do not obtain immediate

reward value most of the time they explore in the environment, and then agents are im-

possible to adjust their own policy according to their reward value, which will greatly

reduce their convergence speed and training efficiency of the algorithm.

Inspired by the theory of intrinsic motivation, based on the curiosity exploration

mechanism [12], this paper uses the curiosity exploration reward as one of the reference

standards of curriculum sequence function 𝐶𝐼(𝑑𝑗) to enhance the agent’s exploration of

environment and avoid the over-fitting phenomenon of “turning in place” of agents.

The basic principle of curiosity exploration mechanism is that when the next state is

inconsistent with the predicted state of policy network, the intrinsic reward of curiosity is

generated. The greater the difference between actual state and predicted state, the greater

the value of curiosity reward.

Figure 4. K-Fold Priority Cross Validation framework diagram.

Inspired by the theory of intrinsic motivation, based on the curiosity exploration
mechanism [11], this paper uses the curiosity exploration reward as one of the reference
standards of curriculum sequence function CI(dj) to enhance the agent’s exploration of
environment and avoid the over-fitting phenomenon of “turning in place” of agents.

The basic principle of curiosity exploration mechanism is that when the next state is
inconsistent with the predicted state of policy network, the intrinsic reward of curiosity is
generated. The greater the difference between actual state and predicted state, the greater
the value of curiosity reward.

This curiosity-based mechanism is called the Intrinsic Curiosity Module (ICM), and
the curiosity reward value is calculated through two sub-module networks. The first
sub-module uses a feature convolutional neural network to extract the eigenvalues of the
state st in experience samples, and encoded as φ(st), the second sub-module contains a
forward neural network θF and an inverse dynamic network θI . The evaluation mechanism
of curiosity reward value is shown in Figure 5.

In the ICM mechanism, the inverse dynamic network θI can estimate action value at
through function g:

ât = g(st, st+1; θI) (13)

In the formula, at represents the actual action taken from state st to state st+1, ât
represents the estimated action of at, (st, at, r, st+1) experience tuple is obtained from the
experience replay D, and the network parameters of reverse dynamic network θI are
optimized by the following expressions:

min
θI

LI(ât, at) (14)

Mathematics 2022, 10, 2523 10 of 20

where LI represents the loss function between the predicted action value ât and the actual
action value at. The maximum likelihood estimates of the parameters θI of the inverse
dynamic network can be obtained by minimizing LI .

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 20

This curiosity-based mechanism is called the Intrinsic Curiosity Module (ICM), and

the curiosity reward value is calculated through two sub-module networks. The first sub-

module uses a feature convolutional neural network to extract the eigenvalues of the state

𝑠𝑡 in experience samples, and encoded as 𝜙(𝑠𝑡), the second sub-module contains a for-

ward neural network 𝜃𝐹 and an inverse dynamic network 𝜃𝐼. The evaluation mechanism

of curiosity reward value is shown in Figure 5.

ICM

 E

ta

tS 1tS +

i

tr

ICM

i

tr

Forward
Model

Inverse
Model

1
ˆ()ts +

Fe
at

ur
e

Fe
at

ur
e

1()ts +()ts

1ts +tsta

ˆ
ta

Figure 5. Curiosity reward evaluation mechanism.

In the ICM mechanism, the inverse dynamic network 𝜃𝐼 can estimate action value

𝑎𝑡 through function 𝑔:

�̂�𝑡 = 𝑔(𝑠𝑡 , 𝑠𝑡+1; 𝜃𝐼) (13)

In the formula, 𝑎𝑡 represents the actual action taken from state 𝑠𝑡 to state 𝑠𝑡+1, �̂�𝑡

represents the estimated action of 𝑎𝑡, (𝑠𝑡 , 𝑎𝑡 , 𝑟, 𝑠𝑡+1) experience tuple is obtained from the

experience replay 𝐷, and the network parameters of reverse dynamic network 𝜃𝐼 are op-

timized by the following expressions:

𝑚𝑖𝑛
𝜃𝐼
𝐿𝐼(�̂�𝑡, 𝑎𝑡) (14)

where 𝐿𝐼 represents the loss function between the predicted action value �̂�𝑡 and the ac-

tual action value 𝑎𝑡. The maximum likelihood estimates of the parameters 𝜃𝐼 of the in-

verse dynamic network can be obtained by minimizing 𝐿𝐼.

For the forward neural network 𝜃𝐹, the estimated state value 𝑎𝑡 at the next time step

𝑡 + 1 can be obtained by inputting action value 𝑎𝑡 and eigenvalue �̂�(𝑠𝑡+1) of the state

𝑠𝑡.

�̂�(𝑠𝑡+1) = 𝑓(𝜙(𝑠𝑡), 𝑎𝑡; 𝜃𝐹) (15)

where the forward neural network parameter 𝜃𝐹 is optimized by the following loss func-

tion:

𝐿𝐹(𝜙(𝑠𝑡), �̂�(𝑠𝑡+1)) =
1

2
‖�̂�(𝑠𝑡+1) − 𝜙(𝑠𝑡+1)‖2

2
 (16)

Then the overall optimization function learned by reinforcement learning agents is

𝑚𝑖𝑛
𝜃𝑃,𝜃𝐼,𝜃𝐹

[−𝜆𝐸𝜋(𝑠𝑡;𝜃𝑃)[∑𝑟𝑡
𝑡

] + (1 − 𝛽)𝐿𝐼 + 𝛽𝐿𝐹] (17)

Figure 5. Curiosity reward evaluation mechanism.

For the forward neural network θF, the estimated state value at at the next time step
t + 1 can be obtained by inputting action value at and eigenvalue φ̂(st+1) of the state st.

φ̂(st+1) = f (φ(st), at; θF) (15)

where the forward neural network parameter θF is optimized by the following loss function:

LF(φ(st), φ̂(st+1)) =
1
2
‖φ̂(st+1)− φ(st+1)‖2

2 (16)

Then the overall optimization function learned by reinforcement learning agents is

min
θP ,θI ,θF

[
−λEπ(st ;θP)

[
∑

t
rt

]
+(1− β)LI + βLF

]
(17)

In the formula, 0 ≤ β ≤ 1 represents the weight parameter between the inverse
dynamic network and the forward neural network, λ > 0 represents the weight parameter
between the intrinsic curiosity reward value and the gradient descent loss function, and
the available curiosity reward value is as follows:

ri
t =

1
2
‖φ̂(st+1)− φ(st+1)‖2

2 (18)

Definition 3. Curiosity Priority Function (CP).

Function CP(ri
t(dj))→ [0, 1] is used to define the curiosity priority of task sample dj

in experience replay D, ri
t(dj) represents the curiosity reward value of the task sample dj.

The curiosity-priority function expression of CP(ri
t(dj)) is as follows:

CP(ri
t(dj)) = −e(−

(ri
t(dj))

2

10) + 1 (19)

where CP(ri
t(dj)) is a monotonically increasing function of ri

t(dj).

Mathematics 2022, 10, 2523 11 of 20

From the above, the curriculum sequence function CI(dj) = KP(cj, λ) + ηCP(dj) can
be obtained, that is, the priority of each experience sample cj in the experience replay D,
then the sampling probability of each experience sample cj is as follows:

P(dj) =
pa

dj

∑ pa
dj

(20)

In the formula, pdj
represents the priority of the task sample dj, and a represents the

use degree of the priority pdj
.

4.3. Algorithm Framework and Pseudocode

The CMCL algorithm proposed in this paper combines the K-fold priority function
and the curiosity priority function in the curriculum sorting stage, so as to use temporal-
difference error and curiosity reward to jointly sort curriculums. Adjusting the curriculum
factor, the K-fold priority selection of task samples can be controlled to ensure that agents
frequently select samples that are most suitable for the current training difficulty, and to
improve the exploration of the environment by agents. The basic framework of the CMCL
algorithm is shown in Figure 6, and Algorithm 1 describes the training process of the
CMCL algorithm.

Algorithm 1: CMCL algorithm.

Input: experience replay buffer D, curriculum factor λ, curriculum stride µ, balance weight η, curriculum sequence vector
ci = [ci1, ci2, · · · , ciN]

Output: The final policy πθ

for episode = 1 to max_episode do
Initialize a random process N for reinforcement learning action exploration
Receive initial state s0
for t = 1 to max_episode_length do

In state st, the agents select action a through policy network πθ(st)
Obtain the reward r given by environment E
Store (st, a, st+1, r) in experience replay buffer D
st ← st+1

The experience samples in D are sampled for K-level teacher model training
{

θ̃i : i = 1, 2, . . . , K
}

θ̃i = argmin
θ̃i

∑
dj∈D̃i

L(dj, θ̃i)

The score of experience sample dj is evaluated by cross validation cj = ∑i∈(1,...,N),i 6=k cji
The K-fold priority kpj = KP(cj, λ) can be obtained according to Equation (12)
Calculate the curiosity reward ri

t =
1
2‖φ̂(st+1)− φ(st+1)‖2

2
The curiosity priority cpj = CP(ri

t(dj)) can be obtained according to Equation (19)
Update curriculum sequence function cij by ci(dj) = kp(cj, λ) + ηcp(dj)

for agent v = 1 to N_agent do
Sample a minibatch of transitions (st, a, st+1, r) from D according to the priority sampling probability

P(dj) =
pa

dj

∑ pa
dj

The neural network parameter θ was updated by gradient descent algorithm
end for

Adjust curriculum factor λ based on current model capabilities λ = λ + µ

end for
end for

Mathematics 2022, 10, 2523 12 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 20

The curiosity priority 𝑐𝑝𝑗 = 𝐶𝑃(𝑟𝑡
𝑖(𝑑𝑗)) can be obtained according to equation 19

Update curriculum sequence function 𝑐𝑖𝑗 by 𝑐𝑖(𝑑𝑗) = 𝑘𝑝(𝑐𝑗 , 𝜆) + 𝜂𝑐𝑝(𝑑𝑗)

 for agent 𝑣 = 1 to 𝑁_𝑎𝑔𝑒𝑛𝑡 do

Sample a minibatch of transitions (𝑠𝑡 , 𝑎, 𝑠𝑡+1, 𝑟) from 𝐷 according to the priority sampling probability

𝑃(𝑑𝑗) =
𝑝𝑑𝑗
𝑎

∑𝑝𝑑𝑗
𝑎

The neural network parameter 𝜃 was updated by gradient descent algorithm

 end for

Adjust curriculum factor 𝜆 based on current model capabilities 𝜆 = 𝜆 + 𝜇

end for

end for

Environment

Agent

Action Reward

Transition

Teacher 1

Teacher2

Teacher K

1jc

2jc

jc
jKc

K-Fold Cross Validation

Reinforcement learning

Automatic Curriculum learning

1 2

Curriculum

Index Function

Priority selection

K
Task

Curriculum 1

Replay Buffer

Task
Curriculum 2

Task
Curriculum K

Curiosity Module Validation

K-Fold Priority Curiosity Priority

()
j

j

a

d

j a

d

p
P d

p
=

Replay Buffer

ICM

 E

ta

tS
1tS +

i

tr

Figure 6. Framework diagram of curriculum reinforcement learning algorithm based on curiosity

module.

5. Experiment

In this paper, the simulation verification of the CMCL algorithm is carried out in

Multi-Agent Particle Environment [27] (MPE), and the multi-agent cooperative task and

the competitive task are used as the target tasks. Based on the environment, a sparse re-

ward value scenario is constructed to test the performance of the CMCL algorithm in

teamwork and policy confrontation respectively. Each set of experiments is carried out in

the experimental environment of Ubuntu18.04.3 + OpenAI + PyTorch, and adopts the

hardware conditions of Intel Corei7-9700K + 64G + GeForceRTX2080. In our environment,

the CMCL algorithm is compared with various baseline algorithms to demonstrate the

effectiveness and feasibility of the CMCL algorithm. The key hyperparameters set for the

RL training process are listed in Table 1. The state value and action value of the agents are

input at the input end of the neural network, and the target Q value of the agents is ob-

tained through the calculation of the neural network. The loss function is obtained by

subtracting the original Q value, and the original Q value function is updated. Finally, the

reinforcement learning algorithm is applied to the deep learning structure.

Figure 6. Framework diagram of curriculum reinforcement learning algorithm based on
curiosity module.

5. Experiment

In this paper, the simulation verification of the CMCL algorithm is carried out in
Multi-Agent Particle Environment [26] (MPE), and the multi-agent cooperative task and
the competitive task are used as the target tasks. Based on the environment, a sparse
reward value scenario is constructed to test the performance of the CMCL algorithm in
teamwork and policy confrontation respectively. Each set of experiments is carried out
in the experimental environment of Ubuntu18.04.3 + OpenAI + PyTorch, and adopts the
hardware conditions of Intel Corei7-9700K + 64G + GeForceRTX2080. In our environment,
the CMCL algorithm is compared with various baseline algorithms to demonstrate the
effectiveness and feasibility of the CMCL algorithm. The key hyperparameters set for the
RL training process are listed in Table 1. The state value and action value of the agents
are input at the input end of the neural network, and the target Q value of the agents is
obtained through the calculation of the neural network. The loss function is obtained by
subtracting the original Q value, and the original Q value function is updated. Finally, the
reinforcement learning algorithm is applied to the deep learning structure.

Table 1. Parameter setting of the DRL process.

Parameters Values

Discount factor 0.99
Size of RNN hidden layers 64

Size of replay buffer 5000
Exploration 0.1

Initial curriculum factor λ 0.1
Batch size of replay buffer 128

Learning rate of actor network 0.001
Learning rate of critic network 0.001
Update rate of target network 0.01

Mathematics 2022, 10, 2523 13 of 20

5.1. Experimental Environment
5.1.1. Cooperative Experiment

The multi-agent cooperation experiment adopts the cooperative navigation experiment
in the MPE environment. As shown in the Figure 7, N agents and N landmarks are
randomly generated in a square two-dimensional plane with side length 1. The plane is
surrounded by walls, and the agents can observe landmarks, but cannot observe the walls,
and their missions are to reach landmarks in as few steps as possible and avoid collisions
with other agents.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 20

oscillates slightly in the early training process, and gradually smooths in the later stage,

and can obtain higher reward values and landmark coverage than other baseline algo-

rithms, showing better training performance. Figure 10 shows the rendering of the agent

training in cooperative navigation environment after the CMCL algorithm has been

trained for 12,500 episodes. From the rendering, it can be seen that the agents can success-

fully approach and cover landmarks in the environment.

Cooperative Navigation

Agent Landmark

ACL

PER-MADDPG

MADDPG

verification
algorithm

CMCL

Figure 7. Cooperative navigation experimental environment.

(a) (b)

Figure 8. Representation diagram of agents in cooperative environment. (a) Average reward in co-

operative environment; (b) landmark cover rate in cooperative environment.

Figure 7. Cooperative navigation experimental environment.

Combined with the size of the two-dimensional plane, it is stipulated that when an
agent enters an area with a radius of 0.1 around a landmark, the landmark is considered
covered by the agent, and the cooperative navigation task is considered successful only
when all landmarks are uniquely covered.

In the reward value setting of the experimental environment, to construct a sparse
reward value scene, we cancel the dense reward function set according to the distance
between the agent and the landmark in the original MPE environment. Therefore, the
reward value obtained by each agent at each time step consists of only two parts, including
1. When there is a collision between the agents or the agent hits a wall, the environment
gives a negative reward value, that is, agent collision reward value C1; 2. When the agent
covers the landmark, the environment gives a positive reward value, that is, the agent
covers the landmark reward value C2.

The agent collision reward value is as follows:

C1 =

{
−1, i f collided
0, i f not collided

(21)

The agent coverage landmark reward value is as follows:

C2 =

{
+4, i f covered
0, i f not coverd

(22)

As shown in Figure 7, in the N = 4 environment, the CMCL, ACL, PER-MADDPG,
and MADDPG algorithms are used to control the movement of the agent. To prevent
the agent from spinning in place or meaningless exploration, the episode duration is set
to 30 steps, that is, when the agent finishes exploring after 30 steps, the environment is
initialized to start a new episode of exploration.

Mathematics 2022, 10, 2523 14 of 20

Figure 8 shows the average reward value graph and the coverage graph obtained
by the four algorithms after 20,000 episodes of training in the cooperative navigation
environment. Figure 9 shows the bar graph of the average reward value of the four
algorithms in 20,000 episodes, that is, the quotient of the total reward value obtained
by the four algorithms in the whole training session and the number of sessions. As
can be seen from the curve in Figure 8, at the beginning of the algorithm training, the
agent is prone to colliding with other agents or with the wall. As the training progresses,
agents gradually learn the policy of cooperatively covering landmarks. The curve of the
CMCL algorithm oscillates slightly in the early training process, and gradually smooths
in the later stage, and can obtain higher reward values and landmark coverage than other
baseline algorithms, showing better training performance. Figure 10 shows the rendering
of the agent training in cooperative navigation environment after the CMCL algorithm has
been trained for 12,500 episodes. From the rendering, it can be seen that the agents can
successfully approach and cover landmarks in the environment.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 20

oscillates slightly in the early training process, and gradually smooths in the later stage,

and can obtain higher reward values and landmark coverage than other baseline algo-

rithms, showing better training performance. Figure 10 shows the rendering of the agent

training in cooperative navigation environment after the CMCL algorithm has been

trained for 12,500 episodes. From the rendering, it can be seen that the agents can success-

fully approach and cover landmarks in the environment.

Cooperative Navigation

Agent Landmark

ACL

PER-MADDPG

MADDPG

verification
algorithm

CMCL

Figure 7. Cooperative navigation experimental environment.

(a) (b)

Figure 8. Representation diagram of agents in cooperative environment. (a) Average reward in co-

operative environment; (b) landmark cover rate in cooperative environment.
Figure 8. Representation diagram of agents in cooperative environment. (a) Average reward in
cooperative environment; (b) landmark cover rate in cooperative environment.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 20

Figure 9. Bar chart of average reward value in cooperative environment.

Agent Landmark

Figure 10. Diagram of the training effect of CMCL algorithm in cooperative environment.

5.1.2. Competition Experiment

In a cooperative training environment, agents share the observed value of the envi-

ronment to maximize the total reward value, but in a multi-agent competition task, as

training progresses, the policies of their opponents are constantly improved, resulting in

the continuous fluctuation of the cumulative reward value. In addition to cooperating

with other agents, the agent also needs to make policy corrections for the opponent’s pol-

icy.

The multi-agent competition experiment uses the predator-prey experiment in the

MPE environment. On a two-dimensional plane with side length 1, 𝑚 predators and 𝑛

prey are randomly generated, as well as three randomly generated obstacles, whose area

is relatively large, which can prevent the intelligent body from observing and moving.

The goal of predators is to capture prey as quickly as possible through team cooperation.

During this process, the predators and the prey move randomly, and the prey move twice

as fast as the predators. During the predation process, all predators form a team to hunt

down the prey, and the capture is considered successful when the distance between the

predator and the prey is less than the pursuit radius.

To construct the sparse reward scene of the predator-prey environment, the dense

reward function set according to the distance between predator and prey is canceled.

Therefore, the reward value obtained by the predator agent at each time step consists of

two parts: 1. When the predator encounters the prey, it will receive a positive reward

value, that is, the capture reward value 𝐷1; 2. To prevent agents from escaping the bound-

ary, when agent hits the wall, it will receive a negative reward value, that is, the collision

reward value 𝐷2.

The capture reward is as follows:

Figure 9. Bar chart of average reward value in cooperative environment.

Mathematics 2022, 10, 2523 15 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 20

Figure 9. Bar chart of average reward value in cooperative environment.

Agent Landmark

Figure 10. Diagram of the training effect of CMCL algorithm in cooperative environment.

5.1.2. Competition Experiment

In a cooperative training environment, agents share the observed value of the envi-

ronment to maximize the total reward value, but in a multi-agent competition task, as

training progresses, the policies of their opponents are constantly improved, resulting in

the continuous fluctuation of the cumulative reward value. In addition to cooperating

with other agents, the agent also needs to make policy corrections for the opponent’s pol-

icy.

The multi-agent competition experiment uses the predator-prey experiment in the

MPE environment. On a two-dimensional plane with side length 1, 𝑚 predators and 𝑛

prey are randomly generated, as well as three randomly generated obstacles, whose area

is relatively large, which can prevent the intelligent body from observing and moving.

The goal of predators is to capture prey as quickly as possible through team cooperation.

During this process, the predators and the prey move randomly, and the prey move twice

as fast as the predators. During the predation process, all predators form a team to hunt

down the prey, and the capture is considered successful when the distance between the

predator and the prey is less than the pursuit radius.

To construct the sparse reward scene of the predator-prey environment, the dense

reward function set according to the distance between predator and prey is canceled.

Therefore, the reward value obtained by the predator agent at each time step consists of

two parts: 1. When the predator encounters the prey, it will receive a positive reward

value, that is, the capture reward value 𝐷1; 2. To prevent agents from escaping the bound-

ary, when agent hits the wall, it will receive a negative reward value, that is, the collision

reward value 𝐷2.

The capture reward is as follows:

Figure 10. Diagram of the training effect of CMCL algorithm in cooperative environment.

5.1.2. Competition Experiment

In a cooperative training environment, agents share the observed value of the envi-
ronment to maximize the total reward value, but in a multi-agent competition task, as
training progresses, the policies of their opponents are constantly improved, resulting in
the continuous fluctuation of the cumulative reward value. In addition to cooperating with
other agents, the agent also needs to make policy corrections for the opponent’s policy.

The multi-agent competition experiment uses the predator-prey experiment in the
MPE environment. On a two-dimensional plane with side length 1, m predators and n
prey are randomly generated, as well as three randomly generated obstacles, whose area
is relatively large, which can prevent the intelligent body from observing and moving.
The goal of predators is to capture prey as quickly as possible through team cooperation.
During this process, the predators and the prey move randomly, and the prey move twice
as fast as the predators. During the predation process, all predators form a team to hunt
down the prey, and the capture is considered successful when the distance between the
predator and the prey is less than the pursuit radius.

To construct the sparse reward scene of the predator-prey environment, the dense
reward function set according to the distance between predator and prey is canceled.
Therefore, the reward value obtained by the predator agent at each time step consists of
two parts: 1. When the predator encounters the prey, it will receive a positive reward value,
that is, the capture reward value D1; 2. To prevent agents from escaping the boundary,
when agent hits the wall, it will receive a negative reward value, that is, the collision reward
value D2.

The capture reward is as follows:

D1 =

{
+5, i f captured
0, i f not captured

(23)

This represents that when the predator captures the prey, it gets a positive large reward
value, while the prey gets a large negative reward value.

The collision boundary rewards are as follows:

D2 =

{
−1, i f collided
0, i f not collided

(24)

This represents that the predator and prey get a negative reward when they collide
with the boundary.

As shown in Figure 11, the CMCL, ACL, PER-MADDPG, and MADDPG algorithms
are used to control the movements of predators and prey, respectively. To prevent the agent
from spinning in place or performing meaningless exploration, the episode duration is set
to 30 steps, which means the agent finishes the exploration after 30 steps and initializes the
environment to restart the exploration.

Mathematics 2022, 10, 2523 16 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 20

𝐷1 = {
+5, 𝑖𝑓 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑
0, 𝑖𝑓 𝑛𝑜𝑡 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑

 (23)

This represents that when the predator captures the prey, it gets a positive large re-

ward value, while the prey gets a large negative reward value.

The collision boundary rewards are as follows:

𝐷2 = {
−1, 𝑖𝑓 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑
0, 𝑖𝑓 𝑛𝑜𝑡 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑

 (24)

This represents that the predator and prey get a negative reward when they collide

with the boundary.

As shown in Figure 11, the CMCL, ACL, PER-MADDPG, and MADDPG algorithms

are used to control the movements of predators and prey, respectively. To prevent the

agent from spinning in place or performing meaningless exploration, the episode duration

is set to 30 steps, which means the agent finishes the exploration after 30 steps and initial-

izes the environment to restart the exploration.

Predator prey

Predator Prey

ACL

PER-MADDPG

MADDPG

verification
algorithm

CMCL

Obstacle

Figure 11. Schematic diagram of adversarial environment.

As shown in Figure 12, the predator agents are controlled by the CMCL, ACL, PER-

MADDPG, and MADDPG algorithms respectively, and the prey agents are controlled by

the MADDPG algorithm. The bar chart and the error band chart of the average reward

value obtained after 20,000 episodes of training indicates that the average reward value in

the bar chart is the quotient of the total reward value obtained during the whole training

of the four algorithms and the number of episodes. As can be seen in the figure, as training

progresses, predator agents controlled by the four algorithms gradually learn the cooper-

ative hunting policy, which tends to stabilize after 10,000 episodes. Throughout the train-

ing process, the average reward value of the CMCL algorithm is generally higher than

that of other baseline algorithms and is significantly higher than that of the other three

algorithms after 10,000 episodes.

Figure 11. Schematic diagram of adversarial environment.

As shown in Figure 12, the predator agents are controlled by the CMCL, ACL, PER-
MADDPG, and MADDPG algorithms respectively, and the prey agents are controlled by the
MADDPG algorithm. The bar chart and the error band chart of the average reward value
obtained after 20,000 episodes of training indicates that the average reward value in the bar
chart is the quotient of the total reward value obtained during the whole training of the four
algorithms and the number of episodes. As can be seen in the figure, as training progresses,
predator agents controlled by the four algorithms gradually learn the cooperative hunting
policy, which tends to stabilize after 10,000 episodes. Throughout the training process,
the average reward value of the CMCL algorithm is generally higher than that of other
baseline algorithms and is significantly higher than that of the other three algorithms after
10,000 episodes.

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 20

(a) (b)

Figure 12. Representation diagram of agents in cooperative environment. (a) Episode reward

achieved in adversarial environment; (b) the average reward obtained by the four algorithms in the

adversarial environment.

Figure 13a shows the win rate charts obtained by both agents in each round under

the condition that the predator agents adopt the CMCL algorithm and the prey agents

adopt the ACL algorithm. Figure 13b shows the win rate charts obtained by both agents

in each round under the condition that the predator agent adopts the CMCL algorithm

and the prey agent adopts the PER-MADDPG algorithm. It can be seen from the figure

that when the predator agents controlled by the CMCL algorithm fight against the prey

agents controlled by the ACL algorithm, the two sides won and lost in the early stage.

However, after a certain training period (5000 rounds), the predator agents controlled by

the CMCL algorithm gain a significant advantage. Predator agents controlled by the

CMCL algorithm can gain obvious advantages in a short period of time against the prey

agents controlled by the PER-MADDPG algorithm, and the winning rate is above 0.85.

(a) (b)

Figure 13. The win rate of predator and prey using two algorithms respectively in the adversarial

environment. (a) CMCL vs. ACL; (b) CMCL vs. PER-MADDPG.

Figure 12. Representation diaram of agents in cooperative environment. (a) Episode reward achieved
in adversarial environment; (b) the average reward obtained by the four algorithms in the adversarial
environment.

Figure 13a shows the win rate charts obtained by both agents in each round under
the condition that the predator agents adopt the CMCL algorithm and the prey agents
adopt the ACL algorithm. Figure 13b shows the win rate charts obtained by both agents in
each round under the condition that the predator agent adopts the CMCL algorithm and
the prey agent adopts the PER-MADDPG algorithm. It can be seen from the figure that
when the predator agents controlled by the CMCL algorithm fight against the prey agents

Mathematics 2022, 10, 2523 17 of 20

controlled by the ACL algorithm, the two sides won and lost in the early stage. However,
after a certain training period (5000 rounds), the predator agents controlled by the CMCL
algorithm gain a significant advantage. Predator agents controlled by the CMCL algorithm
can gain obvious advantages in a short period of time against the prey agents controlled by
the PER-MADDPG algorithm, and the winning rate is above 0.85.

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 20

(a) (b)

Figure 12. Representation diagram of agents in cooperative environment. (a) Episode reward

achieved in adversarial environment; (b) the average reward obtained by the four algorithms in the

adversarial environment.

Figure 13a shows the win rate charts obtained by both agents in each round under

the condition that the predator agents adopt the CMCL algorithm and the prey agents

adopt the ACL algorithm. Figure 13b shows the win rate charts obtained by both agents

in each round under the condition that the predator agent adopts the CMCL algorithm

and the prey agent adopts the PER-MADDPG algorithm. It can be seen from the figure

that when the predator agents controlled by the CMCL algorithm fight against the prey

agents controlled by the ACL algorithm, the two sides won and lost in the early stage.

However, after a certain training period (5000 rounds), the predator agents controlled by

the CMCL algorithm gain a significant advantage. Predator agents controlled by the

CMCL algorithm can gain obvious advantages in a short period of time against the prey

agents controlled by the PER-MADDPG algorithm, and the winning rate is above 0.85.

(a) (b)

Figure 13. The win rate of predator and prey using two algorithms respectively in the adversarial

environment. (a) CMCL vs. ACL; (b) CMCL vs. PER-MADDPG.
Figure 13. The win rate of predator and prey using two algorithms respectively in the adversarial
environment. (a) CMCL vs. ACL; (b) CMCL vs. PER-MADDPG.

Figure 14 shows the training effect diagram of the CMCL algorithm obtained after
10,000 episodes of training in a competitive environment. It can be seen from the effect
diagram that the predator agent can learn the batch-hunting policy, that is, to round up
the prey agents in two batches by rational use of terrain obstacles. It can be seen that the
CMCL algorithm can achieve better training performance than other baseline algorithms in
the multi-agent competitive environment.

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 20

Figure 14 shows the training effect diagram of the CMCL algorithm obtained after

10,000 episodes of training in a competitive environment. It can be seen from the effect

diagram that the predator agent can learn the batch-hunting policy, that is, to round up

the prey agents in two batches by rational use of terrain obstacles. It can be seen that the

CMCL algorithm can achieve better training performance than other baseline algorithms

in the multi-agent competitive environment.

Predator Prey

Obstacle

Predator Prey

Obstacle

Figure 14. Training effect diagram of CMCL algorithm in competitive environment.

6. Discussion

On the basis of the analysis of the above two experimental environments, the overall

performance of our proposed CMCL algorithm is better than that of the other three base-

line algorithms, and the following experimental results can be obtained.

In the cooperative environment, the average reward value and landmark coverage of

the CMCL algorithm are better than those of the ACL, PER-MADDPG and MADDPG al-

gorithms. Combined with the screenshots of the actual performance of the agents in the

experimental simulation environment, CMCL algorithm training in the cooperative envi-

ronment can be performed. The agents can learn to execute policies dispersedly and co-

operatively cover landmarks, avoiding collisions between agents or between agents and

the wall.

In the competitive environment experiment, the average reward value of the CMCL

algorithm is better than those of the ACL, PER-MADDPG and MADDPG algorithms, and

when the predator agent controlled by the CMCL algorithm is confronted with the prey

agent controlled by the ACL algorithm and the PER-MADDPG algorithm, after a period

of training, a good win rate can be obtained. Combined with the actual performance

screenshots of the agents in the experimental simulation environment, it can be concluded

that the predator agents trained by CMCL algorithm in the competitive environment can

learn to cooperate to surround the prey agents and group the prey agents to carry out the

hunting strategy, and avoid the collision between agents or between agents and walls.

The current CMCL algorithm can achieve good training performance in the sparse

reward value environment, but there are still two limitations:

1. The dimension explosion problem. A large number of agents in the reinforcement

learning environment due to the excessively large state space and the action space, it

is easy for the algorithm to fail to converge due to the explosion of dimensions.

Figure 14. Training effect diagram of CMCL algorithm in competitive environment.

Mathematics 2022, 10, 2523 18 of 20

6. Discussion

On the basis of the analysis of the above two experimental environments, the overall
performance of our proposed CMCL algorithm is better than that of the other three baseline
algorithms, and the following experimental results can be obtained.

In the cooperative environment, the average reward value and landmark coverage
of the CMCL algorithm are better than those of the ACL, PER-MADDPG and MADDPG
algorithms. Combined with the screenshots of the actual performance of the agents in
the experimental simulation environment, CMCL algorithm training in the cooperative
environment can be performed. The agents can learn to execute policies dispersedly and
cooperatively cover landmarks, avoiding collisions between agents or between agents and
the wall.

In the competitive environment experiment, the average reward value of the CMCL
algorithm is better than those of the ACL, PER-MADDPG and MADDPG algorithms, and
when the predator agent controlled by the CMCL algorithm is confronted with the prey
agent controlled by the ACL algorithm and the PER-MADDPG algorithm, after a period
of training, a good win rate can be obtained. Combined with the actual performance
screenshots of the agents in the experimental simulation environment, it can be concluded
that the predator agents trained by CMCL algorithm in the competitive environment can
learn to cooperate to surround the prey agents and group the prey agents to carry out the
hunting strategy, and avoid the collision between agents or between agents and walls.

The current CMCL algorithm can achieve good training performance in the sparse
reward value environment, but there are still two limitations:

1. The dimension explosion problem. A large number of agents in the reinforcement
learning environment due to the excessively large state space and the action space, it
is easy for the algorithm to fail to converge due to the explosion of dimensions.

2. The problem of reliability distribution. When multiple agents are trained in a re-
inforcement learning environment, the effective exploration of the environment by
the agents can easily be affected due to the uneven distribution of reward functions,
especially when multiple players are trained. This problem is more obvious.

7. Conclusions

To solve the problem that the training efficiency of the automatic curriculum reinforce-
ment learning algorithm is not high in the scenario of sparse reward value, this paper adds
a curiosity module on the basis of automatic curriculum learning, and uses the curiosity
reward value and the temporal-difference error as the reference standard for curriculum
sorting. The ICM module is used to evaluate the priority of curiosity, the curriculum factor
is designed to control the selection of curriculum difficulty, and an automatic curriculum
reinforcement learning algorithm based on the curiosity module is proposed, and the
availability and superiority of the algorithm in sparse reward scenarios are verified by
simulation experiments in cooperative and competitive environments. With the increase in
the number of agents in multi-agent reinforcement learning, the input nodes of the neural
network and the complexity of the neural network grow linearly, which can easily cause
the problem of dimension explosion in the training process, which makes the algorithm
difficult to converge. Methods that can be adopted include compression of state space and
share parameters between agents. In the future, based on automatic curriculum reinforce-
ment learning, further research will be conducted on how to reduce the time complexity of
multi-agent reinforcement learning training under large-scale number conditions.

The main abbreviations are listed in Table 2.

Mathematics 2022, 10, 2523 19 of 20

Table 2. Main abbreviations.

Abbreviation Explanation

RL Reinforcement Learning
ACL Automatic Curriculum Learning
DL Deep Learning

MADDPG Multi-Agent Deep Deterministic Policy Gradient
PER Prioritized Experience Replay
ICM Intrinsic Curiosity Module
MPE Multi-Agent Particle Environment

CMCL Curiosity Module-based Curriculum Learning
ICML International Conference on Machine Learning

AC Actor-Critic
KP K-Fold Priority
CP Curiosity Priority
CI Curriculum Index

CTDE Centralized Training and Distributed Execution

Author Contributions: Methodology, Z.L.; Software Z.L., J.L. and X.C.; Validation, Z.L., J.L. and X.C.;
writing—original draft, Z.L., L.C. and J.W.; writing—review and editing, X.C. and J.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the National Natural Science Foundation of China
(No. 61806221).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the website https://github.com/openai/multiagent-particle-envs (accessed on 13 May 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
2. Mnih, V.; Badia, A.P.; Mirza, M. Asynchronous methods for deep reinforcement learning. In Proceedings of the International

Conference on Machine Learning (ICML), New York, NY, USA, 18–20 December 2016; pp. 1928–1937.
3. Foglino, F.; Christakou, C.C.; Gutierrez, R.L. Curriculum learning for cumulative return maximization. arXiv 2019,

arXiv:1906.06178.
4. Fang, M.; Zhou, T.; Du, Y. Curriculum-guided hindsight experience replay. Adv. Neu. Infor. Pro. Sys. 2019, 19, 12602–12613.
5. Gu, S.; Holly, E.; Lillicrap, T. Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In

Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 3389–3396.

6. Silver, D.; Huang, A.; Maddison, C.J. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529,
484–489. [CrossRef] [PubMed]

7. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–440. [CrossRef] [PubMed]
8. Singh, A.; Jain, T.; Sukhbaatar, S. Individualized controlled continuous communication model for multiagent cooperative and

competitive tasks. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA,
6–9 May 2019; pp. 154–160.

9. Yang, Y.; Luo, R.; Li, M. Mean field multi-agent reinforcement learning. In Proceedings of the International Conference on
Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; pp. 5571–5580.

10. Liu, Q.; Cui, C.; Fan, Q. Self-Adaptive Constrained Multi-Objective Differential Evolution Algorithm Based on the State–Action–
Reward–State–Action Method. Mathematics 2022, 10, 813. [CrossRef]

11. Bengio, Y.; Louradour, J.; Collobert, R. Curriculum learning. In Proceedings of the 26th Annual International Conference on
Machine Learning (ICML), Quebec, MT, Canada, 14–18 June 2009; pp. 41–48.

12. Xue, H.; Hein, B.; Bakr, M. Using Deep Reinforcement Learning with Automatic Curriculum Learning for Mapless Navigation in
Intralogistics. Appl. Sci. 2022, 12, 3153. [CrossRef]

13. Portelas, R.; Colas, C.; Weng, L. Automatic curriculum learning for deep rl: A short survey. arXiv 2020, arXiv:2003.04664.

https://github.com/openai/multiagent-particle-envs
http://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.3390/math10050813
http://doi.org/10.3390/app12063153

Mathematics 2022, 10, 2523 20 of 20

14. Florensa, C.; Held, D.; Geng, X. Automatic goal generation for reinforcement learning agents. In Proceedings of the International
Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1515–1528.

15. Ren, Z.; Dong, D.; Li, H. Self-paced prioritized curriculum learning with coverage penalty in deep reinforcement learning. IEEE
Trans. Neu. Net. Learn. Syst. 2018, 29, 2216–2226. [CrossRef]

16. Chen, J.; Zhang, Y.; Xu, Y. Variational Automatic Curriculum Learning for Sparse-Reward Cooperative Multi-Agent Problems.
Adv. Neu. Infor. Pro. Syst. 2021, 34, 102–116.

17. Haibo, H.; Edwardo, A.G. Learning from imbalanced data. IEEE Trans. Know. Data. Eng. 2008, 9, 1263–1284. [CrossRef]
18. Geoffrey, E.; Hinton. To recognize shapes, first learn to generate images. Pro. Bra. Res. 2007, 165, 535–547.
19. Pathak, D.; Agrawal, P.; Efros, A.A. Curiosity-driven exploration by self-supervised prediction. In Proceedings of the International

Conference on Machine Learning (ICML), Sydney, NSW, Australia, 6–11 August 2017; pp. 2778–2787.
20. Gruber, M.J.; Bernard, D.G.; Charan, R. States of curiosity modulate hippocampus-dependent learning via the dopaminergic

circuit. Neuron 2014, 84, 486–496. [CrossRef]
21. Zhang, H.; Qu, C.; Zhang, J. Self-Adaptive Priority Correction for Prioritized Experience Replay. Appl. Sci. 2020, 10, 6925.

[CrossRef]
22. Cao, X.; Wan, H.; Lin, Y. High-value prioritized experience replay for off-policy reinforcement learning. In Proceedings of the

2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019;
pp. 1510–1514.

23. Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274.
24. Lv, K.; Pei, X.; Chen, C. A Safe and Efficient Lane Change Decision-Making Strategy of Autonomous Driving Based on Deep

Reinforcement Learning. Mathematics. 2022, 10, 1551. [CrossRef]
25. Grondman, I.; Busoniu, L.; Lopes, G.A.D. A survey of actor-critic reinforcement learning: Standard and natural policy gradients.

IEEE Trans. Syst. Man. Cyber. 2012, 42, 1291–1307. [CrossRef]
26. Lowe, R.; Wu, Y.I.; Tamar, A. Multi-agent actor-critic for mixed cooperative-competitive environments. Adv. Neu. Infor. Pro. Syst.

2017, 30, 133–160.
27. Lei, W.; Wen, H.; Wu, J. MADDPG-based security situational awareness for smart grid with intelligent edge. Appl. Sci. 2021, 11,

3101. [CrossRef]
28. Wang, X.; Chen, Y.; Zhu, W. A survey on curriculum learning. IEEE Trans. Pat. Ana. Mac. Intel. 2021, 37, 362–386. [CrossRef]
29. Parker-Holder, J.; Rajan, R.; Song, X. Automated Reinforcement Learning (AutoRL): A Survey and Open Problems. arXiv 2022,

arXiv:2201.03916. [CrossRef]
30. Kumar, M.; Packer, B.; Koller, D. Self-paced learning for latent variable models. Adv. Neu. Infor. Pro. Syst. 2010, 23, 154–160.

http://doi.org/10.1109/TNNLS.2018.2790981
http://doi.org/10.1109/TKDE.2008.239
http://doi.org/10.1016/j.neuron.2014.08.060
http://doi.org/10.3390/app10196925
http://doi.org/10.3390/math10091551
http://doi.org/10.1109/TSMCC.2012.2218595
http://doi.org/10.3390/app11073101
http://doi.org/10.1109/TPAMI.2021.3069908
http://doi.org/10.1613/jair.1.13596

	Introduction
	Related Work
	Basic Concepts
	Deep Reinforcement Learning
	MADDPG Algorithm
	Automatic Curriculum Learning

	Curriculum Reinforcement Learning Based on Curiosity Model
	K-Fold Priority Experience Replay
	Curiosity Exploration Rewards
	Algorithm Framework and Pseudocode

	Experiment
	Experimental Environment
	Cooperative Experiment
	Competition Experiment

	Discussion
	Conclusions
	References

