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Abstract: Hussain, Yau, and Zuo introduced the Lie algebra L (V) from the derivation of the local
algebra My (V) := O,/ (g +J1(g) + - - - + Jx(g))- To find the dimension of a newly defined algebra
is an important task in order to study its properties. In this regard, we compute the dimension of Lie
algebra L£5(V) and justify the sharp upper estimate conjecture for fewnomial isolated singularities.
We also verify the inequality conjecture: é5(V) < 4(V) for a general class of singularities. Our
findings are novel and an addition to the study of Lie algebra.
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1. Introduction

It is commonly known that at the origin of C", O,, are the germs of holomorphic func-
tions. Naturally, the algebra of n indeterminate power series may be identified by the O,,.

Yau considered the Lie algebras of the derivation of moduli algebra
A(V):=0,/(g, aafl,- e, a%), where L(V) = Der(A(V), A(V)), and V denotes the iso-

lated hypersurface singularity. L(V') is well recognized as solvable finite dimensional Lie
algebra ([1-3]). L(V) distinguished from the other types of Lie algebra present in singular-
ity theory ([4,5]) is known as the Yau algebra of V [6]. Several new natural connections
have been developed in recent years by Hussain, Yau, Zuo, and their research fellows
([7-12]) between the finite set of solvable dimensional Lie algebras (nilpotent) and the
complex analytical set of isolated hypersurface singularities. Three different ways have
been introduced to associate isolated hypersurface singularities with Lie algebra. From a
geometric point of view, these associations support understanding the solvable Lie algebra
(nilpotent), [9]. Since the 1980s, Yau and their research fellows have provided much work
on singularities [9,13-22].

Let a holomorphic function g : (C",0) — (C,0) be defined by the isolated hypersur-
face singularity (V,0), with its multiplicity mult(g). mult(g) in the power series expansion
is the order of the nonvanishing lowest term of g at 0. In [23], the new derivation Lie
algebras are defined in the following way:

ok

1 <k<m M (V):=0,/(g+T1(g) + -+ Jx(g)) are the new k-th local algebra and
L(V) its new Lie algebras of derivations with dimension & (V'), which is a new numerical
analytic invariant. £;(V) is the generalization of Yau algebra. More details can be found
in ([23]).

|1 < iy, ,ip < n > beanideal. For mult(g) = m and
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A conjecture for the analytic invariant & (V) was proposed in [23] as:

Conjecture 1 ([23]). Let 5k({x117] 4+ xﬁ" = 0}) = h(by,--+,by), 0 < k < nand
(V,0) = {(x1,x2,--+ ,xn) € C" : g(x1,x2, -+ ,x4) = 0}, (n > 2) be an isolated singular-
ity with weight type (wq, wa, - -+, wn; 1). Then, 8 (V) < hi(1/wy, -+, 1/wy).

In [23], the inequality conjecture for d; (V) was also proposed in following way:

Conjecture 2 ([23]). With the above notations, let (V,0) be defined by g € O,, n > 2. Then,
5(k+1)(V) < 5k(V),k > 1.

For binomial and trinomial singularities, Conjecture 1 holds true when k = 1,2,3,4
([12,17,20,23,24]), and Conjecture 2 holds true for k = 1,2, 3 ([23,24]).

The main goal of this study is to confirm Conjecture 1 (resp. Conjecture 2) for binomial
and trinomial singularities when k = 5 (resp. k = 4). The following are our key findings.

Theorem 1. Let (V(g),0) = {(x1,x2,-+-,x4) € C": x?l + . +xZ” =0}, (n>2; bj >
7, 1 < j < n), where b; are fixed natural numbers. Then,

S

i— 61

55(V(g)) = hs(by,--- ,bn) = b —

M-

(bj = 5).

6)]

i=1

j=1

Theorem 2. Let (V,0) be a binomial singularity, which is defined by g(x1, x2), a weighted homo-
geneous polynomial with weight type (wy, wy; 1) and mult(g) > 7. Then,

Theorem 3. Let (V,0) be a binomial singularity, which is defined by g(x1,x2), a weighted homo-
geneous polynomial with weight type (wy, wy; 1) and mult(g) > 7. Then,

05(V) < 4(V).

Theorem 4. Let (V,0) be a trinomial singularity, which is defined by g(x1, x2, x3), a weighted
homogeneous polynomial with weight type (w1, wy, w3; 1) and mult(g) > 7.
Then,

o)}

1 1 1

3
55(V) < h5(a, ;2';3) =)
=1

]

— 8‘»—\

3
1

&~

i=1 "

Q1

(S

]

Theorem 5. Let (V,0) be a trinomial singularity, which is defined by g(x1, x2, x3), a weighted
homogeneous polynomial with weight type (w1, wy, w3; 1) and mult(g) > 7.
Then,
d5(V) < d4(V).

2. Preliminaries

Proposition 1.2 of [25] states: Let finite dimension associative algebras A and B have
units for the tensor product,

DerS = (DerA) ® C(B) + C(A) ® (DerB).
Theorem 6 ([25]). For commutative associative algebras A, B,
DerS = (DerA) @ B+ A ® (DerB). 1)

The following result is used in this work.
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Theorem 7 ([17]). Forideal Jin R = C{xy, -+ ,xn},
(DeryR)/(J - DercR) = Derc(R/J).

The linear endomorphism D of commutative associative algebra A with
D(ab) = D(a)b+ aD(b) is called a derivation of A.

Proposition 1. Analytically, a weighted homogeneous fewnomial singularity g with mult(g) > 3
is equivalent to a linear combination of the series:

Type A. xlfl + xgz +- 3+ o>,
Type B. xlljlxz + x§ZX3 + ... —I— xnﬂllxn + xﬁ”, n>2,
Type C. xll’lxz + xgzxg 4+ 4 xﬁ”:llxn +xlixy, n > 2.

Corollary 1. Analytically, each binomial isolated singularity is equivalent to one of the three series:
A) xlfl + xgz, B) x1 Xp + x2 ,C) x1 Xy + x2 X1.

Proposition 2 ([26]). Let g(x1,x2, x3) be a weighted homogeneous fewnomial isolated singularity
with mult(g) > 3. Then, g is analytically equivalent to one of the five series:

Type 1. x? —|—x§2 + xg ,

Type 2. blxz + x2 x3 + x

Type 3. x?l Xo + x2 X3 + x3 X1,

Type 4. x;' + x22 + x3 x1,

Type 5. le; X2 + x2 X1 —|—x3 .

3. Proof of Theorems

The following propositions will be used to prove the main results of this paper.

Proposition 3. Let (V(g) 0) be an isolated singularity and ¢ = xb + xb c Xy
(bj >7,j=1,2,---,n)beaweighted homogeneous polynomial with weight type ( o b S, bin; 1).
Then,
n b *6 n
)=) i —=[1(;-5)
i bi =55

Proof. After simple calculation, the moduli algebra M5(V) has a monomial basis of
the form

{xlaf 2 0< i <bi—6,0<ja < b6, ,0< ju < by — 6},

with the following relations:

=00 = 0,70 =0, a0 =0 @)

Without loss of generality, one can write derivation D in terms of the monomial basis
in the following way:

b1—6b,—6 b,—6 ,
L i 2 i g
Dx; = Z Z Z Civ o inX1 X2 x,,1=1,2, M.
j1=0 j»=0 jn=0
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The sufficient and necessary conditions may be found using the relations (2) to define
a derivation of M5(V) in following way:

Cg),jzr]'sﬂ'“r]'n =00<jp<bh—-60<j3<b3—6,---,0<j, <b,—6;

C]2'1,0’]'3”.“,jn = 0,0 S ]1 S bl _6/0 S ]3 S b3 _6/‘ o /0 S jn S b}’l _6/

C?1,j2,0,~~-,jn =00<p<hh—-60<jp<b—6-,0<ju<by,—6
CZ/j21j3r"'rjn—1/0 =0,0< jl < bl —6,0< j2 <by—6,---,0< ]‘nfl <byq1—6.

The Lie algebra £5(V) has the following basis:
Xjx) x, 1< i Sbi—60<p<by—60<js<by—6 0y <by—6
x]] ]2~~~ j'182,0§j1§b1—6,1 sz§b2_610§j3§b3_6/"'/0§j”Sb”_é;

A iy, 0<j1 <by—6,0<jp<by—61<j3<by—60<js<bs—6
0§]5§b5*6,0§]6§b676,,OS']nSbn76,

AR 0, 0< ji <b—6,0<jp<bp—60<j3<by3 6, ,1<jy<b—6

This implies

O

Remark 1. Let (V(g),0) be a fewnomial isolated singularity, where g= xlf + xgz (b;>7,j=12)
is a weighted homogeneous polynomial with weight type (X by b ;1). Then, from Proposition 3,

we obtain
05(V) = 2b1by — 11(by + by) + 60.

Proposition 4. Let (V,0) be a binomial singularity of type B defined by g = xl Xy + x
(b1 > 6, by > 7) with weight type (%bl, bl ;1). Then,

35(V) = 2b1by — 11(by + by) + 63.
For mult(g) > 7, we conclude that

bib3 b1by

2
2b1by — 11(by + bp) + 63 < —11(b 7 +b2) +60.
-

by —1

Proof. After simple calculation, the moduli algebra M5(V') defined as

M5(V) = (C{xll x2}/(gx1x1x1x1x1/gxzxzxzxzxz'gx1xzx2x29<2'gxlxlxzxzxygxlxlxlxzxygxlxlxlxlxz)

has a monomial basis of the form

{(1x2,0 < jy <by—6;0 < jo < by — 6217} )



Mathematics 2022, 10, 2618 50f12

Without loss of generality, one can write derivation D in terms of the monomial basis
in the following way:

bi—6b—6 . b
Dxj= ), ), C}l/fzx]llxéz + oy s0% L, i=12
/1=0 j2=0
The Lie algebra £5(V) has the following basis:
0,1 <1 <bi—6,0<j <by— 6K}, 0 < ji <by—6,1< o <h— 6

x§2‘6al; x;’]*581; x?ﬁSBZ.
We obtain the following formula
05(V) = 2b1by — 11(by + by) + 63.
Finally, we need to show that

2b, b2
by —1

bib;
by —1

2b1by — 11(by + b)) + 63 < —11¢( + by) + 60. 4)

After solving 4, we have by (b, —9) + by(by —5)+5>0. O

Proposition 5. Let (V,0) be a binomial singularity of type C defined by g = xll’1 X + xé’le
(b1 > 6,by > 6) with weight type (b?i;—ll' b?i%; 1). Then,

5 (V) . 2b1by — 11(b1 +b2) +66; by >7,bp>7
5 o b2—2,' b1:6,b226.

For mult(g) > 7, we conclude that

2(byby —1)?

2bibp —11(by + b)) +66 < —— -
1b2 = 11(b1 +b2) CERICED

by + by —2
—11(byby — 1) (2 )+ 60.

(b1 = 1) (b2 —1
Proof. After simple calculation, the following moduli algebra

MS(V) = (C{xlz xz}/(gx1x1x1x1x1/gxzxzxzxgxzfgxlxzxzxzxzrgx1x1x2x2x218x1x1x1x2x2r gx1x1x1x1xz)

has a monomial basis of the form

(12,0 < j1 < by — 6,0 < jy < by — 6271776275, ()

Without loss of generality, one can write derivation D in terms of the monomial basis
in the following way:

by —6b,—6 o
L i J1.,.J2 i b1 -5 i by—5 .
Dxi= Y, ), ¢ p X% +ch 50X gy, 5% i=12
j1=0 j2=0

The Lie algebra £5(V) has the following basis:

lellszlzalll <h<bh—60<jp<h *6;95{19(]2232,0 << —61<p<bh—6

by—6 by—5 b—5 by—5 b—6 b—5
Xyt 01Xy 01X 01Xy 02, Xy 02Xy T0a.
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Therefore, we obtain
55(V) = 2b1by — 11(by + by) + 66.
For by = 6,b, > 6, we obtain the following bases of Lie algebra L5(V):

X, 1< jp <bp—5; x3275al)xlal;x182-

We also need to show that

2(b1by —1)? by +b, —2
2b1by —11(b1 + b)) +66 < ——=——-— —11(b1by — 1) (+—————) +60. (6
102 (1 2) _(bl—l)(bz—l) (12 ><(b1—1)(b2—1)) ()
After solving 6, we have
b1b3[(by —4)(by — 4) — by (by — 7)] + b5 + 4b%by + 1003 (by — 5) + 6b1ba(by — 5)
“1‘317%(172 —5) + bybp(by — 5) + 1561 +2(by —5) > 0.

Similarly, we can check that Conjecture 1 holds true for by = 6,b > 6. O

Remark 2. Let (V,0) be a trinomial singularity of type 1 defined by g = xllj1 + xgz + xl373
(b1 > 7,by > 7,b3 > 7) with weight type (bl—l, bl—z, %,‘ 1). Then, from Proposition 3, we obtain

05(V') = 3b1bybs + 85(by + by + b3) — 16(b1by + bybs + bobs) — 450.

Proposition 6. Let (V,0) be a trinomial singularity of type 2 defined by g = xllj1 Xy + xgz X3 + xg3

(b1 > 6,by > 6,b3 > 7) with weight type (%, l;fzb;, b13 1). Then,

(55(V) = +85b, — 493; by >6,bp >7,b5>7

3b1bybs — 16(b1by 4 bibs + babz) + 89(by + bs)
2b1bs — 7by — 9b3 + 29; by > 6,bp =6,b3 > 7.

Forby > 6,by > 7,bz > 7, we conclude that:

3b1b%bg
3b1bybs — 16(b1by + b1bs + bybs) +89(b1 + b3) + 85b, — 493 <
1b2b3 — 16(b1ba + b1bs + babs) + 89(by + b3) 2 A= bs 5 babs) (b3 — 1)
6 b 202 bbb b bibabs
(1 *b3+b2b3)(b3 — 1) 1—bs+bybs b3—1 1— b3+ bybs
4 Db o+ b3) — 450.
bz —

Proof. After simple calculation, the moduli algebra Ms(V) has the following basis:

(D xPxB,0 < jy <by— 60 <y <by—6;0 < j5 < bg—6;x517°xL,0 < j3 < b3 — 6

lelx? ,0< jl < b1 — 6}.

Without loss of generality, one can write derivation D in terms of the monomial basis
in the following way:

—6by—6b3—6 b—6 b3—6

3
2 03 1 i jab1=5 . _
Dx; E E E ch]z]le Xy X3 + E c]10b3 57 x3 + E Ch—50,,%3 X1 1—1,2,3.
=0 j2=0 j3=0 j1=0 j3=0
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The Lie algebra £5(V) has following basis:

Aalxlay, 1<y < b1—6 0<jp<by—60<j3<by—6x"° fSal, 0<js<bs—6,
X2 70xBay, 1< j3 < by — 6; 622709y, 0 < jy < by —

lelx]zx];aZr 0<j1<b—=61<j<b—-60<j3< b3—6;x1 X332, 0<j3<b3—6
]1 X559y, 0< jy < by — 6;x’fx§3‘682, 1<ji <b—6

a2, 0< j1 <by—6,0<ja <by—6,1<j3 < bs—6,x)x2 7533, 0< jy <b —

x§1‘5x§3a3, 1<j3<bs—6.

We obtain

05(V') = 3bybybs — 16(byby + bybs + bybs) + 89(by + bs) + 85b, — 493.

For by > 6,b; = 6,b3 > 7, we obtain the following basis:

1501, 1< j1 <bi —5,0< j3 <bs— 6,2 1291, 0 < jy < by —6,
]ilxzaz, 0<j1<b— ]fx? %9,, 1< j1 <by —
x]fx?as, 0<j1<b—51<j3<bs—6x]x0; 0<j <b —
We obtain
05(V') = 2b1b3 — 7by — b3 + 29.

For by > 6,bp > 7,b3 > 7, we need to prove following inequality:

3byb2b3
3bybybs — 16(byby + bibs + bybz) + 89(by + bs) + 85by — 493 < 273
1b2b3 — 16(b1ba + b1bs + babs) + 89(by + b3) 2 =5+ bobo) (b5 — 1)
b1 b2b2 b1b,b? be
—16( 10303 n 17205 5203 | g5 b1bab3
(1—=>b3+bobs)(b3—1)  1—bg+bybs by3—1 1— b3+ bybs
+bb2b3 + by) — 450.

After solving the above inequality, we obtain
(b1 —4)3(ba — 6)bs + (by — 5)byb3((bs —4) (b1 — 6) + (by —4) (b3 — 4)) + b2 (3b3 — 5)(b1 —
4) 4+ by(by —3)+6 > 0.

Similarly, one can prove that for by > 6, b, = 6,b3 > 7 Conjecture 1 holds true. [

Proposition 7. Let (V,0) be a trinomial singularity of type 3 defined by ¢ = x’lJl X2 + xgz X3 +
x§3x1 (b1 > 6,by > 6,b3 > 6) with weight type

1—b3+bybs 1—by+bibs 1 —by+biby

( 14 bbby ~ 14+ bbby ~ 14+ bbbz’
Then,
3b1bybs + 89(by + by + b3) — 16(b1by + b1bs + bobs)
—543; by 27,y >7,b3> 7
(55(V) = 2bybs — 9by — 7bs + 33; by =6,bp >7,b3> 6
2b1b3z — 7by — 9b3 + 33; by >6,bp =6,b3 > 6

2b1by — 9by — 7by + 33; b1 >7,bp >7,b3 =6
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Forby > 7,by > 7,bz > 7, we conclude that:
3(1+bybyb3)?
3b1babs 4+ 89(by + by + bz) — 16(b1by + bybs + bobs) — 543 < (1—b3+b2b3)(1—b11+121123)(1—b2+b1b2)

+85( 1+b1bybs + 14+b1bybs 1+b1bybs ) — 16( (141 byb3)? + (1+bybybs)?
T=b3+byby " T=by+bibs " 1-br+b1bs (1=b3+bab3)(1=b1+b1b3) ' (1—by+b1b3)(1-ba+b1b2)

(14b1byb3)?
+ (17b3+b2h31)(§73b2+b1h2)) — 450.

Proof. The moduli algebra M5(V) has the following monomial basis

{1 xPxB,0 < jy < by — 60 < jy < by —6;0 < j5 < by —6;x51°xL,0 < j3 < b3 — 6

x]x33 50<]2<b2—6xh 275 0 < j; < by — 6.

Without loss of generality, one can write derivation D in terms of the monomial basis
in the following way:

b1—6 by—6 b3—6 . —6
1.,.J2..3 5 —5.73

D Z Z Z C]1 ]2]3x]1 x]2 xé + Z C]1 b,—5 Oxl x22 + Z Cbl 50]3 xé

=0 j=0 j3=0 j1=0 ja=

b—6

j2,b3=5 - _
Z C0]2b3 5x2x3 , 1—1,2,3.
j2=0

The Lie algebras £5(V) have the following bases:

A2, 1< ji <by—6,0<j <by—6,0<j3<bs—6;x2x27°9, 0< jp <bp—7,
X2 70xBy, 1< j3 < by — 5,6 22729y, 0 < ji < by — 6,251 7°xL3y, 0 < j3 < by — 6,
lelszx?az, 0<j1<b;—61<jp<b—-60<j3< b3—6'x x382, 0<j3<bz—6,
a5, 0 < jy < by — 6;x1 5709y, 1< jy < by —6;22x57%,, 0< j, < by —
xf;xf;x 9% 0<ji<b=60<p<b-61<j3<by—6 a2 7%9;, 0 < jy < by —6,

W23, 1< jo < by — 6;x2x57595, 0 < jo < by — 620 #2025, 0 < j5 < by —6.
Therefore, we have
65(V) = 3bybybs 4 89(by + by + b3) — 16(b1by + bybs + bybs) — 543.

In case of by = 6,b, > 7,b3 > 6, we obtain the following basis:

2 81, 1<j3<b3-5 x1x3 391, 0 < j3 < b3 —6; x22 581, 582,
x1x595, 0< ja < by — 6,250 )39, 1 < jo < by — 6,0 < j < by — 5,
Bz, 0< jo <by— 6,1 < j3 < by —5,x1x595, 0 < js < by — 6;x52 "0,

Therefore, we have

(55(V) = 2byb3 — 9by — 7b3 + 33.

Similarly, we can obtain bases for by > 7,0y > 7,b3 = 6 and by > 6,b, = 6,b3 > 6.
For by > 7,by > 7,b3 > 7, we need to prove following inequality:

3(1+b1byb3)3

3b1bybs + 89(b1 + by + bg) — 13(b1b2 + b1bs + b2b3) —543 < (T=b375ab3) (1—by b1 b3) (1—b3 b1 B3
1+b1byb 1-+b1byb 1+b1byb (14b1byb3)? (1+4b1byb3)?
+ 85(1—1731'«'%223 + 1- b11+l27123 + 1— bz:‘£1£2> o ((l*h3+b2b3l)(ifh1+b1b3) + (17b1+b]b3])(%73b2+b1b2)

(1+bybybs)?
+ Tiarbaby (1o i) — 490-
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After solving the above inequality, we obtain

4(b1b2 + bybs + b]b3) + bl(bz - 6) + bz(b3 - 6) + b3(b1 - 6) + 4b%[b2(b3 - 6) + b3(b2 - 6)]
+ 3b%[b1(b3 — 5) + bg(bl - 6)] + 5b§[b1 (bz — 6) + bz(bl - 5)] + Z(b% + b% + b%) + 3(b:15b2 +
b3bs
+ b3b1) +2b2b3b3 4 5(b1b3bs + bybab3) + 2b2bybs + by babs[2by — 10] + b3byb3 (b — 6) (b — 6)

b2b2(b3 —6)(b1by — 6) + b2bab3(bs + by — 7) + 3b1byb3 (by — 6) + b2b3bs(bs — 6)(by — 5)
+ beZ(b1 —6)(baaz — 5) + b3bybs (by — 6) + b2b3bs(by — 5+ (by — 6)) + byb3b3 (br — 6) (by
—-5)+ b%b%(bz —6)(bhb3—6)+11 > 0.

Similarly, we can check that Conjecture 1 holds true for 1): by, b3 > 6,b, = 6; 2):
by >7,bp >7,b5 =6;and 3): by =6,bp > 7,b3 > 6. O

Proposition 8. Let (V,0) be a trinomial singularity of type 4 defined by g = xl + x >+ x3 X2

(by > 7,bp > 7,b3 > 6) with weight type (bl’ blz bbébl,l) Then,

05(V') = 3b1babs + 89b1 + 85(by + bs) — 16(b1by + bibs + bybs) — 471.
For mult(g) > 7, we conclude that:
3b1bybs + 89b1 + 85(b2 + b3) — 16(b1b2 + b1bs + b2b3) 471 <
—16(byby + G2t L 28 ) — 450.

3b b1b3 +85(by + by + b2b3)

Proof. The moduli algebra M5(V) has the following monomial basis
(P, 0<ji B —6,0< o b =60 < j5 < by — 6625 >,0 < o < by — 6}

Without loss of generality, one can write derivation D in terms of the monomial basis
in the following way:

b1—6by—6 b3—6

Z Z Z C11]2]3 ]2 ]3+ Z Chob3 5x1x3 % i=1,2,3.

1=0 j2=0 j3=
The Lie algebras £5(V) have the following bases:
lelx]zx?al, 1< <1 —60<jp<bh—-60<j3<b3—6 x]fx? %9, 1< j1 < b —
71 ]2 1332, 1<j1<b—6 l<j2<b2—60<j3<b3—6'x]1 b3=53,, 0<jl < b —6,
x]22x73382,1<]2<b2—60<]3<b3—6x]11 683,0<]1<b1
W05, 0< 1 < by —6,0<ja <by—6,1<j3<by—6,x]x7 %93, 0< j < by —
Therefore, we have
05(V') = 3b1babs + 89b1 + 85(by + bs) — 16(b1by + bibs + bybs) — 471.

Next, we also need to show that when by > 7,b, > 7,b3 > 6,

3bybybs + 89b1 + 85(by + b3) — 16(byby + bybs + bybz) — 471 < 3b2b1b3

—16(b1by + Y2 b2b3) 450.

+85(by + b + 22)

From the above inequality, we obtain

bibs(2by, — 11

6b bilba(bs —5)+6
; . )+b2b3+b3(b2—4)+ 3 1[ 2( 3 )+ ]
y —

b, -5 by —5

> 0.
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Proposition 9. Let (V,0) be a trinomial singularity of type 5 defined by g = xll’1 Xy + xgle + xg3

(by > 6,by > 6,b3 > 7) with weight type ( bi’i;ll, blﬁz 11, i 1). Then,

(55(V) == —492,’ bl 2 7, bz Z 7, b3 Z 7

3b1bybs + 85(by + by) 4+ 93b3 — 16(b1by + bybs + bobs)
2byby — 11by — 6b3 + 34; by =6,bp >6,b3 >7

Forby > 7,by > 7,bz > 7, we conclude that:

3bybybs + 85(by + by) + 93bs — 16(byby + bybs + bybs) — 492 < (’»‘%(bl)b@ ”) +85(4kt +

byby—1
by —1
(byby—1)? b3(byby—1) | bz(byby—1)
+b3) — 16((b2_11§(b1_1) + 2 bifl + 2 h;fl ) — 450.

Proof. The moduli algebra M5(V) has the following monomial basis

(I x2xP,0 < ji < by —6,0<jo <by—6;0< j3 < by —6;517°x8,0 < j5 < by — 6;

br—5 .
X2 75x,0 < j3 < by — 6},

Without loss of generality, one can write derivation D in terms of the monomial basis
in the following way:

—6by—6b3-6 By e s
]1 ]2 ]3 ]3 2 ]3 .
Z Z Z Jj2.da™ +Zch1 5013 +260b2 5,32 3, 1=1,2,3.
j1=0 j2=0 j3=0 A=

The Lie algebras £5(V) have the following bases:

W0, 1< i < —6,0<ja <by—6,0 < j3 < by — 627" x50y, 0< j3 <by—6,
X 0xB0, 0< s <bs— 6,28 x50, 0< j3 < b3 —6,

a2l 0< j1 <by—6,1<j <by—6,0<j3<bs—6;x1x23y, 0< j3 < b3—6,
525]382,0<]3<b376x xé382,0§j3§b376,

by, 0< i< by —6,0<jp<by—61<j3<by— 620 xPas, 1<j3<bs—6,

xZZ_Sx];agj, 1 S j3 S b3 — 6.
Therefore, we have
05(V') = Bb1babs + 85(by + ba) 4+ 93b3 — 16(b1by + bibs + babs) — 492.

For by = 6,b, > 6,b3 > 7, we obtain the following basis:

W2xldy, 1< jp <by—5,0<j3 < bs—5x2*xPd;, 0< j3 < by —5,
x1x381, 0<j3<b3—-5; sz —4 ]382, 0<j3<b3-5,
zxéag,, 0<jpp<b—-51<j3< b3—5'x1x382, 0<j3<b3-5
x1x3 305, 1 < j3 < by —
We have
05(V') = 2bobs — 11by — 6b5 + 34.
Next, we need to show that when b; > 7,b, > 7,b; > 7, then

3bybobs + 85(by + by) + 93bs — 16(byby + bybs + babs) — 492 < fbb;fb;)”(z 1)) +85(42 +

byb 1 byby—1)2 b3(b1bp—1 bs(byby—1
BT bs) — 16( gyt iy + PR+ R — 450,
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After solving the above inequality, we obtain
b1 (b1 — 6)(by — 5) (b3 + (by — 4)ba(by — 6)b3) + bF (b3 — 5) (by — 4) + b3by + 4b1 (b, — 5)
+ 4b2(b1 - 5) + 4b3(b1 — 4) + 11b1by + 13b1b3 + 4byb3 + 210y + b1bz(b1 - 5)
+ (by —4)by(by — 5)(b3 —4)+ (bl —5)(b3 —6)+21>0.
Similarly, for by = 6,b, > 6,b3 > 7, Conjecture 1 also holds true. O
Proof of Theorem 1.
Proof. Proposition 3 implies the proof of Theorem 1. [
Proof of Theorem 2.

Proof. Theorem 2 is an immediate corollary of Remark 1, Proposition 4, and
Proposition 5. [J

Proof of Theorem 3.

Proof. It follows from Propositions 4-5, Remark 1 and Propositions 4-5, Remark 3 of [23]
that the inequality J5(V) < 64(V') holds true. O

Proof of Theorem 4.
Proof. Propositions 6-9 and Remark 2 imply the proof of Theorem 4. [
Proof of Theorem 5.

Proof. Itis follows from Propositions 6-9, Remark 2 and Propositions 6-9, Remark 4 of [23]
that the inequality J5(V) < é4(V') holds true. O

4. Conclusions

The 6, (V) is a new analytic invariant of singularities. To find the dimension of a
newly defined algebra is an important task in order to study its applications. In this
paper, we computed the dimension of the Lie algebra £5(V') and proved the sharp upper
estimate conjecture partially for & (V) of fewnomial isolated singularities (binomial and
trinomial). We also proved the inequality conjecture: d5(V) < 64(V) for a general class of
singularities. The main results of this paper are the extension of previous results published
in [23]. The novelty of this paper is the validity of Conjectures 1 and 2 regarding a large
class of singularities, for higher values of k. The present work may also help to verify the
two inequality conjectures for the general k.
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