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Abstract: According to the World Energy Investment 2018 report, the global annual investment in
renewable energy exceeded USD 200 billion for eight consecutive years until 2017. In this paper,
a deep-learning-based time-series prediction method, namely a gated recurrent unit (GRU)-based
prediction method, is proposed to predict energy generation in Taiwan. Data on thermal power (coal,
oil, and gas power), renewable energy (conventional hydropower, solar power, and wind power),
pumped hydropower, and nuclear power generation for 1991 to 2020 were obtained from the Bureau
of Energy, Ministry of Economic Affairs, Taiwan, and the Taiwan Power Company. The proposed
GRU-based method was compared with six common forecasting methods: autoregressive integrated
moving average, exponential smoothing (ETS), Holt–Winters ETS, support vector regression (SVR),
whale-optimization-algorithm-based SVR, and long short-term memory. Among the methods com-
pared, the proposed method had the lowest mean absolute percentage error and root mean square
error and thus the highest accuracy. Government agencies and power companies in Taiwan can use
the predictions of accurate energy forecasting models as references to formulate energy policies and
design plans for the development of alternative energy sources.

Keywords: alternative energy; power generation forecasting; gated recurrent units

MSC: 68T09

1. Introduction

Energy plays a crucial role in achieving the United Nations Sustainable Development
Goals (SDGs) and ensuring the long-term development of society and the economy. There-
fore, access to a reliable and economical energy source is crucial for promoting social and
economic development [1]. In 2015, the United Nations established the 2030 SDGs, the
seventh goal of which encompasses the ensuring of affordable, reliable, sustainable, and
modern energy for all people; increasing global renewable energy sharing; and improving
energy efficiency [2]. The sustainable development of energy is a global issue. For Tai-
wan in particular, energy use has increased as the country becomes more technologically
sophisticated, and Taiwan’s energy needs are expected to grow considerably in the next
two decades. According to the Bureau of Energy of the Ministry of Economic Affairs,
energy consumption in Taiwan increased each year from 1999 to 2019. Moreover, the
overall electricity consumption increased considerably during this period, with industrial
electricity consumption accounting for the largest share of the overall electricity consump-
tion [3]. In the face of increasing electricity usage, government agencies have begun to focus
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on making electricity use more efficient and the electricity supply more stable. In 1997,
Taiwan promulgated a sustainable energy policy with energy, environmental protection,
and economy as the three pillars of sustainable development. This policy aimed to achieve
the goals of energy saving and carbon reduction through novel technology to reduce CO2
emissions and the reliance on fossil fuels [4].

Energy transition is a crucial national policy in Taiwan, and ensuring stable electricity
supply is indispensable in the implementation of energy transition. The average annual
growth rate in electricity usage in Taiwan over the past 10 years (2001–2020) is 1.34%.
The Taiwanese economy grew by 4.69% (5.1% in the fourth quarter) compared with the
same period in 2009. However, water scarcity problems coupled with the implementation
of a carbon-reduction target, the vigorous development of renewable energy, and the
decommissioning of nuclear plants by 2025 might lead to increases in electricity prices
or a shortage of energy supply in Taiwan [5]. Therefore, technology majors are urgently
activating the water truck to prevent the risk of loss. The possibilities of electricity shortages
and regulatory changes have made the Taiwanese technology industry increasingly worried
about rising electricity costs, decreased profits, and reduced competitiveness. Thus, if power
generation can be effectively forecasted, the wastage caused by oversupply or the economic
loss caused by undersupply can be reduced.

Researchers have devoted considerable effort to formulating methods for time-series
prediction [6], such as statistical methods [7], machine learning–based methods [8,9], and
deep learning–based methods. Statistical methods, such as the autoregressive integrated
moving average (ARIMA), exponential smoothing (ETS), and Holt–Winters ETS (HWETS),
have a large bias [10,11]. In the last decade, artificial intelligence (AI) methods, includ-
ing machine learning methods such as support vector regression (SVR) and whale opti-
mization algorithm (WOA)-based SVR (WOASVR), have attracted considerable research
attention [12]. SVR is the most useful machine learning regression method for time-series
prediction. It can be used to solve nonlinear problems, and it formulates statistical learning
problems as quadratic plans with linear constraints through the adoption of nonlinear
“kernel tricks” [13]. WOASVR is used to generate inputs for SVR. Finally, the prediction is
performed using WOASVR [12]. Compared with traditional statistical methods, machine
learning models produce more accurate predictions because of their superior learning
capabilities [14]. Deep-learning-based prediction models have stronger nonlinear fitting
capabilities than do machine learning models [11]. Therefore, deep learning models have
been widely used in energy generation forecasting [11]. Deep learning has played an
increasingly key role in the field of AI because of its high accuracy and flexibility. Deep-
learning-based algorithms are emerging approaches for solving time-series prediction
problems [15]. Deep-learning-based time-series prediction methods include those based
on long short-term memory (LSTM) and gated recurrent units (GRUs). An LSTM network
is a recurrent neural network (RNN) where the aim is to solve the long-term dependence
problem of time-series models [11]. Although LSTM models perform well in various types
of predictions, they can and should be improved further [11]. A GRU network is a simpler
variation of an LSTM network. A GRU network retains the ability of an LSTM to resist the
gradient vanishing problem; however, its internal structure is simpler and therefore easier
to train than that of an LSTM network. Thus, fewer computational resources are required
to update the hidden states of a GRU network than to update the hidden states of an LSTM
network [16].

The short-term forecasting of electricity generation is crucial in planning, policy execu-
tion, safety assessment, and maintenance. However, because of the influences of weather;
holidays; and unexpected factors, especially the integration of distributed new energy
sources into the grid, power generation is considerably volatile, which makes it difficult
to predict accurately. Deep learning can be used to formulate excellent prediction models.
The purpose of this study is to develop a prediction trend model for electricity demand
in Taiwan using the data of Taiwan’s monthly electricity generation from 1991 to 2020. In
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order to improve the accuracy of the prediction, GRU is used as the prediction model, and
the results show that the proposed method is superior to other prediction models.

2. Literature Review

Time series have long been used in forecasting case studies. In the field of wind power
generation, ARIMA has been successfully used to predict wind speed and wind direction.
In a case study, historical wind speed and wind direction data were analyzed to develop
a statistical model for predicting the future wind speed and direction [17]. Statistical
models are insufficiently stable; however, their stability can be increased through simple
data transformations and corrections, such as differencing, autoregression, and moving
average, to meet modeling requirements [18]. The ETS model is characterized by a simple
design, simple operation, low cost, high applicability, and high performance [19]. In ETS,
predictions are performed by considering the weighted average of past observations [20].
ETS represents the error, trend, and seasonal components of a time series [20]. Researchers
have used HWETS to obtain short-term demand forecasts when data exhibit trends and
seasonal patterns [21].

Previous studies have developed SVR-based models to achieve wind power prediction
with low bias and high accuracy [14]. The principle of SVR is similar to that of support
vector machine, which is another regression algorithm [22]. SVR has performed excel-
lently in various applications [23], and WOASVR has been successfully used for short-term
power load forecasting. The efficiency of an SVR model can be increased by optimizing
its key parameters and kernel functions. The WOA, which is a novel population intelli-
gence algorithm, is widely used to optimize various prediction models. Due to its unique
spiral update operation, it has stronger global search capability than do traditional AI
algorithms [12]. Therefore, WOASVR is used for accurately solving problems that cannot
be effectively solved using traditional AI algorithms [24]. Traditional AI-based prediction
models are increasingly incapable of processing the big data sets seen in many applications.

Deep learning models are better suited to handling large and complex data sets
than are traditional machine learning models [24]. In recent years, many deep learning
methods have been used in wind power prediction [25]. According to the literature, LSTM
networks can achieve high performance in time-series analysis and can effectively utilize
the information stored in time-series data [26]. An LSTM network comprises three gates: a
forget gate, an input gate, and an output gate. These gates can selectively forget, update,
and output information in the cell state, respectively. The aforementioned gates enable
the flexible processing of long- and short-term information in the cell state, which is the
key to avoiding gradient disappearance and gradient explosion [11]. GRU networks can
handle uncertainties in wind speed to output accurate wind speed predictions. Hence,
they can be used to ensure that wind power generation is reliable over the short term [13].
When compared with a LSTM network, a GRU network has simpler structure and fewer
training parameters, and it requires shorter training time [27]. In a previous study, a GRU
model exhibited high accuracy and required a shorter training time for the prediction of
solar power generation capacity [28]. Neural networks can be used to perform sequential
prediction [13]. The paper is divided into another five sections. Section 2 introduces the
literature review. In Section 3, we present the details of methodology used in this study,
including a brief introduction to the theory and algorithms for ETS, ARIMA, HWETS,
SVR, WOASVR, LSTM, and GRU. Sections 4 and 5 respectively explain how the GRU
network can be used for the regression problems and present the experimental results of a
forecasting application. Section 6 concludes and makes some summarizing remarks.

3. Methods

We could find the methods related symbols and its nomenclature in Table 1.
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Table 1. Nomenclature.

Models Variables Definition

ARIMA

ϕi denotes the parameters of the autoregressive part
θi parameters of the MA part of the model
Li denotes the lag operator
εt denotes the error terms

ETS
St−1 linear exponential smoothing value in the period

a smoothing coefficient

SVR

xi input vector
yi target value
ϕ nonlinear mapping function
b bias term
Lε insensitive loss function
ω weight vector

LSTM

ht−1 output of the LSTM cell at time t − 1
c̃t value of the memory cell at time t
xt input data
Wc weight matrix
ft forget gate
σ sigmoid function
it input gate
ot output gate
bc bias

GRU
rt reset gate
zt update gate
h̃t current input

3.1. Statistical Method
3.1.1. Arima Model

The ARIMA model was developed in 1976 by Box and Jenkins [29] and is also known
as the Box–Jenkins model. This model can process linear sequences and has been applied in
many fields. The ARIMA was divided into three parts, a combination of the autoregression
AR(p), moving average MA(q), and differencing degree d [30]. The formula of the ARIMA
is as follows:

yt = ∅1yt−1 +∅1yt−2 + . . . +∅pyt−p + θ1εt−1 + θ2εt−2 + . . . θqεq−1. (1)

In Equation (1), yt represents observation value at tth time, εt represents the noise
and is Gaussian distributed. ∅i(i = 1, 2, . . . , p) is an autoregressive (AR) coefficient, and
θj(j = 1, 2, . . . , q) is the moving average (MA) coefficient. The integers p and q are referred
as model orders. In summary, the ARIMA model is denoted as ARIMA (p, d, q). One of the
most crucial parts in ARIMA modeling is to identify the suitable order (p, q) of the model.

3.1.2. ETS Model

ETS, which was developed in 1961 by Brown and Meyer [31], is a data-averaging
method in which three factors are considered: the error, trend, and season. Brown believes
that the time series is stationary or regular, and the recent historical trend will continue
to affect the future in some degree, so he gives a greater weight to the historical data
that are close to the present. This method is used for continually revising a forecast
using updated data. In ETS, exponentially decreasing weights are assigned for older
observations. ETS stands for error, trend, and seasonality components. Furthermore, by
taking the error component (may be multiplicative (M) or additive (A)) into consideration,
Hyndman et al. introduced 2 variants for each of the 15 exponential smoothing models
by using a state-space approach [32]. Thus, a total of 30 different models are produced
from the innovation state space, which is denoted using a triplet (E, T, S), and the family
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of models is named ETS. The general model for all these models involves a state vector
xt = (lt, bt, st, st−1, . . . , st−m+1)

′
, and the state space equations have the following form:

yt = w(xt−1) + r(xt−1)εt (2)

xt = f (xt−1) + g(xt−1)εt (3)

where εt is a Gaussian white noise process with mean zero and variance σ2 and µt = w(xt−1).
The model with additive error has r(xt−1) = 1, so that yt = µt + εt. The model with
multiplicative errors has r(xt−1) = µt, so that yt = µt(1 + εt). Thus, εt = (yt − µt)/µt is a
relative error for the multiplicative model, and any value of r(xt−1) will lead to identical
point forecast for yt [33].

3.1.3. Holt–Winters ETS

Holt and Winters extended the ETS model to capture the seasonality in a series [34].
Data patterns can be divided into four types, namely trend patterns, seasonal patterns,
cyclic patterns, and irregular patterns [35]. If stationary and nonstationary data do not
contain seasonal patterns, forecasting can be performed using the moving average method,
a single ETS method, and multiple ETS methods. If data contain seasonal patterns, the
aforementioned methods produce low-accuracy forecasts. To minimize errors in forecasting
results in the aforementioned scenario, an appropriate method for seasonal data pattern
prediction must be used. HWETS is an appropriate method for predicting seasonal patterns
in data. This method is applicable to nonstationary series with linear trends and periodic
fluctuations. In HWETS, ETS is used to allow model parameters to adapt continuously to
changes in nonstationary data series for short-term forecasts of future trends to be obtained.
The Winters period term (also called the seasonal term) based on the Holt model, which
can be used to handle fluctuations in monthly data (period 12), quarterly data (period 4),
weekly data (period 7), and time series with other fixed periods of fluctuating behavior, is
incorporated into HWETS.

3.2. Machine Learning
3.2.1. Support Vector Regression

SVR was proposed by Vapnik et al. in 1997 [36]. This algorithm attempts to minimize
the distance from all data points to the regression line by projecting the data points onto
a hyperplane. The SVR algorithm is described as follows. For a set of data points {xi, yi},
i = 1, . . . , N, where xi ∈ Rn is the input vector with N dimensions, yi ∈ R is the target value,
and N is the total number of data patterns, the SVR algorithm maps the original input
data x into a higher-dimensional feature space Rh by using a nonlinear mapping function
( ϕ() : Rn → Rh ). Thus, the SVR algorithm is expressed as follows:

f (x) = ωT ϕ(x) + b. (4)

In Equation (4), ω represents the weight vector and b is a bias. The coefficients ω and
b are estimated by minimizing the regularized risk function R as follows:

R =
1
2
‖ω‖2 + C ∑N

i=1 Lε(yi − f (xi), xi) (5)

where C is the regularized constant. The term ε represents the ε zone, and Lε is the ε-
insensitive loss function. The function Lε is expressed as follows:

Lε(y− f (x), x) =
{

0, |y− f (x)| ≤ ε

|y− f (x)| − ε, otherwise
(6)
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where ξi and ξ∗i are slack variables that quantify how far the data are above or below the ε
tube, respectively. The training data that lie outside the ε-insensitive tube can be obtained
using the following equation:

|y− f (x)| − ε = ξi, points above the tube

|y− f (x)| − ε = ξ∗i , points below the tube.
(7)

By substituting Equations (6) and (7) into Equation (5), Equation (5) can be expressed in
the form presented in Equation (8) and is subject to the constraints expressed in Equation (9):

R =
1
2
‖ω‖2 + C ∑N

i=1(ξi + ξ∗i ) (8)

y−
(
ωT ϕ(xi) + b

)
≤ ε + ξi(

ωT ϕ(xi) + b
)
− yi ≤ ε + ξ∗i

ξi + ξ∗i ≥ 0; i = 1, 2, . . . , N.

(9)

The parameters of f (x) can be determined using the Lagrange function, as presented in
Equation (8). In this equation, a∗i and ai are Lagrange multipliers, and K(xi, x) is the kernel
function, which is defined as the dot product of ϕ(xi)

T and ϕ(x).

f (x) = ωT ϕ(x) + b = ∑N
i=1(a∗i − ai)K(xi, x) + b (10)

3.2.2. WOA-Based SVR

The WOA, which was proposed by Mirrjalili and Lewis in 2016, simulates the social
behavior of a humpback whale in pursuit of its prey in the ocean [37]. In SVR modeling, the
parameter settings affect the performance of time-series forecasting. SVR model contains
three hyperparameters: regularization parameter (C), bandwidth of kernel function (σ),
and tube size of the ε-insensitive loss function (ε). Parameter values that have not been
optimized may lead to underfitting or overfitting of the model. Thus, selecting optimal
parameters is crucial when employing an SVR model to forecast a time series. Liu et al.
proposed a hybrid method for adjusting the parameters of an SVR model [38]. Yang et al.
used WOASVR to forecast teacher enrollment and teacher statistics in Taiwan [39].

3.3. Deep Learning
3.3.1. Long Short-Term Memory

Several variants of traditional neural networks have been widely used for time-series
prediction and forecasting tasks [40–42]. RNN models are used to consider dependencies
in historical data [43].

An LSTM network can add information from its input, output, and forget gates into
the memory cell state and can remove information from this state [44]. This structure grants
LSTM networks the ability to determine which cells are suppressed or stimulated according
to the previous state, current memory, and current input. LSTM was designed to overcome
the vanishing/exploding gradient problems. The procedure executed by an LSTM network
is described in the following text.

In Equation (11), xt represents the input data of an LSTM cell at time t, ht−1 denotes
the output of the LSTM cell at time t − 1, ct is the value of the memory cell at time t, and ht
is the output of the LSTM cell at time t. The formula for an LSTM network can be expressed
as follows:

(1) First, the value of the candidate memory cell c̃t is calculated using Equation (11), in
which Wc is the weight matrix and bc is the bias:

c̃t = tan h(Wc·[ht−1, xt] + bc) (11)
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(2) In Equation (12), it is the value of the input gate, σ is the sigmoid function, Wi is the
weight matrix, and bi is the bias. The input gate controls the updating of the current
input data to the state value of the memory cell:

it = σ(Wi·[ht−1, xt] + bi (12)

(3) In Equation (13), ft is the value of the forget gate, W f is the weight matrix, and b f is
the bias. The forget gate controls the updating of the historical data to the state value
of the memory cell:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(13)

(4) The value of the memory cell at time t (ct) is calculated using Equation (14), in which
ct−1 is the state value of the previous LSTM unit:

ct = ft × ct−1 + it × c̃t (14)

(5) In Equation (15), ot is the value of the output gate. Wo is the weight matrix, and bo is
the bias:

ot = σ(Wo·[ht−1, xt] + bo) (15)

(6) Finally, the output value ht is calculated using Equation (16):

ht = ot × tan h(ct) (16)

The three gates and memory cell of an LSTM unit allow it to delete, reset, and update
long-term information. Because of the sharing mechanism of the LSTM internal parameters,
the dimensions of the output can be controlled by setting the dimensions of the weight
matrix. In an LSTM unit, a long delay exists between forward and back propagation
because the internal state of the memory cell in the LSTM structure maintains a constant
data size, reducing the probability of gradient explosion and gradient vanishing.

3.3.2. Gated Recurrent Unit

A GRU network, which is a variant of an RNN (Figure 1), can help resolve the
long-term memory and gradient problems associated with backpropogation [45]. A GRU
network can achieve an equivalent effect to that achieved by an LSTM network; however,
training a GRU network is considerably easier than training an LSTM network, and the
training efficiency of a GRU network is greater than that of an LSTM network. A GRU
network contains two control gates: the reset and update gates. The calculation results
of the hidden layer’s memory unit are not retained. The update gate directly controls the
input and output, whereas the reset gate directly acts on the hidden-state gate control. The
outputs of the reset gate r and update gate z are expressed as follows:

rt = σ(Wrxt + Urht−1) (17)

zt = σ(Wzxt + Uzht−1) (18)

In a GRU model, the overlap between the current moment’s information and the
historical information depends on the calculation process of the candidate hidden layer.
The reset gate rt can obtain the output of the candidate hidden layer. When rt = 0, h̃t
includes only the current input. The output of the candidate hidden layer is expressed
as follows:

h̃t = tan h(Wxt + rtUht−1) (19)

When outputting the information of the hidden layer’s memory unit, the GRU model
must control the percentage of information saved in the previous moment in the hidden
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layer and obtain the output by adding the information of the candidate hidden layer h̃t.
The output of the memory unit in the hidden layer is calculated as follows:

ht = zt � ht−1 + (1− zt)� h̃t (20)
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Figure 1. The architecture of a gated recurrent unit (GRU).

The output zt of the update gate affects the quantity of information that is calculated
in the hidden layer at the current moment and retained by the hidden layer’s output ht.
When zt is close to 0, the information in the hidden layer can be regarded as abandoned
information. When zt is close to 1, the information in the hidden layer can be directly
copied to the current moment. This property of the update gate allows a GRU model to
control the reliance of time sequence information on the step length and achieve the same
learning capacity as an LSTM model for a time sequence.

3.4. Proposed Method

To construct a power generation prediction model applicable to Taiwan, data on the
production of coal power, oil power, liquefied natural gas (LNG) power, conventional
hydropower, solar photovoltaic power, wind power, pumped hydropower, and nuclear
power in Taiwan were used as input data. Cleansing was required to detect abnormal data
into the clear abnormal data for normalization and for splitting the training set and testing
set into GRU neural network hyperparameters, which led how the network functioned
and further determined its accuracy and validity. GRU hyperparameters must be adjusted
appropriately to use GRU networks successfully in different domains. These hyperparam-
eters include the number of hidden layers, number of neurons, learning rate, activation
function, batch size, epoch, and loss function. In this study, the GRU hyperparameters were
adjusted manually by the experts depending on how the hyperparameter values affected
model performance. A learning rate of 0.0001 was adopted in this study. Rectified linear
units (ReLUs) were used in all the activation functions because in addition to the simple
calculation process, ReLUs can perform gradient descent and reverse transfer efficiently,
thereby avoiding problems with exploding and vanishing gradients. The hyperparame-
ters were adjusted to optimal values to achieve superior prediction results. The complete
flowchart of power generation forecasting is displayed in Figure 2.

3.5. Performance Criteria

The performance of the developed prediction model was evaluated in terms of the
root mean square error (RMSE), mean absolute percentage error (MAPE), and coefficient of
determination (R2), which are expressed in Equations (21)–(23), respectively:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − fi)
2 (21)
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MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − fi
yi

∣∣∣∣× 100% (22)

R2 =

 ∑n
i=1(ηio − ηo)(ηiM − ηM)√

∑n
i=1(ηio − ηo)

2 ∑n
i=1(ηiM − ηM)2

2

(23)

where ηio is the observed power generation in the ith time step, ηiM is the simulated
power generation in the ith time step, n is the number of time steps, ηo is the mean of the
observational values for power generation, and ηM is the mean of the simulated values for
power generation.
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4. Results
4.1. Data Sets

Data on Taiwan’s monthly electricity generation from 1991 to 2020 were obtained
from the Energy Bureau of the Ministry of Economic Affairs in Taiwan. These data were
divided into two subsets: the training set, which comprised monthly data from 1991 to
2016, and the testing set, which comprised monthly data from 2017 to 2020. The main
types of power generation in Taiwan are thermal power (coal, oil, and LNG), renewable
power (conventional hydropower, solar photovoltaic, and wind), pumped hydropower,
and nuclear power (Table 2).

Table 2. Electricity generation statistics for eight types of power generation in Taiwan from 1991
to 2020.

Data Set SD (TWh) Min (TWh) Max (TWh) Mean (TWh) COV (%)

Coal-Fired 7.23 35.19 78.32 55.11 0.13
Oil-Fired 4.44 8.24 24.29 8.24 0.53

LNG-Fired 18.11 7.53 72.87 36.72 0.49
Conventional Hydro 1.56 1.44 10.56 3.57 0.43

Solar Photovoltaic 0.054 0 0.31 0.024 2.24
Wind 0.35 0 1.4 0.38 0.93

Pumped Hydro 0.35 2.24 3.74 2.83 0.12
Nuclear 5.59 10.83 39.24 31.1 0.17

SD, standard deviation; COV, coefficient of variation.

4.2. Energy Mix in Taiwan

In 2021, 67.7%, 5.6%, and 21.6% of the power generated in Taiwan were from fossil
fuel, nuclear, and renewable sources, respectively (Figure 3). The share of renewables in
Taiwan’s energy mix has increased over time due to greater environmental consciousness
among regulators and members of the public. However, the outputs of renewable power
systems are unpredictable because they are highly dependent on weather. Therefore, the
accurate prediction of the output of renewable energy systems is a challenge that must be
overcome for renewable energy to be a viable part of the energy mix.
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4.3. Parameter Settings

SVR has three hyperparameters: the penalty constant (C), insensitive loss function
(ε), and bandwidth of the sum kernel function (σ). These parameters considerably affect
the accuracy of SVR prediction, and poorly selected parameters result in overfitting or
underfitting. The SVR model adopted in this study uses grid search (GS) to determine
the best hyperparameters. GRID SVR adds the hyperparameters [46] in an exponential
manner. In this study, the search parameters were set as follows: C = (20~210), ε = (2−8–21),
and σ = (2−8–21). Table 3 lists the training results obtained using the SVR and WOASVR
models, including the hyperparameters selected for energy generation prediction. The
results indicate that the WOA achieved superior hyperparametric optimization to the
GS function.

Table 3. Training results obtained with support vector regression (SVR) and whale-optimization-
algorithm-based SVR (WOASVR) under different parameter settings.

SVR WOASVR

Data Set C ε σ C ε σ

Coal-Fired 16 0.0312 0.007812 36.10 0.704 0.003
Oil-Fired 8 0.0009 0.007812 17.43 0.033 0.003

LNG-Fired 32 0.0156 0.003906 282.3 0.003 0.003
Conventional Hydro 16 0.0009 0.00195 4.765 0.007 0.007

Solar Photovoltaic 4 0.0009 0.01562 1.007 0.003 0.003
Wind 1 0.0009 0.0625 198.6 0.146 0.003

Pumped Hydro 512 0.062 0.00097 1.209 0.057 0.004
Nuclear 4 0.062 0.01562 58.67 0.085 0.003

4.4. Analysis of the Forecasting Results

Many studies have conducted energy forecasting, including power load forecasting
for an energy management system [47], wind power supply forecasting for the Northeast
Power Grid in Brazil [48], and renewable power demand forecasting for a smart grid and
smart buildings [49].

In this study, a GRU-based deep learning approach was developed to construct an
accurate power-generation forecasting model. The power generation data for the first
48 months of the forecast were used to forecast the power-generation capacity. The de-
veloped deep learning approach is relatively unaffected by weather or other factors. The
prediction performance of the developed GRU model was compared with that of three
statistical models (the ARIMA, ETS, and HWETS models), two machine learning models
(the SVR and WOASVR models), and one deep learning model (the LSTM model). MAPE
and RMSE were used as criteria for examining model performance. The average values
of these parameters for the aforementioned models are presented in Table 4. The HWETS,
SVR, WOASVR, and LSTM models by 9.15%, 5.43%, 4.07%, 20.93%, 5.2%, and 1.39% RMSE
values were lower than those of ARIMA, ETS, HWETS, SVR, WOASVR, and LSTM models
by 1.2%, 3.5%, 5.1%, 11.7%, and 1.9%. The aforementioned results indicate the considerably
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greater predictive accuracy of the WOASVR model relative to the ARIMA, ETS, HWETS,
SVR, WOASVR, and LSTM models (Figure 4).

Figure 5 shows the actual and predicted power generation values generated by ARIMA,
ETS, HWETS, SVR, WOASVR, LSTM, and GRU models in the prediction process. The
figure shows that the prediction results of the GRU model and the other statistical models
are more concentrated. The GRU model shows the best prediction results, and its scatter
distribution is the closest to the regression line.

Table 4. Power generation predictions obtained using different methods for the period from 1 January
2018, to 31 December 2020.

Electricity
Generation Criteria ARIMA ETS HWETSTS SVR WOA

SVR LSTM GRU

Thermal
Power

Coal-Fired
MAPE (%) 8.44 12.54 8.61 11.35 8.1 7.39 7.04

RMSE 6.36 8.72 6.63 8.6 5.59 5.51 5.24

LNG-Fired
MAPE (%) 7.22 8.58 7.47 9.04 7.28 7.94 6.69

RMSE 5.5 6.19 5.83 6.69 5.59 6 4.98

Oil-Fired
MAPE (%) 26.62 27.41 31.01 59.46 29.68 26.6 26.26

RMSE 1.66 1.72 1.83 2.49 1.66 1.7 1.64

Renewable
Energy

Conventional
Hydro

MAPE (%) 30.39 33.62 28.38 33.49 25.63 24.86 24.26
RMSE 1.51 1.76 1.74 1.72 1.52 1.74 1.5

Solar
Photovoltaic

MAPE (%) 50.41 21.7 17.53 52.87 50.57 21.36 17.4
RMSE 0.12 0.041 0.03 0.12 0.11 0.44 0.02

Wind
MAPE (%) 60.39 50.94 36.12 69.9 37.28 35.68 31.98

RMSE 0.45 0.32 0.25 0.33 0.27 0.26 0.18

Nuclear
MAPE (%) 13.32 14.27 29.44 55.37 17.77 13.60 13.25

RMSE 3.54 3.71 8.71 15.55 5.27 3.39 3.37

Pumped Hydro MAPE (%) 6.35 7.4 7.02 8.92 6.31 6.68 6.13
RMSE 0.22 0.25 0.24 0.27 0.21 0.22 0.21

Average MAPE (%) 25.77 22.05 20.69 37.55 21.82 18.01 16.62
RMSE 2.37 2.83 3.15 4.47 2.52 2.4 2.14

MAPE, mean absolute percentage error; RMSE, root mean square error; boldface, the optimal values in each
row. ARIMA, autoregressive composite moving average; ETS, exponential smoothing; HWETS, holt winters
exponential smoothing; SVR, which supports vector regression; WOASVR, whale optimization algorithm-based
support vector regression; LSTMs, long short-term memory; GRU, gated recurrent unit.
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Figure 4. Scatter plots of the predictions obtained for coal energy generation (48−month forecasts) for
the period from 1 January 2017, to 31 December 2020, when different methods were used: (a) autore-
gressive composite moving average (ARIMA), (b) exponential smoothing (ETS), (c) Holt−Winters
ETS (HWETS), (d) SVR, (e) WOASVR, (f) long short-term memory (LSTM), and (g) GRU.
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Figure 5. Predictions obtained using the seven models for (a) the generation of coal power, (b) liq-
uefied natural gas (LNG) power, (c) oil power, (d) conventional hydropower, (e) solar photovoltaic
power, (f) wind power, (g) nuclear power, and (h) pumped hydropower.

5. Discussion
5.1. ETS, ARIMA, and HWETS Models

Large historical data sets are required to determine the optimal parameter combination
for the ARIMA model. HWETS is used to model three aspects of time series: average, trend,
and seasonality. The HWETS model predicts current or future values according to the
comprehensive effects of these three aspects; thus, this model is suitable for nonstationary
series containing linear trends and periodic fluctuation. However, the HWETS model is
computationally expensive. In general, nonlinear problems cannot be easily solved using
statistical models such as ETS, HWETS, and ARIMA. As displayed in Figures 5 and 6, the
HWETS models consistently had the highest error among the compared models. Figure 5e
shows that the prediction accuracy of ARIMA is quite low. This may be attributed to
the fact that the historical solar photovoltaic power generation is quite small; however,
due to the impact of Taiwan’s energy policy, the solar power generation in 2020 increased
significantly, resulting in a significant inaccuracy in the prediction of ARIMA model.

5.2. Comparison between SVR and WOASVR Models

Hybrid machine learning methods tend to be more accurate than any single machine
learning method. For example, in the WOASVR algorithm, particle swarm optimization
(PSO) is used to overcome the drawbacks of the SVR. PSO, which was proposed in 1995
by Eberhart and Kennedy, is a population-based optimization algorithm inspired by the
foraging behavior of bird flocking. The SVR has three hyperparameters, namely, the regular-
ization parameter (C), bandwidth of the kernel function (σ), and ε-insensitive loss function
(ε), and variations in these hyperparameters considerably affect the forecasting accuracy
of SVR. The automatic adjustment of these three hyperparameters remains a formidable
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challenge in improving the forecasting accuracy of SVR. PSO can be used to optimize the
hyperparameters of the SVR algorithm to prevent overfitting or underfitting [38]. Because
the hyperparameters are optimized in WOASVR, the WOASVR model exhibited lower
MAPE and RMSE than did the the SVR model (Figures 5 and 6). A special case can be
found in Figure 5e: the prediction of SVR and WOASVR is quite poor. The inference is
that as the hyperparameters are not adjusted to the best and are affected by the trend of
historical data, the model training is poor. Therefore, it is impossible to simulate the curve
when the power generation increases.
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Figure 6. Scatter plots of power generation forecasts (48-month forecasts) for the period from
1 January 2017 to 31 December 2020, when different methods were used: forecasts of (a) coal power,
(b) LNG power, (c) oil power, (d) conventional hydropower, (e) solar photovoltaic power, (f) wind
power, (g) nuclear power, and (h) pumped hydropower.

5.3. Comparison between the LSTM and GRU Models

Since 2015, deep learning has gained substantial popularity in the machine learning
community because it provides a general framework for training deep neural networks with
many hidden layers [50]. Deep learning has been widely used to solve several types of time-
series forecasting problems. Of these models, RNNs have received considerable attention
because they have short-term memory on account of recurrent feedback connections; thus,
RNN is suitable for modeling time-series data [51,52].

An LSTM network, which is a time-recurrent neural network, is another suitable
deep learning network for solving time-series problems. An LSTM network has long-term
memory and overcomes most of the drawbacks of RNNs; however, in practice, LSTM
networks require a long training time. The total number of gates in a GRU network is half
that in an LSTM network; thus, GRU networks are simpler variants of LSTM networks and
are widely used in various applications. A GRU network can be almost as accurate as an
LSTM network but with a shorter training time. Figure 6 indicates that in power generation
prediction, the error of the developed GRU model was lower than that of the LSTM model.
The error of the GRU model was marginally higher than that of the LSTM model only for
the predictions of the pumped hydropower generation. Table 4 shows that the prediction
results of GRU in thermal power are not significantly different from those of other models,
but the prediction of renewable energy is quite prominent. As the statistical model infers
the prediction value from historical data to a great extent, it is difficult to make an effective
prediction of nonlinear answers. The deep learning model showed a stronger prediction
ability and a better extraction ability of abstract features through neuron and activation
function. The research results also showed that the average MAPE of GRU was lower than
that of other models.

5.4. Effect of CO2 Emissions

Countries have increasingly recognized the urgent need for emission reductions in
the fight against climate change, especially in the wake of 2015 Paris Agreement and 2005
Kyoto Protocol, and technology has become a means toward that end [53].

Mechanisms have been established across the globe to reduce CO2 emissions in the
power sector at the supply side (e.g., increasing the share of renewable energy and nuclear
energy in the energy mix and implementing carbon capture and storage technologies) and
demand side (e.g., promoting electricity-saving measures and the use of efficient appli-
ances). For example, authorities in the United States have formulated policies mandating
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(i) the abolition of subsidies for traditional electricity technologies, (ii) the accurate pric-
ing of electricity by usage, (iii) the introduction of nationwide feed-in-tariff scheme, and
(iv) the creation of a national fund for public awareness. The authors of [54,55] found that
CO2 emissions in Europe can be decreased to appropriate levels by using technologies
running on renewable energy, making wind the dominant power source, and adopting
high-efficiency measures. The share of solar energy in the global energy supply mix might
exceed 10% by 2050; however, this share of renewable energy supply would provide little
help in achieving the required reduction (i.e., up to 75%) in the carbon intensity of the
power generation worldwide [56]. The intermittent nature of renewable resources adds to
the difficulty of using them as the sole sources for electricity supply in the world.

According to the National Electricity Supply and Demand Report, 98% of Taiwan’s en-
ergy is imported. Energy prices and supply are volatile because they are deeply intertwined
with geopolitics. In addition, Taiwan’s power system is connected to an independent power
grid and cannot receive foreign assistance should power supply be insufficient, which
would lead to social unrest, national insecurity, and economic disruption. Therefore, Tai-
wan’s energy mix must be diversified for its energy security to be ensured. In 2016, the
Taiwanese government amended the Electricity Act, established an energy transformation
policy, and stipulated that the operation of all nuclear power generation equipment must
cease by 2025. Based on this, the overall goal of Taiwan’s energy transformation has been
zeroed in and practically reviewed. The current policy is compliant with the provisions of
the referendum law. Therefore, under the conditions of ensuring power supply stability and
implementing relevant supporting measures, the goal of national energy transformation
can be achieved in Taiwan.

6. Conclusions

Energy is scarce. Thus, it is mandatory that societies reduce energy wastage and ensure
stable power supply to avoid the lack of power rationing that affects industrial economic
development and people’s livelihoods. To avoid major losses, long-term power generation
supply planning, should try to grasp the future of the annual power generation demand.
Renewables will occupy a much larger share in Taiwan’s energy mix, but renewable power
generation is unpredictable due to its susceptibility to changes in weather. Thus, this
study developed a GRU model that accurately predicts the level of power generation from
renewables in Taiwan. In evaluation experiments, this model outperformed three statistical
models (the ARIMA, ETS, and HWETS models), two machine learning models (the SVR
and WOASVR models), and one deep learning model (the LSTM model) with respect
to accuracy.
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