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Abstract: The electromagnetic scattering of a meta-surface, formed by a honeycomb substrate or
periodical arranged meta-materials, has great meanings to communication technologies. In a con-
ventional treatment to investigate the properties of these interfaces, either a variational approach or
series expansions had been applied, instead of estimating the effective permittivity or permeability
by the mean value of its spatial discretized statistics due to spatiotemporal fusion. Following this, this
study has re-examined the problem by the Statistic Estimation Averaging method (SEAm), through
the transferred conditional structural Probability Density Functions (PDFs) to realize the structural
determinations by homogenization. The parameters estimated by SEAm, which exploited the concept
of a homogenized medium to express properties of a structural complex medium, has been verified of
validity and accuracy by comparing with the measured results of a honeycomb structure. The method
can be extended to estimate the parameters of an equivalent surface, such as randomly scattering
from information metamaterials. As a new wireless communication relay technology, considering
that information metamaterials can modulate the electromagnetic characteristics of communication
links and wireless channels simultaneously by means of spatiotemporal sequence coding, the study
also gives a preliminary proposition on state estimation method of information meta-surface, which
would interpret the modulation effect of wireless channels caused by its inhomogeneity of antenna
wavefront by statistical estimation average information entropy.

Keywords: medium equivalent theory; estimation theory; SEAm; DMIA; electromagnetic scattering;
wireless channel

MSC: 78A48

1. Introduction

Recent progresses have been made on microwave wireless communication systems
and radar technology by using digital meta-surfaces to realize space- and frequency-
division multiplexing and smart Doppler cloaking [1,2]. With new features on intelligent
beam control and simplified architecture, the time-domain digital coding meta-surface
provides advantages of flexibility and adaptability in its reconfigurable radiating arrays
controlled by programmable digital signals [3–5]. Yet, the investigations on the advanced
devices are mostly developed on the designs of apparatuses for suiting their new wire-
less communication systems, which seems to be absent of theoretical knowledge on its
effective modulation effect as its distinction to a conventional transmission network on
wireless channels.
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In a traditional view of field analysis, the scattering of a passive meta-surface array
is similar to that of a complex structure material; some physical properties of whom
presented anisotropic characteristics due to the periodical arrangement of units in cross
section. Analytical techniques to model these periodical structures, arrays and meshes had
been previously summarized in the book [6], including the field matching approach with
Floquet series expansion, which had been applied to study the electromagnetic properties
of periodical structure materials, such as honeycomb substrate and foam-based honeycomb
sandwich structures [7,8].

As one of the most useful techniques to find the effective permittivity and permeability
of such structural complex materials, the idea of homogenization had been established
and its application in designing of millimeter-wave electromagnetic absorbers has de-
veloped for decades [9–12]. The original prototype was made by a variational approach
in the study on the effective magnetic permeability of multiphase materials [13]. Later,
this was developed into a generalized approach to establish multiphase dielectric mix-
ture theory, which is derived from some dielectric mixture equations modified from the
Landau–Lifshitz formula [14–16]. These early derivations had been addressed in the
book for electromagnetic mixing formulas and applications [17]. Afterwards, the dielec-
tric mixture equations have been applied for scenarios of porous materials and particles
scattering [18,19].

In the present study, a new dielectric mixing equation is to be derived for a structural
complex material to express the honeycomb-structured dielectric cross-section from a
statistic estimation point of view. In mathematical formulation of the effective parameters,
we presume a two-port network can be applied to represent the transmission and reflection
of any meta-surface including random surfaces and some uncertain-state meta-surface or
array. Undoubtedly, averaged statistical estimating parameters cannot yet be qualified
to determine the scattering of an arbitrary-arranged meta-material array or a scattering
wall modulated by irregularly excited signals; however, the method indeed has potentials
in meta-surface array multi-hierarchy fast design, instead of integrated computation of
large-scale array in wireless relay communication, which is not only used to produce
multiple physical performances, but also to assess the information metamaterials on channel
quality improvement due to the uncertain-state meta-elements on it. In these information
meta-material systems, each meta-element is to be controlled by different time digital-
coding sequence, by which it has have been realized from prototypes to implementation
recently [20–23].

Encouraged by that, the method of SEA is proposed to study the effective electromag-
netic parameters in two complete subspaces from a complex structural material defined
by structural PDFs based on spatial discretization, which are expressed by the unknown
priori probability distributions. We assume that the true estimators of permittivity from
two independent subspaces share the same value. Considering of a honeycomb-structured
meta-surface, the electromagnetic scattering of it can be interpreted by a homogenized
medium if the operated frequencies are at subwavelength band. Thus, the equivalent
medium is subjected to a posterior probability distribution with an uniformed distribution
of PDF. Based on the law of conservation of statistical particles, the estimators can be
evaluated according to the conditional probabilities, respectively.

The applied scenarios of SEAm are summarized as parameter estimation and state
estimation, respectively. In the latter case, the SEAm is extended to predict the average
Power Spectral Density (PSD) of an information meta-material where the structural PDFs
are defined by spatial discretization of wave functions especially for a Digital-coding Meta-
material Information-encrypted Antenna (DMIA). The digital-coding feeding elements
are separated as electrically and magnetically excitation arrays due to different near-field
radiation principles [24,25]. The aim is to estimate the average states of a PSD considering
each excitation mode, respectively.

In this work, the computational analyses are given to express the effective permittivity
of a honeycomb-structured meta-surface, which is compared to the values obtained by
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conventional approaches, including Weighted Average method (WAm), Hashin–Shtrikman
Variational formula (HSV), and Strong Fluctuation Theory (SFT). The result is validated by
an experiment of aramid paper through Radar Cross-Section (RCS) performances. Other
approach such as Full-Space Retrieval methods (FSRm) by reflection and transmission
coefficients, transmission line matrix, etc., is not expanded upon herein [26–28].

2. Formulation
2.1. Spatio-Temporal Discretization of Complex Materials

Periodical arrangements of planar conductive elements of various shapes have much
uses in microwave technology, as well as the structure of some artificial materials such as
honeycomb to design frequency selective performances. To consider them, we will start
with the spatial discretization of these materials in cross-section (lying on the x-y plane),
including inhomogeneous medium, random medium and mixed materials, respectively.

• Averaged material parameters

For a inhomogeneous medium, the averaged parameters can be approximated by
the mean values of permittivity and permeability in statistics by spatial differentiation,
which are determined by the distribution function fmn(x, y), respectively. In a rectangular
coordinate, the averaged permittivity is

ε̄ = lim
M,N→∞

M

∑
m=−M

N

∑
n=−N

f XY
mn · εref, (1)

in which εref is the reference parameter of permittivity form the origin coordinates. For a
random medium, the weighting function fmn(x0, y0, t) varies by time at any certain point.

• Mixed materials

For a mixture by two different materials, the averaged permittivity value can be
approximated by:

εmix = lim
M,N→∞

M

∑
m=−M

N

∑
n=−N

[ f a
mn + f b

mn
εb
εa
]εa (2)

with two different weighting coefficient functions f a
mn and f b

mn representing for the filling
material (εa or ε0 for air) and the skeleton material (εb) on the planar surface with periodical-
arranged conductive elements, respectively.

• Parameter Estimation

Seen as a two-port network, the properties of electromagnetic scattering from a
honeycomb-structured cross-section have been analyzed [7,8]. The reflection and trans-
mission of electromagnetic field at the boundary of free-space to honeycomb-structured
cross-section present anisotropic properties due to the discontinuity of the material param-
eters. Thus, the effective permittivity of this meta-surface should be considered as a 2× 2
matrix ( ¯̄εT). In a rectangular coordinate system, it can be written as:

¯̄εT =

[
ε̂x

ε̂y

]
, (3)

in which the diagonal elements of the permittivity ε̂x and ε̂y are the parameters to be
estimated.

Next, we consider the spatial expansion of the dielectric permittivity. With ε̂x = ε̂y
being valid for honeycomb-structured cross-section, the element of ¯̄εT can be express in the
form of
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ε̂x ≈ (1, 1, ..., 1, ..., 1, 1)

×



f XY
m,−n{ε}m,−n ... f XY

m,0{ε}m,0 ... f XY
m,n{ε}m,n

... ...
... ...

...
f XY
0,−n{ε}0,−n ... f XY

0,0 {ε}0,0 ... f XY
0,n {ε}0,n

... ...
... ...

...
f XY
−m,−n{ε}−m,−n ... f XY

−m,0{ε}−m,0 ... f XY
−m,n{ε}−m,n





1
...
1
...
1

 (4)

in which a basis function f XY
m,n is used to express the influences of height gain (caused by

curvature change) and fluctuations in different locations (uncertainties of random medium),
and the symbols {ε}i,j (i = −m, m; j = −n, n, when m and n are large) are statistics
for permittivity.

2.2. Structural PDF

From Equation (4), the value of ε̂x is given by spatial expansion of permittivity for
meta-surface. This is valid for some regular structural cross-sections, which have explicit
formulation of weighting functions f XY

i,j from spatial distribution. Then, we may have

the effective parameters expressed by the use of basis functions f X
i and f Y

j , termed by
marginal structural PDFs when Equation (4) can be derived into the following expression,
written as:

ε̂x = ( f X
−m, f X

1−m, ..., f X
0 , ..., f X

m−1, f X
m )

×



{ε}m,−n ... {ε}m,0 ... {ε}m,n
... ...

... ...
...

{ε}0,−n ... {ε}0,0 ... {ε}0,n
... ...

... ...
...

{ε}−m,−n ... {ε}−m,0 ... {ε}−m,n





f Y
m
...

f Y
0
...

f Y
m

 (5)

in which the basis functions f X
i and f Y

j are subjected to different distributions ( fX and

fY). Thus, we may also define the basis function f XY
i,j which is determined by the joint

structural PDF ( fXY). So that the value of ε̂x can be estimated by random variable ε and
the PDFs, for which it is not only related to the averaged value of permittivity, but also
related to the expectation of permittivity influenced by spatial distributions. This is also
applied to the parameter estimation of permeability.

2.3. The Method of SEA for Effective Dielectric Parameters

The effective permittivity of a honeycomb-structured cross-section (as shown in
Figure 1a) is to be derived. We assume that the electromagnetic scattering property of
the cross-section is equivalent to the scattering of a dielectric surface at sub-wavelength.
Let the effective permittivity be written as the estimation parameter (ε̂x). In the statistical
estimation theory, the parameter can be estimated by the averaged mean value of materials
forming the dielectric surface. To consider the presented cross-section by a real honeycomb-
structured material, we assume that the cross-section can be physically divided into two
parts being composed of discrete elements by materials (A and B) with the permittivities εa
and εb, respectively.

• (a) Statistical Permittivities in Two Subspaces

A priori structural PDF is considered to express the complex structural cross-section of
a honeycomb-structured material. Through spatial discretization, the statistical permittivi-
ties in transverse direction are chosen in value of εa or εb; therefore, the physical space can
be divided into two subspaces A and B (as shown in Figure 1b). Since the physical structure
is fixed, the values of statistics in each subspace are εa and εb, representing for air and
skeleton material, respectively. These two groups of statistics for permittivity constitute an
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ensemble statistical group in evaluation of the effective permittivity of the cross-section.
The estimator is approximated by ε̂x = ε̂y and µx = µy = µ0 considering it as isotropic and
nonmagnetic.

Spatio-
Temporal 
Fusion

Group A
Structural Marginal 
PDFs

Structural Joint PDF

p 1-p

p1-p

P(A|M)

P(B|M)
Group A

Structural Marginal 
PDFs

Structural Joint PDF

p 1-p1-p

p1-p

P(A|M)P(A|M)P(A|M)P(A|M)

P(B|M)P(B|M)P(B|M)

1-p
p0
0

a

a

b

b

a

a

b

bx
y

b

a

a

a

Marginal 
PDFs

Spatio-
Temporal 
Fusionsx

Mixed Materials

Estimation 
of Average 
Parameters

(x,y) 

(x,y) 

Joint 
PDF

givens:
givens:

(x,y) 
sy

Homogenized Material

Group B

Group A

Group B

Figure 1. The method of SEA to estimate the effective permittivity of a honeycomb-structured
meta-surface: (a) the cross-section of aramid paper sample with slightly distortion; (b) modeling of
materials in two subspaces; (c) the structural PDFs; (d) the digital-coding information meta-surface;
(e) parameter estimation.

• (b) Estimation of Permittivity by Two Subspaces

To estimate the value of ε̂x, the estimation theory is adopted in the next. We assume
two random variables εx1 and εx2 are the effective permittivities in subspaces A and B,
respectively. The expectation values of them are statistically independent. Thus, we
can write

E[(εx1 −E[εx1 ])(εx2 −E[εx2 ])] = 0. (6)

With substitutions of the random variables and their expectations by the estimators
(ε̂x1 and ε̂x2) and the mean values of statistics, respectively, Equation (6) can be derived into:

E
[(

ε̂x1 −
1
M

M

∑
m=−M

εm

∣∣∣∣
εm∈A

)(
ε̂x2 −

1
N

N

∑
n=−N

εn

∣∣∣∣
εn∈B

)]
= 0, (7)

which equals to

E[ε̂x1ε̂x2]−
1
M

M

∑
m=−M

εm ·E[ε̂x2]−
1
N

N

∑
n=−N

εn ·E[ε̂x1] +
1

MN

M

∑
m=−M

N

∑
n=−N

εmεn = 0. (8)
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In Equation (7), the mean values of statistical groups (A and B) are determined by
ε̂x1 = εa and ε̂x2 = εb, respectively, when it is subjected to the prior distribution (with
the discretized permittivities εm = εa and εn = εb for εm ∈ A, εn ∈ B). Thus, we have
E[ε̂x] = P(A)εa + P(B)εb, considering ε̂x1 and ε̂x2 are independently subevents of the
space and the probabilities P(A) and P(B) equal to the spatial ratio of subspaces A and B,
respectively. When it being subjected to a posterior distribution, the effective permittivity
can be obtained from the structural PDFs of an uniformly distributed medium (in Figure 1c).
It has:

E[(ε̂x1 −E[εh
x1
])(ε̂x2 −E[εh

x2
])] = 0, (9)

with εh
x1

and εh
x2

denoting for the random variables defined by the uniform-distributed
structural PDFs in subspaces A and B, respectively. In this case, it has ε̂x1 = P(A)εa +
P(B)εb and ε̂x2 = P(A)εa + P(B)εb, so that

E[ε̂x] = P(A)ε̂x1 + P(B)ε̂x2 = P(A)εa + P(B)εb (10)

with P(A) = 1− P(B).
It is concluded that the predicted values of effective permittivities in subspaces are

subjected to various distributions of the material defined by different structural PDFs.
In Equation (10), the estimated value of permittivity can only be applied to express the
longitudinal component of the porous material ε̂z. For a periodical-arranged cross-section or
a digital-coding meta-surface designed by N × N-port independent randomly switched by
“on-off“ states (illustrated in Figure 1d), the scattering of these structures cannot be ignored.

• (c) Averaging Distribution by Homogenization

With variables ∆εA and ∆εB expressing the material change in each subspace, the
resulting estimators can be equal by interchange of material constructions in subspaces A
and B. It has

E
[(

ε̂o
x −E

[
1
M

M

∑
m=−M

εm

∣∣∣∣
{εm∈A}

− ∆εA

])(
ε̂o

x −E
[

1
N

N

∑
n=−N

εn

∣∣∣∣
{εn∈B}

− ∆εB

])]
= 0 (11)

by letting ε̂o
x = ε̂x1 = ε̂x2 (the superscript “o” denotes for the optimal estimator).

For consistency of Equation (7), the domain of the functions remains unchanged,
which can be written as:

εo
x1

= εa − ∆εA =
1

N1

N1

∑
i=1

εi, εo
x2

= εb − ∆εB =
1

N2

N1

∑
j=1

εj, (12)

with εm = εa and εn = εb. The estimated values ε̂x1 and ε̂x2 have been changed from εa
and εb into ε̂o

x, as seen from Figure 2. In this case, the value of ε̂o
x can be approximated by

the mean values of statistics in subspaces A and B (εi and εj), respectively.
Consider that random variables εo

x1
and εo

x2
are subjected to two additional distri-

butions defined by marginal structural PDFs as f o
x1
(x, y) and f o

x2
(x, y). For N′ is a large

number, it is assumed that

lim
N1�N′

∣∣∣∣∣ 1
N1

N1

∑
i=1

εi −E[εo
x1
]

∣∣∣∣∣ < δ1; lim
N2�N′

∣∣∣∣∣ 1
N2

N2

∑
j=1

εj −E[εo
x2
]

∣∣∣∣∣ < δ2, (13)
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in which δ1 and δ2 have little values. Due to the spatiotemporal fusion, the expectation of
joint random variables εo

x1
εo

x2
are defined by

lim
N1 N2�N′2

∣∣∣∣∣ 1
N1N2

N1

∑
i=1

N2

∑
j=1

εiεj −E[εo
x1

εo
x2
]

∣∣∣∣∣ < δ1δ2. (14)

By the uses of equations from (11) to (14), we can write:

E[(ε̂o
x −E[εo

x1
])(ε̂o

x −E[εo
x2
])] = 0. (15)

in which the random variable ε̂o
x is defined in the complete set of two subspaces. For

simplicity, Equation (15) is written as (ε̂o
x)

2− 2uε̂o
x + v = 0 with u = 1

2 (E[ε
o
x1
] +E[εo

x2
]) and

v = E[εo
x1

εo
x2
]. The coefficients u and v are to be evaluated.

S1

S2

S1

S2
 2

100

a b

P(M)

S1

S2

S1

S2
2

100

a b

P(M)

Figure 2. Distributions of PDFs for a priori probability, the posterior probability, and confidence
interval, respectively.

Consider the electromagnetic scattering of a honeycomb-structured cross-section. An
effective permittivity of the meta-surface can be expressed at sub-wavelength band, by the
mixing formula:

ε̂o
x = u±

√
|u2 − v|, (16)

which is subjected to the spatial duty ratio of materials (with p and q = 1− p for filling
material and skeleton material, respectively). The parameters are defined by u = 1

2 [εa(p−
q) + εb(q− p)], and v = −εaεb, respectively.

3. Derivation
3.1. Variables and Parameters

Some of the variables and functions used are defined in Table 1.
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Table 1. Definitions of the variables and functions.

Symbol Type Definition Equation

εx1 , εx2 Random variables The mean values of permittivity εx1=2 ∼ fx2

in statistical subspaces (A, B) εx2 ∼ fx2

fx1 , fx2 Marginal structural The assumed distributions in fx1 ∼ B(0, 1)
PDFs statistical subspaces (A, B) fx2 ∼ B(0, 1)

∆εA Random variable Deviation of εx1 from ε̂o
x ∆εA ∼ fX|Y

∆εB Random variable Deviation of εx2 from ε̂o
x ∆εB ∼ fY|X

f h
x1x2

Joint structural PDF A posterior distribution of fx1x2 ∼ B(0, 1)
a homogenized medium

εL Estimator In longitude Obtained by WAm
¯̄εT 2× 2 Matrix In transverse diag(ε̂x, ε̂y)

ε̂x, ε̂y Estimators Effective parameters By Equation (13)

3.2. Distributions and Probabilities

Considering the material as uniformly distributed, a joint posterior structural PDF can
be written by the following expression:

f h
x1x2

(x, y) =

{
1

S1+S2
, (x, y) ∈ D1

⋃
D2

0, else
(17)

with the parameters S1 and S2 expressing the areas of D1 and D2 for materials with εa
and εb, respectively. Thus, the expectations of joint random variables εh

x1
εh

x2
and random

variables εh
x1

and εh
x2

are given by

E[εh
x1

εh
x2
] =

∫∫
D1+D2

εaεb f h
x1x2

(x, y)ds = εaεb, (18)

and

E[εh
x1
] =

∫∫
D1

ε̄1 f h
x1x2

(x, y)ds = ε̄1 · P(A), E[εh
x2
] =

∫∫
D2

ε̄2 f h
x1x2

(x, y)ds = ε̄2 · P(B), (19)

in which the variables ε̄1 and ε̄2 are the expectations in subspaces A and B, respectively.
The probabilities P(A) and P(B) are defined by (10), being equivalent to the duty ratio of
filling material and skeleton material, respectively. The probabilities P(AM) and P(M) are
the spatial ratio of one unit for material with εa and the spatial ratio of the unit, respectively.
By the expansion of full probability formula, it has

P(A) =
P(AM)

P(M)
= P(A|M) + P(Ā|M); P(B) =

P(BM)

P(M)
= P(B|M) + P(B̄|M) (20)

respectively.
By the use of Equation (15), an optimal estimator ε̂o

x can be determined from the
statistical distributions of random variables εo

x1
and εo

x2
, so that

E[εo
x1
] =

∫∫
D1

εa f o
x1x2

(x, y)ds = εaP(A|M), E[εo
x2
] =

∫∫
D2

εb f o
x1x2

(x, y)ds = εbP(B|M) (21)

in which the conditional probabilities P(A|M) and P(B|M) are used to express the ma-
terial interchange. We have P(AM) = [P(A|M) + P(Ā|M)]P(M). In Figure 3, we have
εaP(A|M) = εaP(A)− εbP(BM)/P(M).
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Figure 3. Physical model of a periodic-arranged material with (a) periodic-arranged cross-section and
(b) composition of subspace SX with materials A and Ā for a priori distribution and with materials
A and B for the posterior distribution, respectively.

3.3. Computations of u and v

By the use of equation (21), the expectations can be evaluated by:

E[εo
x1
] = εa · [P(A)− P(B)], E[εo

x2
] = εb · [P(B)− P(A)], E[εo

x1
εo

x2
] = −εaεb (22)

respectively; therefore, we have 2u = εa p− εa(1− p) + εbq + εb(1− q), and v = −εaεb,
where parameters p and q are the spatial ratio of two constructive materials on the
honeycomb-structure cross-section (with p and q = 1− p for filling material and skeleton
material, respectively).

4. Numerical Results

The absolute values of relative permittivity estimated by SEAm are computed for
different spatial conditions and material parameters in Figure 4 to express an equivalent
cross-section of a honeycomb-structured material defined by Equation (11). The permit-
tivities of air and material are taken as ε0 = 8.854187817× 10−12 F/m (the permittivity
in free space), and εa is chosen by a wave-absorbing material with relative permittivity
εa/ε0 = 8.7868 + 9.2263i. The comparing results are obtained by WAm, HSVm, and SFT,
respectively, for which, the formulas are summarized in Appendix A. The round dot and
squared dot symbols highlighted in Figure 4 are defined by the absolute value of relative
permittivities under the same duty ratio of material-to-air with ν0 = ν1 = 0.5, where each
of them reads: |ε1|/ε0 = 6.8714, |ε2|/ε0 = 5.1141, |ε3|/ε0 = 3.5704, and |ε4|/ε0 = 2.4922,
respectively. The shaded area is surrounded by two curves for WAm and square root values
of two results by HSVm, respectively.

The computed applicable values of effective permittivity are non-unique for an
arbitrary-shaped, periodical-arranged meta-surface, which are taken from the available
region of HSVm, derived from Maxwell’s equations by means of variational methods. In
the example of a honeycomb-structured cross-section, the simplest periodic unit (shaped
by concentric hexagons) can be seen as isotropy on the cross-section (approximated by
concentric circles), which are occupied by homogeneous materials ε0 and εa, respectively.
When the maximum radius is at sub-wavelength, the scattering of a honeycomb-structured
cross-section can be equivalent to the scattering of the random medium for which the
probabilities of particle existences are equal to the spatial duty ratio of materials. From
these computational results, it is seen that the nonlinear approximation mixing formulas
obtained by SEAm is in consistent with conventional approaches by HSVm and SFT.

With the same computational parameters, the second-order derivative functions of
these formulas by different approaches are plotted in Figure 5, accordingly. Through
the definition of function’s convexities, the inflection points of curves by SEAm and SFT
formulas in Figure 4 are determined (at spatial duty ratio ν0 = ν1 = 0.5), whereas the
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approach by HSVm gives a range of available values for a specific spatial duty ratio to
equivalent the permittivity for periodical-arranged meta-surface.
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Figure 4. Absolute values of effective relative permittivities with dependencies on spatial duty ratio
and material relative permittivities by various formulas to express a wave-absorbing honeycomb-
structured cross-section. Round dot and squared dot symbols are highlighted for different approaches
by same duty ratio of 50%. Shaded area is surrounded by two curves for WAm and square root
values of two results by HSVm.
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Figure 5. Absolute values of the second-order derivative functions of the effective relative permittivi-
ties by WAm, SEAm, SFT, HS-1 (the upper boundary by HSm), and HS-2 (the lower boundary by
HSm), respectively.
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The contour lines of the absolute values of effective relative permittivity are plotted
by SEAm in Figure 6, as the functions of material ratio and duty ratio by increment of
skeleton material parameter and spatial duty percentage, respectively. It is observed that
the change of parameter ratio (≥5) of materials has little influence to the values of ε̂x
when the spatial duty ratio is less than 20 percent. In these cases, the information entropy
carried by geometric structures is almost negligible from the periodic honeycomb-shapes
meta-surface.
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Figure 6. Contour lines for covariant values of effective relative permittivity tuned by spatial duty
ratio and material doping ratio.

5. Experimental Validation

In the following example, we developed an experiment on electromagnetic scattering
of a cuboid-shaped aramid paper in order to verify the effectiveness of SEAm to simulate
results on a testing cuboid, which is occupied by a homogeneous medium with the com-
puted parameters. On the back side, the aramid paper is covered by tinfoil. Considering
the materials are nonmagnetic (with µ = µ0), we take the parameter for skeleton material
of aramid paper with relative permittivity of ε/ε0 = 3.5. Thus, the filling material of the
testing cuboid is characterized by effective permittivity of εx/ε0 = 1.0826, εy/ε0 = 1.0826,
εz/ε0 = 1.1226, and permeability of µ = µ0, respectively. The antenna device is set
to be placed in a microwave darkroom for testing, where the measured data for Radar
Cross-Section (RCS) have been collected by Vertical-transmit Vertical-receive (VV) and
Horizontal-transmit Horizontal-receive (HH) polarizations, respectively.

The absolute values of RCS are plotted in Figure 7 for simulated results (in black and
with solid lines) and measurement data (in red and with dashed lines), respectively. The
operated frequencies are chosen as frequencies: f = 5.4 GHz and f = 3.2 GHz, respectively.
From the full-wave simulations of a homogenized medium and measurement on a real
aramid paper (shaped by 300 mm × 300 mm × 66 mm, unit sized by hexagon unit side
length 1.6 mm and inscribed circle diameter 3.2 mm, respectively), it is concluded that
the proposed method is valid to simulate the scattering of a honeycomb-structured meta-
surface, but it is also restricted to operating frequencies (valid for λmin ≥ 2

√
3r0) and

incident angles.
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Figure 7. The RCS values of a cuboid-shaped aramid material measured by an experiment which is
compared to the full-wave simulation results of a cuboid object occupied by homogeneous anisotropic
medium with (a) HH polarization at f = 5.4 GHz; and (b) VV polarization at f = 3.2 GHz,
respectively.

6. Conclusions

A methodology has been proposed to consider the electromagnetic equivalence prob-
lem of a structural complex material. We exploited the concept of a homogenized medium
to express the electromagnetic features of a periodical-arranged cross-section or informa-
tion meta-surface. The method of SEA is applied to estimate the effective parameters of
such structures.

(i) The estimation theory is applied by second-order spatial discretized statistics
to estimate the effective permittivity or permeability of a honeycomb cross-section. By
interchange of material compositions, the homogenized medium can be used to express
the electromagnetic property of a real structure.

(ii) The electromagnetic scattering of a periodically arranged meta-surface is influenced
by the unit length of the structure due to spatiotemporal fusion. This article also gives
a preliminary investigation on the equivalent of an information meta-surface in wireless
communication applications.
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Abbreviations
The following abbreviations are used in this manuscript:

DMIA Digital-coding Meta-material Information-encrypted Antenna
FSRm Full-Space Retrieval method
HH Horizontal-transmit, Horizontal-receive
HSVm Hashin–Shtrikman Variational method
PDF Probability Density Function
PSD Power Spectral Density
RCS Radar Cross Section
SEAm Statistical Estimation Averaging method
SFT Strong Fluctuation Theory
VV Vertical-transmit, Vertical-receive
WAm Weighted Average method

Appendix A. The Formulas for WAm, HSVm, and SFR

The applied formulas in Figure 4 are given for computing the effective permittivities
of a structural complex material:

(i) WAm: an averaged method weighted by spatial duty ratio of εa and ε0 (see Table 1),
defined by εL = (1− p)ε0 + pεa;

(ii) HSVm: a variational method derived from Maxwell’s equations. It provides with a
region of available values for one specific parameter condition [15–17].

(iii) SFT: the derivation from the microscopic Maxwell’s Equations for random media;
(iv) Other: i.e., FSRm, theoretically being suitable for any problem. The retrieval

methods are applied to obtain effective parameters based on simulation results by software
or measurement data.

ε =
γ1(1− Γ)
γ0(1 + Γ)

; µ =
γ1(1 + Γ)
γ0(1− Γ)

; (A1)

with propagation parameters γ0 and γ1 should be measured for any incidental angel in free
space and dielectric region, and variable Γ stands for the reflection coefficient, respectively.

Appendix B. The Potential Application Scenarios of SEAm

Some application scenarios are given in Table A1.
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Table A1. Application Scenarios of SEAm.

Scenario Mathematical Formulation Estimator Case

Fixed, structured Type I Paras. I

material

Infinite-sized
plate;

Two-port
networks.

ε̃ = ( f X
−m, f X

1−m, . . . , f X
0 , . . . , f X

m−1, f X
m )

×



1 . . . 1 . . . 1
... ...

... . . .
...

1 . . . 1 . . . 1
... . . .

... . . .
...

1 . . . 1 . . . 1





f Y
m
...

f Y
0
...

f Y
−m



↔ (1, 1, . . . , 1, . . . , 1, 1)×

f XY
m,−n . . . f XY

m,0 . . . f XY
m,n

... . . .
... . . .

...
f XY
0,−n . . . f XY

0,0 . . . f XY
0,n

... . . .
... . . .

...
f XY
−m,−n . . . f XY

−m,0 . . . f XY
−m,n





1
...
1
...
1


ε̂x, ε̂y

f SX , f SY

∼
B(0, 1);

E[SX]
E[SY]

Random material Type II Paras. II
Infinite-sized
plate; with
independent−
identically
distributed
feeding-arr−
ays.

ε̃ = (1, 1, . . . , 1, . . . , 1, 1)

×



{ε}m,−n . . . {ε}m,0 ... {ε}m,n
... ...

... . . .
...

{ε}0,−n . . . {ε}0,0 . . . {ε}0,n
... . . .

... . . .
...

{ε}−m,−n . . . {ε}−m,0 . . . {ε}−m,n





1
...
1
...
1


ε̂x, ε̂y

f XY ∼
B(0, 1);
Transform
f XYinto
f SX , f SY

↔ CaseI.

Regular antenna Type III State III

Hertzian dipole
antenna feeded
by Je or Jm
inturns.
n× n− port
& MN → ∞

Wirless channel
channels;

Point to point
communication
system.

Φ̃1 = (1, 1, . . . , 1, . . . , 1, 1)×

{Je}m,−nΦm,−n . . . {Je}m,0Φm,0 . . . {Je}m,nΦm,n
... . . .

... . . .
...

{Je}0,−nΦ0,−n . . . {Je}0,0Φ0,0 . . . {Je}0,nΦ0,n
... . . .

... . . .
...

{Je}−m,−nΦ−m,−n . . . {Je}−m,0Φ−m,0 . . . {Je}−m,nΦ−m,n





1
...
1
...
1

;

Also by :
Φ̃2 = (1, 1, . . . , 1, . . . , 1, 1)×

{Jm}m,−nΦm,−n . . . {Jm}m,0Φm,0 . . . {Jm}m,nΦm,n
... . . .

... . . .
...

{Jm}0,−nΦ0,−n . . . {Jm}0,0Φ0,0 . . . {Jm}0,nΦ0,n
... . . .

... . . .
...

{Jm}−m,−nΦ−m,−n . . . {Jm}−m,0Φ−m,0 . . . {Jm}−m,nΦ−m,n





1
...
1
...
1



P̂0,
by
|E|2
or
|H|2

f SXSY

∼
N(0, 1);

f X1Y1 ,
f X2Y2

additive.

DMI Antenna Type IV State IV

Meta-materials
feeded by
Je and Jm
simutaneously
New channel
systems

Independent−
identically
distributed
N × N − port
signal supplys.

Φ̃ = (1, 1, . . . , 1, . . . , 1, 1)×



{J e
M,−N}ΦM,−N . . . {J e

M,0}ΦM,0 ... {J e
M,N}ΦM,N

... ...
... . . .

...
{J e

0,−N}Φ0,−N . . . {J e
0,0}Φ0,0 . . . {J e

0,N}Φ0,N
... . . .

... . . .
...

{J e
−M,−N}Φ−M,−N . . . {J e

−M,0}Φ−M,0 . . . {J e
−M,N}Φ−M,N


+



{J m
M,−N}ΦM,−N . . . {J m

M,0}ΦM,0 . . . {J m
M,N}ΦM,N

... ...
... . . .

...
{J m

0,−N}Φ0,−N . . . {J m
0,0}Φ0,0 . . . {J m

0,N}Φ0,N
... . . .

... . . .
...

{J m
−M,−N}Φ−M,−N . . . {J m

−M,0}Φ−M,0 . . . {J m
−M,N}Φ−M,N







1
...
1
...
1



(P̂1, P̂2),
by
|E|2
and
|H|2

f SX1SY1

∼
P(λ1);
f SX2SY2

∼
P(λ2);

f X1Y1 ,
f X2Y2

mixed.
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