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Abstract: This paper is concerned with the output tracking control problem for random nonlinear
systems with time-varying powers. A distinct feature of this paper is that we consider time-varying
powers and the second-order moment process simultaneously, which is more practical in real applica-
tions than the existing results where only one factor is considered. We propose a new design scheme,
which ensures that the fourth moment of the tracking error can be adjusted to be arbitrarily small and
all the states of the closed-loop system are bounded in probability. Finally, a numerical simulation is
given to demonstrate the feasibility of the control idea.
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1. Introduction

Consider the random nonlinear systems (RNSs) with time-varying powers described by

ẋj = [xj+1]
rj(t) + f j(x̄j) + gT

j (x̄j)ζ(t), j = 1, · · · , n− 1,
ẋn = [u]rn(t) + fn(x̄n) + gT

n (x̄n)ζ(t),
y = x1,

(1)

where xj = (x1, · · · , xj)
T ∈ Rj, u ∈ R, y ∈ R are the state, input, and output of the system,

respectively. xj(t0) = (x10, · · · , xj0)
T , t ∈ [t0, ∞). The time-varying power rj(t) : R+ → R+

is a continuous bounded function complying 1 ≤ r ≤ rj(t) ≤ r̄ with two positive constants
r and r̄, and we define [·]a(t) = sign(·)| · |a(t) with a(t) as the time-varying continuous
function. The functions f j : Rj → R and gj : Rj → R, j = 1, · · · , n, are smooth, vanishing
at the origin. ζ(t) ∈ Rm is a standard second-order moment process (SOMP) defined on
the complete probability space (Ω,F ,Ft,P) with a filtration Ft complying the general
requirements. A given C1 target signal is defined as y0(t) ∈ R (C1 represents a class of
functions whose derivatives are continuous).

When the noise ζ(t) in system (1) is white noise, system (1) is called stochastic nonlin-
ear systems (SNSs), and there are many results on its control design. Reference [1] explores
the adaptive output feedback tracking problems for SNSs with the unknown state, and [2]
considers the strict-feedback SNSs with unknown parameters in the drift terms or the
diffusion terms. State feedback tracking control of SNSs was studied in [3]. Reference [4]
investigates the global output feedback stabilization for SNSs. Reference [5] presents mean-
nonovershooting tracking control designs for strict-feedback SNSs. Reference [6] solves
the prescribed-time mean-square stabilization and inverse optimality control problems
for strict-feedback SNSs by developing a new nonscaling backstepping design scheme.
Reference [7] solves the finite-time stabilization problem of stochastic low-order nonlinear
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systems with time-varying orders and stochastic inverse dynamics. In [8], a new observer
design for a class of nonlinear systems with unknown, bounded, time-varying delays was
presented. In [9], the authors studied the finite time stability of equilibrium points of the
Caputo–Katugampola fractional neural networks with time delays and proved its existence
and uniqueness.

The results in [1–7] is based on rj(t) = 1. When rj(t) is greater than 1, system (1)
is understood as high power systems. There are also many studies on higher power
systems. Reference [10] investigated the finite-time stabilization of output-constrained
systems with stochastic inverse dynamics and high-order and low-order nonlinearities.
Reference [11] presented an adaptive state-feedback strategy for state-constrained systems.
In [12], the authors were concerned with the problem of robust cooperative output tracking.
According to the results in [10–12], the orders are required to be constants. However, there
are many systems with time-varying powers in practical industrial applications. For
example, it is clear that the power of boiler turbine units in [13] is time-varying. In addition,
the underactuated mechanical system in [14] is also a time-varying system. The reason is
the performance hidden trouble brought by spring hardening. Recently, ref. [15] presented
two types of controllers for SNSs with time-varying powers, namely the state feedback
controller and optimal controller. Reference [16] studied the adaptive control of systems
with time-varying power.

White noise is considered a disturbance in the above results. It is undeniable that
white noise has its own unique advantages in theoretical analysis. However, in many
engineering systems, SOMP is more reasonable for model disturbances. References [17–19]
propose two stability theories for this type of system (RNSs with SOMP). Reference [19]
considers the stabilization for RNSs. The trajectory tracking of random Lagrange systems
disturbed is studied in [20]. Reference [21] discussed the adaptive tracking control for RNSs.
Reference [22] investigated the stability of the nonlinear benchmark system in vibrating
environments. Reference [23] focused on cooperative control for multiple benchmark
systems. References [19–23] focused on tracking problems. There are also some studies on
the stability of random systems. For example, stability in the presence of time delay [24],
unified stability criteria [25], global asymptotic stability, and stabilization [26]. Nevertheless,
there are currently no published results on tracking the control of higher-order RNSs with
time-varying powers.

In this paper, we focus on output tracking control for a class of high-order RNSs with
time-varying powers. Compared with the available results, the main contributions of this
paper are two-fold:

(1) This paper is the first result on the output tracking topic of high-order RNSs with
time-varying powers. To extend the order of the system to the time-varying power
domain, a new method is proposed to design the controller to achieve stability analysis.
Different from [15]’s method, the time-varying order of the system considered in this
paper is not uniform r(t) and we consider different orders, i.e., ri(t) 6= rj(t), i 6= j.

(2) Unlike the deterministic systems [16], the systems studied in this paper are perturbed
by SOMP. In the controller design, how to reasonably separate the SOMP from the
nonlinear functions is a challenging problem. This is completely different from the
designs with white noise in [1–15].

This paper includes four parts. Section 2 is the control design and analysis. Section 3
illustrates the effectiveness of the control method by a simulation example. Section 4
presents the conclusions.

2. Control Design and Analysis

For system (1), we need the following assumptions.

Assumption 1. For the target signal y0(t) ∈ R, we assume that y0(t) and ẏ0(t) satisfy |y0|+
|ẏ0| ≤ M, where M is a positive constant.
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Assumption 2. There exist nonnegative smooth functions θi(x̄i) and φi(x̄i), i = 1, . . . , n,
such that

| fi(x̄i)| ≤ θi(x̄i),

|gi(x̄i)| ≤ φi(x̄i).

Assumption 3. ζ(t) is the Ft−adapted and piecewise continuous process satisfying
supt≥t0

E|ζ(t)|2 < K, where K > 0 is a constant.

Remark 1. Assumption 3 shows that the random process ζ(t) is a second-order moment process.
As shown in [19–26], this kind of noise characterizes the physical system more reasonably than
white noise.

The objective of this paper was to design an output tracking controller for system (1),
such that the closed-loop system has a unique solution on [t0, ∞), all states are bounded in
probability and the tracking error’s 4th moment can be tuned arbitrarily small.

2.1. Controller Design

For system (1), we adopted the coordinate changes

ηi = xi − x∗i , (2)

where x∗i , i = 2, · · · , n, are intermediate controllers, the specific form of which is given in
the following section. In particular, x∗1 = y0. Then we have

η̇i = [xi+1]
ri(t) + fi(x̄i) + gT

i (x̄i)ζ(t)−
i−1

∑
k=1

∂x∗i
∂xk

([xk+1]
rk(t) + fk(x̄k)

+gT
k (x̄k)ζ(t))−

∂x∗i
∂y0

ẏ0, (3)

where xn+1 = u.
Next, we give the design process of the system (1).
Step 1. We first designed x∗2 .
According to (2) and (3), we obtain

η1 = x1 − x∗1 = x1 − y0, (4)

and

η̇1 = [x2]
r1(t) + f1 + gT

1 ζ − ẏ0. (5)

Meanwhile, we choose the Lyapunov function V1 = 1
4 η4

1 . From (5) and Assumptions 1
and 2, we have

V̇1 = η3
1 η̇1

= η3
1([x2]

r1(t) + f1 + gT
1 ζ − ẏ0)

≤ η3
1([x2]

r1(t) + f1 + gT
1 ζ + M).

(6)

By Assumption 2 and Lemma 2.2 in [27], we obtain

η3
1( f1 + M) ≤ η3

1(θ1(x̄1) + M) ≤ β11(x̄1)|η1|r̄+3 + ε11, (7)

where β11(x̄1) =
3

r+3 (
r̄

ε11(3+r) )
r̄
3 (θ1(x̄1) + M)

r̄+3
3 , and ε11 is a positive constant.
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By Assumption 2 and Lemma 2.2 in [27], we have

η3
1 gT

1 ζ ≤ η3
1φ1(x̄1)ζ

≤ ε121η6
1φ2

1(x̄1) +
1

4ε121
|ζ|2

≤ β12(x̄1)|η1|r̄+3 + 1
4ε121
|ζ|2 + ε122,

(8)

where ε121 and ε122 are positive constants, β12(x̄1) =
3

r+3 (
ε122 r̄
(3+r) )

r̄
3 ε

r̄+3
3

121 η r̄+3
1 (φ1(x̄1))

2r̄+6
3 .

Importing (7) and (8) into (6) can cause

V̇1 ≤ η3
1 [x2]

r1(t) + β11(x̄1)|η1|r̄+3 + ε11 + β12(x̄1)|η1|r̄+3 +
1

4ε121
|ζ|2 + ε122

= η3
1([x2]

r1(t) − [x∗2 ]
r1(t)) + η3

1 [x
∗
2 ]

r1(t) + β1(x̄1)|η1|r̄+3 + δ11 + δ12|ζ|2, (9)

where β1(x̄1) = β11(x̄1) + β12(x̄1), δ11 = ε11 + ε122, δ12 = 1
4ε121

.
So, we choose

x∗2 = −α1(x̄1)(η1 + [η1]
r̄) = −(c1 + β1(x̄1))

1
r (η1 + [η1]

r̄), (10)

such that

η3
1 [x
∗
2 ]

r1(t) = −α
r1(t)
1 (x̄1)(η1 + [η1]

r̄)r1(t)η3
1 , (11)

where c1 ≥ 1 is a free parameter, α1(x1) ≥ 1 is a smooth function uncorrelated of r1(t).
By Lemma 2.3 in [27], we have

η3
1(η1 + [η1]

r̄)r1(t) ≥ |η1|r1(t)+3 + |η1|r̄r1(t)+3. (12)

Thus, we have

η3
1 [x
∗
2 ]

r1(t) ≤ −(c1 + β1(x̄1))(|η1|r1(t)+3 + |η1|r̄r1(t)+3), (13)

and by Lemma 3 in [16], we obtain

|η1|r̄+3 ≤ |η1|r1(t)+3 + |η1|r̄r1(t)+3. (14)

From (9) and (10), we have

V̇1 ≤ −c1|η1|r̄+3 + η3
1([x2]

r1(t) − [x∗2 ]
r1(t)) + δ11 + δ12|ζ|2. (15)

Step 2. We then design x∗3 .
From (2), we have

η̇2 = [x3]
r2(t) +

(
f2(x̄2)−

∂x∗2
∂x1

([x2]
r1(t) + f1(x̄1))

)
− ∂x∗2

∂y0
ẏ0

+gT
2 (x̄2)ζ −

∂x∗2
∂x1

gT
1 ζ. (16)

Choosing V2 = V1 +
1
4 η4

2 , by (15) and (16), we obtain

V̇2 ≤ −c1|η1|r̄+3 + η3
1([x2]

r1(t) − [x∗2 ]
r1(t)) + δ11 + δ12|ζ|2

+η3
2

(
[x3]

r2(t) +
(

f2(x̄2)−
∂x∗2
∂x1

([x2]
r1(t) + f1(x̄1))

)
− ∂x∗2

∂y0
ẏ0

+gT
2 (x̄2)ζ −

∂x∗2
∂x1

gT
1 ζ
)

.

(17)
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According to Lemma 2.1 in [27], we obtain

η3
1([x2]

r1(t) − [x∗2 ]
r1(t)) ≤ r̄(2r̄−2 + 2)(|η1|3|η2|r1(t) + αr̄−1

1 |η1|r1(t)+2|η2|)
≤ r̄(2r̄−2 + 2)|η1|3(|η2|r̄ + |η2|) + r̄(2r̄−2 + 2)αr̄−1

1
·(|η1|r̄+2 + |η1|3)|η2|.

(18)

From Lemma 2.2 in [27], we have

r̄(2r̄−2 + 2)(αr̄−1
1 + 1)|η1|3|η2| ≤ ε21 + β211(x1)|η2|r̄+3,

r̄(2r̄−2 + 2)αr̄−1
1 |η1|r̄+2|η2| ≤ 1

2 |η1|r̄+3 + β212(x1)|η2|r̄+3,
r̄(2r̄−2 + 2)|η1|3|η2|r̄ ≤ 1

2 |η1|r̄+3 + β213|η2|r̄+3,
(19)

where

β211(x1) =
1

r + 3

( r̄ + 2
(r + 3)ε211

)r̄+2(
r̄(2r̄−2 + 2)((x1 + 1)2 + 1)

3
2 (αr̄−1

1 + 1)
)r̄+3

,

β212(x1) =
1

r + 3

(
r̄(2r̄−2 + 2)αr̄−1

1

)r̄+3( r + 3
2r̄ + 4

)−(r̄+2)
,

β213 =
r̄

r + 3

( 6
r + 3

) r̄
3
(

r̄(2r̄−2 + 2)
) r̄+3

r
.

Substituting (19) into (18), we have

η3
1([x2]

r1(t) − [x∗2 ]
r1(t)) ≤ |η1|r̄+3 + β21(x1)|η2|r̄+3 + ε21, (20)

where β21(x1) = β211(x1) + β212(x1) + β213 ≥ 0 is uncorrelated of r1(t), ε21 is positive con-
stant.

Estimate the sixth term of (17) as

η3
2

(
f2(x̄2)−

∂x∗2
∂x1

([x2]
r1(t) + f1(x̄1))−

∂x∗2
∂y0

ẏ0

)
≤ η3

2

[
θ2(x̄2) +

∂x∗2
∂x1

(x2 + 1)
r̄
2 + θ1(x1)) +

∂x∗2
∂y0

M
]

≤ β22(x1)|η2|r̄+3 + ε22,

(21)

where

β22(x1) =
3

r̄ + 3

( r̄
ε22(r + 3)

) r̄
3
[
θ2(x̄2) +

∂x∗2
∂x1

(x2 + 1)
r̄
2 + θ1(x1)) +

∂x∗2
∂y0

M
] r̄+3

3
,

with ε22 being a positive constant.
For the term in (17) involving the SOMP, we have

η3
2

(
gT

2 (x̄2)ζ −
∂x∗2
∂x1

gT
1 (x̄1)ζ

)
≤ ε231η6

2

(
φ2(x̄2) +

∂x∗2
∂x1

φT
1 (x̄1)

)2
+

1
4ε231

|ζ|2

≤ β23|η2|r̄+3 + ε232 +
1

4ε231
|ζ|2, (22)

where ε231, ε232 are positive constants, and β23(x̄2) = 3
r̄+3

(
r̄

ε232(r+3)

) r̄
3
(

ε231η3
2

(
φ2(x̄2) +

∂x∗2
∂x1

φ1(x̄1)
)2) r̄+3

3
.

From (17), (21) and (22), we obtain

V̇2 ≤ −(c1 − 1)|η1|r̄+3 + η3
2([x3]

r2(t) − [x∗3 ]
r2(t)) + η3

2 [x
∗
3 ]

r2(t) + (β21(x̄2) + β22(x̄2)
+β23(x̄2))|η2|r̄+3 + (δ11 + δ21) + (δ12 + δ22)|ζ|2

≤ −(c1 − 1)|η1|r̄+3 + η3
2([x3]

r2(t) − [x∗3 ]
r2(t)) + η3

2 [x
∗
3 ]

r2(t) + β2(x̄2)|η2|r̄+3

+∑2
k=1 δk1 + ∑2

k=1 δk2|ζ|2,

(23)
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where δ21 = ε21 + ε22 + ε232, δ22 = 1
4ε231

.
Constructing the virtual controller x∗3 as

x∗3 = −(c2 + β2(x̄2))
1
r (η2 + [η2]

r̄) = −α2(x̄2)(η2 + [η2]
r̄), (24)

then we have

η3
3 [x
∗
3 ]

r2(t) ≤ −(c2 + β2(x̄2))(|η2|r2(t)+3 + |η2|r̄r2(t)+3), (25)

where c2 ≥ 1 is the design parameter, the smooth function α2 = −(c2 + β2(x̄2))
1
r is

irrelevant of r2(t).
By (23) and (24), we have

V̇2 ≤ −(c1 − 1)|η1|r̄+3 − c2|η2|r̄+3 + η3
2([x3]

r2(t) − [x∗3 ]
r2(t)) +

2

∑
k=1

δk1 +
2

∑
k=1

δk2|ζ|2. (26)

Deductive Step. In this step, we design the virtual control x∗i+1.
Suppose that at step i− 1, we have a positive function Vi−1 and a virtual controller x∗i

x∗i = −(ci−1 + βi−1(x̄i−1))
1
r (ηi−1 + [ηi−1]

r̄)

= −αi−1(x̄i−1)(ηi−1 + [ηi−1]
r̄), (27)

such that

V̇i−1 ≤ −
i−1

∑
k=1

(ck − 1)|ηk|r̄+3 + η3
i−1([xi]

ri−1(t) − [x∗i ]
ri−1(t)) +

i−1

∑
k=1

δk1 +
i−1

∑
k=1

δk2|ζ|2, (28)

where αi−1(x̄i−1) is a smooth function uncorrelated of ri(t).
In step i, we select a function

Vi = Vi−1 +
1
4

η4
i . (29)

From (28) and (29), we have

V̇i ≤ −∑i−1
k=1(ck − 1)|ηk|r̄+3 + η3

i−1([xi]
ri−1(t) − [x∗i ]

ri−1(t)) + ∑i−1
k=1 δk1 + ∑i−1

k=1 δk2|ζ|2

+η3
i ([xi+1]

ri(t) − [x∗i+1]
ri(t)) + η3

i [x
∗
i+1]

ri(t) + η3
i

(
fi −∑i−1

k=1
∂x∗i
∂xk

([xk+1]
rk(t) + fk)

− ∂x∗i
∂y0

M
)
+ η3

i

(
gT

i ζ −∑i−1
k=1

∂x∗i
∂xk

gT
k ζ
)

.

(30)

Similar to the proof process of (18), we have

η3
i−1([xi]

ri−1(t) − [x∗i ]
ri−1(t)) ≤ r̄(2r̄−2 + 2)(|ηi−1|3|ηi|ri−1(t) + αr̄−1

i−1 |ηi−1|ri(t)+2|ηi|)
≤ r̄(2r̄−2 + 2)|ηi−1|3(|ηi|r̄ + |ηi|) + r̄(2r̄−2 + 2)αr̄−1

i−1
·(|ηi−1|r̄+2 + |ηi−1|3)|ηi|

≤ |ηi|r̄+3 + βi1(x̄i−1)|ηi+1|r̄+3 + εi1,

(31)

where εi1 ≥ 0 is a free constant and βi1(x̄i−1) is a smooth function, both of them uncorre-
lated of ri(t).

With the help of (27), Assumption 1 and Lemma 2.1 in [27], we obtain

η3
i ( fi −∑i−1

k=1
∂x∗i
∂xk

([xk+1]
rk(t) + fk)−

∂x∗i
∂y0

M)

≤ η3
i

(
θi + ∑i−1

k=1
∂x∗i
∂xk

(|xk+1|+ |xk+1|r̄ + θi(x̄i)) +
∂x∗i
∂y0

M
)

≤ βi2(x̄i)|ηi|r̄+3 + εi2,

(32)

where βi2(x̄i) ≥ 0 are uncorrelated of ri(t), εi1 is a positive constant.
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By (3) and (27), Assumption 1 and Lemmas A.2, A.4, we have

η3
i (giζ −

i−1

∑
k=1

∂x∗i
∂xk

gkζ) ≤ η3
i

(
φi(x̄i) +

i−1

∑
k=1

∂x∗i
∂xk

φk(x̄i)
)

ζ

≤ βi3(x̄i)|ηi|r̄+3 + εi31 + εi32|ζ|2, (33)

where βi3(x̄i) ≥ 0 are uncorrelated of ri(t). εi31 and εi32 are positive constants.
Substituting (31)–(33) into (30), we have

V̇i ≤ −
i−1

∑
k=1

(ck − 1)|ηk|r̄+3 + η3
i ([xi+1]

ri(t) − [x∗i+1]
ri(t)) + η3

i [x
∗
i+1]

ri(t) +
i

∑
k=1

δk1

+
i

∑
k=1

δk2|ζ|2 + (βi1(x̄i) + βi2(x̄i) + βi3(x̄i))|ηi|r̄+3. (34)

The virtual controller

x∗i+1 = −αi(x̄i)(ηi + [ηi]
r̄) = −(ci + βi1(x̄i) + βi2(x̄i) + βi3(x̄i))

1
r (ηi + [ηi]

r̄), (35)

leads to

V̇i ≤ −
i

∑
k=1

(ck − 1)|ηk|r̄+3 + η3
i ([xi+1]

ri(t) − [x∗i+1]
ri(t)) +

i

∑
k=1

δk1 +
i

∑
k=1

δk2|ζ|2, (36)

where ck ≥ 1 is a design parameter and αi(x̄i) ≥ 1 is uncorrelated of ri(t).
Step n. Finally, we design the controller u. Let

Vn =
n

∑
k=1

1
4

η4
k . (37)

In the case of (37), we have

V̇n ≤ −
n−1

∑
k=1

(ck − 1)|ηk|r̄+3 + βn(x̄n)η
r̄+3
n + η3

n[u]
rn(t) +

n

∑
k=1

δk1 +
n

∑
k=1

δk2|ζ|2, (38)

where βn(x̄n) ≥ 0 is a smooth function.
If we design the actual controller as

u = −αn(x̄n)(ηn + [ηn]
r̄) = −(cn + βn(x̄n))

1
r (ηn + [ηn]

r̄), (39)

then we obtain

V̇n ≤ −
n

∑
k=1

(ck − 1)|ηk|r̄+3 +
n

∑
k=1

δk1 +
n

∑
k=1

δk2|ζ|2, (40)

where cn ≥ 1, αn(x̄n) ≥ 1 is uncorrelated of ri(t).

Remark 2. The design idea of this paper is completely different from the design idea of [15].
Although the system in [15] also has time-varying power, the system noise considered in this paper
is a kind of color noise, which is a completely different white noise from [15]. A new design scheme
is proposed in this part.

Remark 3. With the effect of time-varying powers ri(t) in system (1), it is a challenging problem to
design a time-independent controller. The time-varying powers make our design much more difficult
and essentially different from the constant power cases [10–12]. In our control scheme, we designed
the virtual controllers and real controller with the upper bound r̄ and lower bound r of ri(t).
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2.2. Stability Analysis

In this part, we present the main results on stability.

Theorem 1. Consider the high-order RNSs (1), if Assumptions (1)–(3) hold, with the con-
troller (39), we have

(1) The closed-loop system has a unique solution on [t0, ∞);
(2) All the states of the closed-loop system are bounded in probability;
(3) The fourth moment of the tracking error can be tuned to be arbitrarily small.

Specifically, for ∀ε and initial value x(t0), there is a finite-time T(x(t0), ε), such that

E|x1(t)− y0(t)|4 < ε, ∀t > T(x(t0), ε).

Proof. Let V = Vn, for (40), if ri(t) = 1, we have

V̇ ≤ −
n

∑
k=1

(ck − 1)|ηk|4 +
n

∑
k=1

δk1 +
n

∑
k=1

δk2|ζ|2

≤ −c0V + b + a|ζ|2, (41)

where c0 = min1≤k≤n{4(ck − 1)}, b = ∑n
k=1 δk1, a = ∑n

k=1 δk2.

If ri(t) > 1. By Lemma 2.3 in [27], we have

|ηk|4 ≤ τ + σ|ηk|r̄+3, (42)

where 0 < τ ≤ 1 is a design parameter and σ = 4
r̄+3 (

r̄−1
τ(r̄+3) )

r̄−1
4 , which yields

|ηk|r̄+3 ≥ σ−1|ηk|4 − σ−1τ. (43)

Substituting (43) into (40) yields

V̇ ≤ −c0V + b + a|ζ|2, (44)

where c0 = min1≤k≤n{4σ−1(ck − 1)}, b = ∑n
k=1(ck − 1)σ−1τ + ∑n

k=1 δk1, a = ∑n
k=1 δk2.

Let η(t) = (η1(t), · · · , ηn(t))T , define the first exit time

χl = inf{t : t ≥ t0, |η(t)| ≥ l}, ∀l > 0. (45)

Under the concurrence of Assumption 3 and Fubini’s theorem

EV(η(t ∧ χl)) ≤ V(η(t0)) + b(t− t0) + aE{
∫ t

t0

|ζ(s)|2ds}

≤ V(η(t0)) + (b + aK)(t− t0). (46)

From (46) and Lemma 5 in [19], Conclusion (1) is proved.
Next, we present a proof of Conclusion (3).
Let tl = min{t, χl} = t ∧ χl , by (41), we have

E(ec0tl V(η(tl)) ≤ ec0t0 EV(η(t0)) +
b
c0
(ec0t − ec0t0) + aE

{ ∫ t

t0

ec0s|ζ(s)|2ds
}

. (47)

Then, letting l → ∞, by (47), we have

ec0tE(V(η(t)) ≤ ec0t0 EV(η(t0)) +
b
c0
(ec0t − ec0t0) + aE

{ ∫ t

t0

ec0s|ζ(s)|2ds
}

. (48)
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It can be inferred from (48), Assumption 3,

ec0tE(V(η(t)) ≤ ec0t0 EV(η(t0)) +
b + aK

c0
(ec0t − ec0t0), (49)

or equivalently

E(V(η(t)) ≤ e−c0(t−t0)EV(η(t0)) +
b + aK

c0
(1− e−c0(t−t0)). (50)

Referring to the definition of a and b, it can be obtained that the information of
EV(η(t)) can be adjusted as small as you want. So, noting η = (x1 − y0, η2, · · · , ηn)T , for
∀ε and initial value x(t0), ∃ a finite-time T(x(t0), ε), the sufficient large L leads to

E|x1 − y0|4 < ε, ∀t > T(x(t0), ε). (51)

Next, we will prove Conclusion (2). From (50), we obtain

EV(η(t)) ≤ V(η(t0)) +
b + aK

c0
. (52)

For any constant h > 0, note that

EV(η(t)) ≥
∫
|η|>h

V(η(t))P(dw) ≥ inf
|η|>h

V(η(t))P(|η| > h), (53)

from which (52), we have

P(|η| > h) ≤
V(η(t0)) +

b+aK
c0

inf|η|>h V(η(t))
. (54)

By (54) and V(η(t)), we have

lim
h→∞

sup
t>t0

P(|η| > h) ≤ lim
h→∞

sup
t>t0

Vη(t0)
+ b+aK

c0

inf|η|>h V(η(t))
= 0. (55)

By (48), η(t) is bounded in probability. This shows that ηi(t), i = 1, · · · , n is bounded
in probability. Moreover, considering the η1 = x1 − y0 and η2 = x2 − x∗2 , we can conclude
that Conclusion (2) is true.

3. A Simulation Example

In this part, we consider the system:

ẋ1 = [x2]
6
5+

1
5 sin t + 1

2 x3
1 +

1
2 x1 sin2 x1ζ(t),

ẋ2 = [u]
7
6+

1
6 sin t + x2

2 sin x1 +
1
2 x2 sin2 x1ζ(t),

y = x1.
(56)

In the simulation, we choose ζ(t) = sin(w(t)), where w(t) is white noise with limited
bandwidth produced by MATLAB (noise power is 10 and sample time is 0.01). Obviously,
ζ(t) is a second-order moment process with Eζ(t)2 ≤ 1, which shows that Assumption 3
is satisfied.

Let y0 = sin t. Choosing r̄ = 2, r = 1. Obviously, the assumptions are true.
By the calculation, we have

u = −(c2 + β21 + β22 + β23)(η2 + [η2]
2), (57)
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where

β21 =
3
2
((x1 + 1)2 + 1)

15
2 (α1 + 1)5 + 101α5

1 + 40,

β22 =
3
4

(
(1 + x4

2 sin2 x1)
1
2 +

∂x∗2
∂x1

(x1 + 1) + |∂x∗2
∂y0
|
) 5

3
,

β23 =
3
4

η5
2

((
1 +

1
4

x2
2 sin4 x1

) 1
2
+

∂x∗2
∂x1

(
1 +

1
4

x2
1 sin4 x1

) 1
2
) 10

3
,

x∗2 = −(η1 + [η1]
2)
(

1 +
3
5

((
1 +

1
4

x6
1

) 1
2
+ 1
) 5

3
+ 3η5

1

(
1 +

1
4

x2
1 sin4 x1

) 10
3
)

,

∂x∗2
∂x1

=
15
16

((
1
4

x6
1 + 1)1/2 + 1)2/5(

1
4

x6
1 + 1)−1/2x5

1 +
3
4
(

1
4

x2
1 sin4 x1 + 1)10/3η4

1

+
25
3
(

1
4

x2
1 sin4 x1 + 1)3η5

1(
1
2

x1 sin4 x1 + x2
1 sin3 x1 cos x1),

|∂x∗2
∂y0
| = 5η4

1(
1
4

x2
1 sin4 x1 + 1)10/3(η1 + [η1]

2) + α1(1 + 2η1).

By randomly choosing parameters c1 = 1.3, c2 = 1, and a set of initial values
(x1(0), x2(0))T = (−0.5, 0.6)T . Through the actual simulation, the system responses of the
tracking error, states, and controller are shown in Figures 1–3. It can be seen from Figure 1
that when ∀t > T = 2s, the error |e| = |x1 − y0| < 0.1. At the same time, the effectiveness
of the design idea can be directly illustrated with Figure 2 and 3.
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Figure 1. Response to the tracking error.
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Figure 2. Response of the states.
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Figure 3. Response of the controller.

4. Conclusions

We studied the output tracking problem of RNSs with time-varying powers. The ad-
vantage of our control is that both time-varying power and SOMP are considered, which
is more practical than the existing results, which only consider one factor. First, different
from the deterministic systems considered in [15], the disturbance of the system studied
in this paper is characterized by SOMP. The difference between the SOMP and Gaussian
white noise is that white noise is an independent random process, while the SOMP is an
interrelated random process. Secondly, the power of the system studied in this paper is a
function of the time-varying order, which must be taken into account in the construction
of the controller. The time-invariant controller was designed. It is concluded that the
expectation of the fourth moment of the tracking deviation can be trimmed to be arbitrarily
small, and all states are bounded in probability.

There are some future research topics, e.g., when there is uncertainty in the system,
how to design the controller to ensure the tracking performance, or to generalize the results
in this paper to more general systems in [28–31] or a more practical system [32].
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