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Abstract: In this paper, we used the single-photon emission computerized tomography (SPECT)
imaging technique to visualize the deficiency of dopamine-generated patterns inside the brain. These
patterns are used to establish a patient’s disease progression, which helps distinguish the patients
into different categories. Furthermore, we used a convolutional neural network (CNN) model to
classify the patients based on the dopamine level inside the brain. The dataset used throughout this
paper is the Parkinson’s progressive markers initiative (PPMI) dataset. The collected dataset was pre-
processed and data amplification was performed to balance the imbalanced dataset. A CNN-based
neural network was defined to classify input SPECT images into four categories. The motivation
behind the proposed model is to reduce the number of resources consumed while maintaining the
performance of the classification model. This will help the healthcare ecosystem run the classification
model on mobile devices. The proposed model contains 14 layers with input layers, convolutional
layers, max-pool layers, flatten layers, and dense layers with different dimensions. The dense layer
classifies the patients into four different categories, including PSD, healthy control, scans without
evidence of dopaminergic deficit (SWEDD), and GenReg PSD from the entire SPECT imaging dataset,
which is used to establish the disease progression of different patients using SPECT images. The
proposed model is trained with a large dataset with 58,692 images for training and 11,738 images for
validation, and 7826 for testing. The proposed model outperforms the classification models from the
surveyed papers. The proposed model’s accuracy is 0.889, recall is 0.9012, the precision is 0.9104, and
the F1-score is 0.9057.

Keywords: Parkinson’s disease; SPECT; CNN; classification; dopaminergic neurons; regions of
interest (ROI)

MSC: 00A05

1. Introduction

Parkinson’s disease (PSD) is a neurological degeneration of the internal nervous
system in which the nerve cells are gradually destroyed with time. PSD patients can suffer
from various motor and non-motor-based symptoms such as instability in walking and
balancing and movement-related disabilities such as tremor, rigidity, postural impairments,
and bradykinesia [1]. In the human brain, dopamine is a significant neurotransmitter
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essential for many body processes, including coordination and movement. It transfers
signals from one nerve cell to another in healthy control subjects to control the movements.
PSD patients suffer from dopamine deficiency, whereby their brains cannot transfer signals
to other body parts. Thus, PSD patients suffer from abnormal activity patterns resulting in
movement-based severity and a high risk of traumatic events. [2].

Nowadays, PSD can be detected based on the patient’s symptoms. To confirm the
PSD, a doctor can examine the patient, analyze the unified Parkinson’s disease rating
scale (UPDRS), and prepare the medical diagnosis. Doctors and medical practitioners
have different viewpoints about the medical diagnosis of PSD patients due to its matching
characteristics with other diseases, such as Alzheimer’s, May–Hegglin anomaly (MHA),
and essential tremor [3]. Therefore, if an assessment is performed based on symptoms,
there is a possibility of misdiagnosis [4]. Medical imaging is one possible option to extract
and analyze the features from the neural brain [5,6]. It measures dopamine level, glucose
metabolism, deficiency of dopaminergic neurons (DNs), and other abnormalities in the
brain. In addition, medical imaging is used to observe the visual presentation of radiomic
features, which helps establish the disease progression early. Presently, various imaging
techniques are used to detect disease progression, where SPECT and positron emission
tomography (PET) detect the deficiency of metabolism, DNs, and neurochemical changes
inside the human brain [7].

In this imaging modality, a radioactive tracer is inserted into a patient’s blood vessel
and traced using SPECT imaging. It mainly analyzes the nerve cells which transfer the
dopamine in the brain. In this paper, SPECT is used to detect the deficiency of dopamine
transporter(DT) in the human brain [8]. DT arbitrates the circulation of the neurochemical
transmitter dopamine among nerve cells. It interrupts the communication process among
nerve cells and the transporter of the brain. SPECT is used to evaluate the DT level to
establish the patient’s disease progression. The health of the nerve cells can be checked
using the availability of DT chemicals inside the brain. This chemical transfers a signal to
control coordination and body movements. The deficiency of dopamine chemical causes
issues for PSD patients, such as movement-based activities. Thus, the SPECT images are
used to visualize the area inside the brain of PSD patients. This visualization considers the
presence of dopamine levels and generates a pattern inside the brain. Thus, this pattern and
strength of the brain determine the health of the nerve cells, which helps to identify the PSD,
healthy control, scans without evidence of dopaminergic deficit (SWEDD), and GenReg
PSD patients.

We used a deep-learning-based CNN model to classify the patients based on the
presence of dopamine levels inside the brain. Initially, SPECT images were obtained from
the Parkinson’s progression markers initiative (PPMI) dataset, we pre-processed the images
with data normalization techniques, and scaled them in the range of 0 to 1. Moreover,
the pre-processed data were fed into the CNN model’s input layer, consisting of 14 layers
with several dimensions and kernel sizes. The dense layer classifies the patients into
four categories—PSD, healthy control, SWEDD, and GenReg PSD. Next, we estimated the
model’s performance with different performance evaluation matrices such as precision,
recall, accuracy, and F1-score.

1.1. Motivation

The authors have used diagnostic tests to identify the PSD [9]. It is not straightforward
to locate PSD from the diagnostic test; there is a chance of misdiagnosis. For accurate
prediction, the authors in [8,10] used various machine learning (ML) algorithms such as
linear regression, support vector machine (SVM), random forest, and decision tree classifier
for the classification of PSD patients, which overcomes the issue of a diagnostic test. ML
algorithms extract the features manually to predict the diagnosis. The deep learning (DL)
technique helps differentiate PSD, healthy control, SWEDD, and GenReg PSD patients to
improve the model’s performance. Motivated by this, in this paper, we present a CNN-
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based DL algorithm using the SPECT medical imaging technique to monitor the deficiency
of DT and measure the patient’s disease progression.

1.2. Research Contributions

The research contributions of this scheme are the following:

• We proposed a CNN-based model to classify patients with Parkinson’s disease accu-
rately. The CNN-based model helps us to infer the results within a few seconds and
the training of this model is performed using the SPECT imaging dataset;

• The proposed model monitors the deficiency of DT, and with the help of SPECT
images, it classifies the input under the four categories of PSD, Control, SWEDD,
and GenReg PSD. We have made this model smaller in size, helping the organization
overcome the scarcity of computational power in remote areas. As the model is smaller
in size, it can be deployed within a smartphone as well. To maintain the performance
intake while decreasing the model size in terms of parameters, we compared the
accuracy, precision, recall, and F1-score with the state-of-the-art models.

1.3. Organization

Figure 1 presents the organization which presents the entire structure of the paper.
The rest of the paper is structured as follows. Related work is presented in Section 2.
Section 3 describes the system model and problem formulation. Section 4 presents the
proposed scheme. Performance evaluation is outlined in Section 5. Section 6 concludes
the paper.

Figure 1. Organization.

2. Related Work

This section presents the researchers’ state-of-the-art works and gives a tabular com-
parison with the proposed schemes. Nowadays, neuroimaging modalities provide spatial
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image resolution techniques to accurately predict neurodegenerative diseases such as PSD
and Alzheimer’s disease. There are various imaging modalities such as magnetic reso-
nance imaging (MRI), functional magnetic resonance imaging (fMRI), positron emission
tomography (PET), and SPECT. Their different roles are to extract ROI features such as
radiomic features, DT, glucose metabolism, and accurate diagnosis of a disease. Manually,
doctors can assess the patient using a diagnostic and clinical test, which takes more time to
identify the patients with PSD. It also does not provide a promising diagnosis of a patient.
To resolve this issue, many authors have used ML techniques for patient classification and
to help measure a patient’s disease progression based on ROI [11]. The authors in [12] used
ML techniques for early detection of PSD using SPECT DaTScan imagery. In this scheme,
the CNN-based model is trained to predict the early diagnosis of a patient. The model
classifies the PSD and non-PSD patients correctly. They used a VGG16-based transfer
learning scheme to build the model. The model provides an accurate diagnosis of a patient
at an early stage of the disease.

Then, Mohammed et al. [13] proposed a DL model for the correct diagnosis of PSD
using SPECT images. They used CNN-based architecture with a 10-fold cross-validation
process. The model correctly classifies the healthy control and PSD patient, but they do
not specify any biological parameters to extract the features from SPECT images. This
problem was resolved by the authors in [14]. They designed an automatic classification
algorithm to predict the DT from the SPECT images and identify the risk level of a patient.
They proposed a DL-based model to be trained as robust concerning image characteristics
without loss of diagnostic accuracy. They used a transfer learning scheme to build their
model to predict the patient’s correct diagnosis. Then, Ortiz et al. [15] designed the PSD de-
tection scheme to extract the isosurfaces-based features using CNN. They used LeNet and
AlexNet-based transfer learning models to reduce the complexity of the input. The model
extracts the spread area from SPECT images to produce the disease progression level of
the patient.

Later, Adams et al. [16] presented the prediction of motor and non-motor symptoms
using DL technique. In this scheme, the authors trained the CNN-based model to predict
the UPDRS-III scores year-wise. In this, longitudinal SPECT data are used to lower the
average difference of the prediction. The model trains and tests with a ten-fold cross-
validation method, but the authors did not provide any result-oriented parameters such as
accuracy, F1-score, precision, and recall. To solve the issues mentioned above, in this paper,
the proposed model extracts the deficiency of DT from the SPECT images. This deficiency
generates the disease patterns used to identify the progression level of disease at every
stage of PSD. This level helps to identify the critical level of the patient to take preventive
measures to overcome the severity of the disease. We also design a CNN-based scheme to
differentiate the healthy control, PSD, SWEDD, and GenReg PSD-based DT level patterns.
The proposed CNN model is trained with 14 layers, where each layer uses various types of
kernel size and dimension. Each layer output feeds as an input of the next layer. The model
outperforms with evaluation parameters such as precision, recall, and accuracy. Table 1
presents the comparative analysis of the proposed model with the state-of-the-art works.
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Table 1. State-of-art-work presented with consideration of SPECT images.

Author Year Objective Algorithm Performance Pros Cons

Wenzel et al.
[14] 2019

Robust classification
algorithm to identify

the dopamine
transporter using

SPECT images

CNN and
ImageNet-based
transfer learning

model,
Semi-quantitive

SBR analysis

645 subjects
trained, Accuracy

= 97%

Accurate
diagnosis of PSD
patient with DT

analysis

Trained model
with few
samples

Ortiz et al. [15] 2019

PSD detection using
isosurface-based

feature extraction from
SPECT images to

classify the normal
control and PSD

patients

CNN
269 DaTscan
images for

training, Accuracy
= 95%

Low complexity
of the input data

Increases overall
system

complexity

Magesh et al.
[12] 2020

ML-based early
detection of PSD using

DaTSCAN imagery

CNN and
VGG16-based

transfer learning
scheme

642 DaTSCAN
SPECT images for
training, Accuracy

= 95.2%

Quick diagnosis
for PSD

Lack of
conclusive

diagnostic test
for PSD.

Mohammed
et al. [13] 2020

DL model for accurate
diagnosis of PSD using

SPECT images
CNN

2723 SPECT
images used for

training, Accuracy
= 99.34%

Reduces the
model

complexity

Not specified
any fluid related
disease pattern

such as
dopamine

transporter and
glucose

metabolism.

Adams et al.
[16] 2021

DL algorithm for
accurate prediction of

motor-based
symptoms using
SPECT images

CNN model

252 subjects DAT
SPECT images are
used for training,

UPDRS Score = 7.6

Enhanced
prediction of

UPDRS_III score
with

longitudinal
data

Not given any
result-oriented

data

Proposed 2022

Proposed a CNN
based classification

scheme to monitor the
DT level inside the
brain using SPECT

imaging dataset

CNN based
scheme

58,692 images for
training and 11,738

images for
validation and
7826 images for

testing, Accuracy
= 88%

Accurate
diagnosis of

patient,
measures the

disease
progression to

identify the risk
level of patient

with high
accuracy

-

3. System Model and Problem Formulation

This section presents the system model and problem formulation of the scheme with
several mathematical equations.

Figure 2 shows the proposed system model. The SPECT imaging data were obtained
from the PPMI dataset [17], which contains the information on size, imaging modal-
ity, and settings in three-dimensional form. The data comprise gray scale images with
128 × 128 resolution. First, we pre-processed the data using data normalization techniques
such as min–max normalization. In the normalization process, data are scaled in the range
of 0 to 1. The dataset is composed of four forms of label—PSD, healthy control, SWEDD,
and GenReg PSD. A few labels have only a few quantities of data present in the dataset,
which creates the problem of an unbalanced dataset. To preserve the balance of the dataset,
we applied a data augmentation process to augment the images from the dataset. After the
pre-processing, the data are split into three sets of training, validation, and testing samples.
Training is used to train a model using training dataset, validation is used to check the
validity of trained model (how correctly the model is trained), and testing is used to test
the model using the testing dataset.
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Figure 2. System Model.

We train the system model using training samples with 14 layers, where each layer
is composed of varying output dimensions and kernel size. Initially, in the input layer,
each image I is mapped with a different filter size Fi which is presented as O1 = I * Fi and
generates a dimension output, Dimension (n − Fi + 1), where the dimension of images is
denoted with (n, n) and the dimension of filter is denoted with (Fi). After that, the ReLU
activation function is applied to generate the output O2. Further, we applied forward
propagation with initial random weights Wi and biases bi to each layer, which is presented
as O3 = (Wi * O2) + bi. This weights and biases computation process is running for all
layers of the proposed model. Initially, the first layer is called the input layer, with a
dimension of 128 × 128. The second layer follows the output dimension of the input
layer, where we consider a convolution 2D layer with input dimension 128 × 128 and
kernel size 3 × 3. The output dimension of layer 2 is 126 × 126, which is input for the
max pool 2D layer with kernel size 2 × 2. The output resolution of the max-pool 2D layer
is 63 × 63. This procedure is repeated for the subsequent layers elaborated in Table 2.
After the series of convolution blocks, a flatten layer is introduced, which converts the 3D
tensor array into a 1D tensor vector with a size of 256. After the flatten layer, two dense
layers with dimensions 512 and 4 with ReLU and softmax as an activation function. This
dense layer helps to select the dataset’s feature set to enhance the model’s classification
result. The last dense layer of dimension 4 is the model’s output layer, which used the
sigmoid activation function to classify the PSD, healthy control, SWEDD, and GenReg PSD
subjects from the collected dataset. Moreover, we use testing data to test the model. we
have applied backpropagation to improve the performance of the model. This process of
backpropagation is presented in terms of mathematical formulation which is as presented
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below: To improve the performance of the model, we backpropagated the model, whereby
the model tries to update the parameters in such a way that the predictions and performance
of the model are improved. To update the parameter value, we use the following equation:

np = op − (Lr ∗ Gp) (1)

Equation (1) presents the new parameter value np, where op is the old parameter
value, Lr is the learning rate and Gp is the gradient of the parameter value. At every time,
the learning rate updates and we can observe the parameter updates and the result of the
model. First, we consider the fully connected layer and obtain a derivation of weights and
bias and update the weights using the equation below:

∂Er

∂Wi
=

∂Er

∂O4
· ∂O4

∂O3
· ∂O1

∂Wi
(2)

Equation (2) presents the error Er with respect to weight Wi. Now, we compute an
error with respect to the final output, which is defined as follows:

Er = (a′v −O4)
2/2 (3)

where Er is an error, a′v is the actual output, and the predicted output is O4. Now, differenti-
ate the Er with respect to O4 which can be defined as :

∂Er

∂O4
= −(a′v − 0) (4)

Equations (3) and (4) present the error and differentiate the error with respect to
predicted output. Now, we differentiate O3 with respect to Wi, we will obtain the value O2
itself which can be presented as below:

∂O3

∂Wi
= O2 (5)

We calculate the change in output with respect to weight during back-propagation
using Equation (5). Now that we have the individual derivations, we can use the chain rule
to find the change in Er with respect to Wi, which can be described as:

∂Er

∂Wi
=

∂Er

∂O4
· ∂O4

∂O3
· ∂O3

∂Wi
(6)

Equation (6) presents the change in error with respect to weight.
We update the values in the weight matrix which can be defined as:

Wn = Wo − (Lr ∗
∂Er

∂Wi
) (7)

Equation (7) presents the new weight as a Wn, where the old weight is denoted with
Wo, and Lr denotes with the learning rate of the model.

After model training, the validation is used to check the correctness of the trained
model and the performance of the trained model is verified using the performance matrices.
After the validation process, the testing data are used to test the model and classify it into
four categories—PSD, control, SWEDD, and GENReg.
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Table 2. Input and Output size after each layer of the Model.

Layer Layer Type Input Dimension No. of Kernel Kernel Size Output Dimension

1. Input 128 × 128 - - 128 × 128 × 1

2. Convolutional 2-D 128 × 128 × 1 16 3 × 3 126 × 126 × 16

3. Max Pooling 2-D 126 × 126 × 16 16 2 × 2 63 × 63 × 16

4. Convolutional 2-D_1 63 × 63 × 16 32 3 × 3 61 × 61 × 32

5. Max Pooling 2-D_1 61 × 61 × 32 32 2 × 2 30 × 30 × 32

6. Convolutional 2-D_2 30 × 30 × 32 32 3 × 3 28 × 28 × 32

7. Max Pooling 2-D_2 28 × 28 × 32 32 2 × 2 14 × 14 × 64

8. Convolutional 2-D_3 14 × 14 × 64 64 3 × 3 12 × 12 × 64

9. Max Pooling 2-D_3 12 × 12 × 64 64 2 × 2 6 × 6 × 64

10. Convolutional 2-D_4 6 × 6 × 64 64 3 × 3 4 × 4 × 64

11. Max Pooling 2-D_4 4 × 4 × 64 64 2 × 2 2 × 2 × 64

12. Flatten 2 × 2 × 64 - - 256

13. Dense 256 - - 512

14. Dense_1 512 - - 4

4. Proposed Model

This section describes the architecture of the proposed model. It starts with the insights
of the dataset used in the proposed model. Since the data are in raw format, it is essential
to apply it to pre-process raw data. The proposed model is trained on SPECT images from
PPMI database [17]. To improve the robustness and prevent overfitting, a holdout set is
also considered during training.

4.1. Dataset Description

The SPECT images are collected from PPMI [17] which is in digital imaging and
communications in medicine (.dcm ) format. It provides other data such as gender, age,
and the number of visits. The images have 128× 128 resolution, with a nonuniform number
of slices per image. All the images matrix have a 3-D shape. The images are labeled into
four categories. They are:

* PSD: SPECT images of person suffering from PSD. The number of images for this cate-
gory is 68,164. There are 902 participants in this category, whose data are considered
for the classification process.

* Control: SPECT images of person not suffering from PSD. The number of images
for this category is 6480. There are 237 participants in this category, whose data are
considered for the classification process.

* SWEDD: Person with absence of imaging abnormality is referred as a SWEDD Parkin-
son’s patient. The number of images in this category is 3372.

* GenReg PSD: Person suffering from PSD because of their genetics. There are a number
of genetic risk factor increasing the risk to develop PSD. In this PSD, 30% of mono-
genetic form arrived from family. The molecular pattern is responsible for GenReg
PSD. The number of images in this category is 240.

There are 619 participants in the combined category of SWEDD and GenReg PSD,
whose data are considered for the classification process. The details regarding the race of
the patient, their gender, and age distribution were elaborated on in [17]. Of the data, 75%
is used for training and 15% of the data is used for validation purposes and 10% of the data
is used for testing. Nearly 58,692 images are used for training and 11,738 images are used
for validation, and 7826 images are used for testing.

4.2. Pre-Processing

In the data pre-processing step, the details of images and labels are collected from PPMI [17].
It provides the metadata in the form of a CSV file and a collection of directories containing



Mathematics 2022, 10, 2566 9 of 15

images in DCM format. The authors used a pydicom library to read the data from the file.
SPECT images have 128 × 128 resolution, with a non-uniform number of slices in a grayscale
format. The dataset consists of 4 labels, where the number of images is much smaller for
SWEDD, GenReg PSD, and Control categories. To balance the dataset, we used data aug-
mentation and pre-processing techniques. The first step in image pre-processing is to flatten
the stacked SPECT images, i.e., to convert a 3D brain cross-section image into an array of 2D
images. After the flattening of 3D images, the pixel values are normalized in the range of 0
to 1 for faster convergence. For the SWEDD, GenReg PSD, and Control categories, intensive
augmentation techniques are applied. The type of data augmentation is vertical flip, changing
brightness from the range of 0.8 to 1.3, and image rotation with the range of 0 to 40 degrees,
zoom with 0 to 0.3, and sheer range of 0 to 0.2. The data augmentation task is completed in the
online mode, the augmented input image are not stored, but during the training session, the
augmentation takes place for data amplification, and then the fine-tuning process is carried
out. The data are fed into the model through ImageDataGenerator class of the TensorFlow
library. To execute the data augmentation process, input data are segregated into a directory
named train, test, and validation. All three directories contain four sub-directories representing
every category. It reduces the inference time and complexity of the model. The algorithmic
explanation for the pre-processing is elaborated in Algorithm 1.

Algorithm 1 Structuring Data.
Input: P ∈ {SPECT images o f all categories},
L ∈ {Labels f or each image},
N ∈ {Number o f images}
Output: Px ∈ AugmentedImage, Py ∈ Label

1: procedure PROCESS_DATA(P, L)
2: Px ← ∅, ∀Px ∈ PTraining→Features
3: Py ← ∅, ∀Py ∈ PTarget
4: for α = 1, 2 . . . , N do
5: Pxα ← ∅
6: Pyα ← ∅
7: Layery ← {Number o f layers in Pα}
8: for β = 1, 2, . . . , Layery do
9: Dx ← Augment(P[α][β]) . Dx is temporary array for storing images

generated through augmentation
10: Dy ← L[α]
11: Pxα → append(Dx)
12: Pyα → append(Dy)
13: end for
14: Px → append((Pxα , S[α]))
15: end for
16: <(Px, Py) . < returns the Px, Py values
17: end procedure

Through the data augmentation process, for each input image, a maximum of 32 unique
images are generated, which helps to improve the model’s robustness towards the unseen
conditions. Through the vertical flip augmentation technique, the model becomes robust
towards the mirror image inputs, through the rotation and zooming of input images, the
robustness of the model towards the orientation of input images is kept in check. With the
help of the shearing technique, the bloatedness of the image is considered during the
training and through brightness, the spots where sudden change occurs can be inferred
by the model during the fine-tuning session. After completing out the pre-processing and
data amplification steps, the final number of images for SWEDD, GenReg, and Control
categories are as follows:

* Control: Initially, there are 6480 images for the control category after the amplification
steps, and there are nearly 58,000 images for the control category.
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* SWEDD: Initially, there are 3372 images for the SWEDD category after the amplification
steps, and there are nearly 42,000 images for the SWEDD category.

* GenReg PSD: Initially, there are 240 images for the GenReg PSD category after the
amplification steps, and there are nearly 15,000 images for the GenReg PSD category.

4.3. Model Motivation

Based on our exploration in Section 2, most pre-trained architecture such as VGG-Net,
ResNet, DenseNet, and many more are utilized as the solution for Parkinson’s disease
classification. The imagenet competition-based architecture is quite complex as it has more
than 50 layers. Due to the smaller size of the dataset, the pre-trained models tend to overfit
during training. Thus, it does not provide a significant result during the model on validation
and test dataset. This problem can be solved by using a large dataset. However, the complex
architecture takes more computational resources and time to obtain the inference from the
input. Thus, these models are not viable in the practical scenario in many places where the
organizations have financial constraints. The proposed model aims to train a large data set
with a CNN-based model which has nearly 14 layers, without compromising the results of
performance parameters. After several implementations and tuning of hyperparameters,
we applied and put forward the proposed model, helping us to achieve a huge performance
boost within the defined constraints.

4.4. PSD Classification Model

Figure 3 presents the proposed architecture. The architecture is based on the convolu-
tion block, which helps to extract features from the collection of images. The input to the
convolution layer is the tensor matrix of shape 128 × 128 × 1 (the last dimension shows
that is is a gray scale image). The first layer is a convolution layer with 3 × 3 kernel size
and 16 filters, followed by a max-pooling layer of 2 × 2 kernels with the same padding.
After that, we have a convolution block of 32 filters, each with 3 × 3 kernels, followed
by a standard max-pooling layer. Following, 2 convolution layers have 64 filters with
3 × 3 kernels and a standard max-pooling layer in each of them. We can extract the features
from an output matrix. The activation function used in all layers is ReLU. The extracted
features are shared with the dense layer, with 512 neurons with a ReLU activation function.
It helps to classify the labels from the extracted features. The last layer consists of 4 neurons
representing 4 labels for our classification problem, with softmax as an activation function.
The whole classification model consists of 230,788 parameters, and all these parameters are
trainable parameters.

Figure 3. Proposed Model.

The model is trained using Adam optimizer with categorical cross-entropy as our loss
function. The initial learning rate is 1 × 10−4. The callbacks are also added to obtain the
best weights during training and testing to prevent the model from overfitting.

5. Performance Evaluation

This section evaluates the performance of the proposed model, which is then com-
pared with different standard existing models used for the image-based dataset, such as
AlexNet [15], GoogleNet [18], VGG-19 [19], ResNet [20], and DenseNet [21] for the classifi-
cation task of PSD based on SPECT images. The proposed model is effective for the defined
objective. The proposed model is trained using the TensorFlow framework [22] over the
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Python 3.8.0 platform. To evaluate the performance of the proposed model, the authors
also used different metrics such as accuracy, precision, and recall. We considered precision,
recall, and accuracy as its target attribute to be maximized. The formula of the metrics used
for evaluation are as follows:

Precision =
TPc1

TPc1 + FPc1

Recall =
TPc1

TPc1 + FNc1

Accuracy =
TPc1 + TNc1

TPc1 + FPc1 + TNc1 + FNc1

Here, c1 refers to category-1 from the defined list of categories. TP stands for true
positive, which means that the model correctly predicts the category c1. Similarly, TN
stands for true negative, which means that the model correctly predicts that the category
is not c1. FP stands for false positive, which means that the model predicts the category
c1, while that is not the case and belongs to the rest of the category. In the same way, FN
stands for false negative, which means that the model predicts the category that does not
belong to the category c1 while that is not the case.

Figure 4 gives insights into the accuracy of the training and validation dataset for
the PSD classification task. The authors have trained the model with early callbacks
that stop the model training when the improvement in the performance is not as per the
predefined lower limit of the hyperparameters. At the end of the training, the model saves
the best weights from all the performed epochs. These weights are selected based on the
defined metrics and best combinations on the validation dataset. These kinds of stopping
mechanisms help in using resources effectively and sometimes also help prevent overfitting.
Here, the model’s accuracy increases significantly up to the 35th epoch of training accuracy,
while the validation accuracy presents a moderate change. The validation accuracy is
less compared to the training accuracy, the reason behind this is the unbalanced data,
the motivation behind the further training is to improve the model performance for the
classes with a smaller amount of data.
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Figure 4. Comparison of accuracy.

Figure 5 shows the loss of model training and validation dataset. As seen in Figure 5,
the loss for the training dataset is continuously decreasing while the loss of the validation
dataset increases at a random pace. It shows a piece of evidence that the early callbacks help
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indirectly in the model’s performance as after the 25th epochs, the loss for the validation
dataset is nearly equal to the training loss that is good for the accurate predictions.
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Figure 5. Comparison of loss.

The authors’ objective is to identify whether the patient has PSD or not accurately
based on the SPECT images. Furthermore, the author focuses on the model’s result for
the PSD class that presents the person having Parkinson’s. Hence, the authors have
compared the result of the proposed model for the PSD class with the AlexNet model,
which is represented in the paper [13]. Figure 6 compares metrics such as precision, recall,
and accuracy of the proposed model with AlexNet for the PSD class. The proposed model
outperforms for all the metrics with the value of precision 0.9798, recall 0.9928, and accuracy
is 0.9957, which is better, as compared to AlexNet.
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Figure 6. Comparison with AlexNet for PSD category [18].

To provide strong evidence of the proposed model is to achieve better performance
from the baseline. The comparison table (Table 3) of results compared with another dataset
is given in [18]. This dataset contains two kinds of data—4-category (healthy, early, mid,
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and late PSD) and 6-category (healthy and HYS-1 to HYS-6), each of these datasets also con-
tainw two types of image—gray scale images and pseudocolor images. The performance of
the standard models on the grayscale image of the four categories images can be compared
with our proposed model’s performance. This dataset overall contains 1010 SPECT images,
out of which 30 images belong to the healthy category, 110 and 135, respectively, of HYS-1
and HYS-2 that belongs to the early stage, 265 images of HYS-3 that represents mid-stage
and, finally, the remaining 435 and 35 images belong to HYS-4 and HYS-5, respectively,
for late-stage. Simultaneously, the proposed model is also trained on the gray scale images
distributed in four categories.

Table 3. Model-wise comparison with different parameters.

Model Input Size Layers BatchSize Epochs Training Time(s)

AlexNet 227 × 227 25 80 40 25.4

GoogleNet 224 × 224 144 14 7 62.7

VGG19 224 × 224 114 20 10 138.4

ResNet50 224 × 224 347 8 4 326.1

ResNet101 224 × 224 47 6 3 162.1

DenseNet201 224 × 224 709 18 9 880.7

Proposed 128 × 128 13 32 35 114

To compare the performance with their dataset, the authors of this paper compared
their input size and took the time to perform one epoch of training with the same batch size
of 10. Table 3 compares the time taken in seconds by pre-trained deep CNN models [18]
with their input size and number of layers. The proposed model is simple, yet effective,
as with the comparatively large dataset of SPECT images, it takes less training time and
performs significantly well.

Table 4 compares the result obtained by the proposed model with the standard deep
CNN model’s discussed in [18]. The best result obtained in the paper [18] for accuracy, recall,
and precision, is 0.825, 0.758, and 0.874 by AlexNet, VGG19, and AlexNet, respectively,
for the gray scale images. The authors have shown the result achieved for the validation
dataset for all three metrics. The proposed model outperforms all the models discussed
in the paper [18] by obtaining an accuracy of 0.889, recall of 0.9012, precision of 0.9104,
and F1-score of 0.9057. Considering these solids pieces of evidence, it can be said that the
proposed model performs well compared to the existing models.

Table 4. Comparison with standard models for all categories on test dataset [18].

Model Accuracy Recall Precision F1-Score

AlexNet 0.825 0.753 0.874 0.809

GoogleNet 0.687 0.673 0.728 0.700

VGG19 0.819 0.758 0.87 0.810

ResNet50 0.739 0.729 0.71 0.719

ResNet101 0.767 0.691 0.668 0.679

DenseNet201 0.807 0.722 0.843 0.778

Proposed 0.889 0.9012 0.9104 0.9057

6. Conclusions

Classifying medical data is a difficult task and it needs to be performed precisely.
The paper’s objective is to approach one of the categories of medical field-related data
and predict a disease accurately. The authors considered a SPECT-image-based dataset
to classify Parkinson’s disease. Several transfer-learning-based algorithms have shown
promising results. However, they consume more resources and are complex models.
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The paper’s main objective is to propose a simple, yet efficient, model that consumes less
computational resources and performs well compared to existing models. In this paper,
the authors consider a large dataset containing three PSD categories and one healthy control
subject to train the model efficiently. The proposed model classifies the SPECT images into
defined four categories with a precision score of 0.9104, a recall score of 0.9012, an accuracy
of 0.889, and an F1-score of 0.9057. To provide further evidence of the proposed model’s
better performance, the authors compared the result obtained for the PSD category with
that of AlexNet. In the future, the authors will further improve the performance of the PSD
detection by using a hybrid model.
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