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Abstract: This paper addresses the theoretical foundation of a localization method for crack detection
in a concrete sample based on the time of arrival of the elastic wave generated by the crack formation
to a group of sensors positioned on the boundary of the sample. The equations of motion for the
elastic waves are carefully presented, including a body force term which accounts for the sudden
formation of a crack. Then, a localization method based on the detection of acoustic emissions, and
specifically on their arrival times, is described. Finally, a discretization scheme for the 2D equations
of elasticity is developed, and some numerical experiments are performed to assess the validity of
the method.
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1. Introduction

In recent years, many university researchers have studied the problem of concrete
damage through the use of Acoustic Emission [1–5]. Acoustic emission (AE) is a natural
phenomenon that occurs in the presence of a crack, or a dislocation source, in a material.
The response of concrete to the load to which it is subjected in both compression and tension
is affected by cracking. Researchers first investigated the microscopic behavior of concrete
under compressive stress. The findings in [6–8] show that the stress–strain response of
concrete is closely associated with the formation of microcracks, that is, cracks that form at
coarse-aggregate boundaries (bond cracks) and propagate through the surrounding mortar
(mortar cracks), as shown in Figure 1.

During the early studies on microcracking, concrete was considered to be composed
of two brittle, linear and elastic materials: the paste and cementitious aggregates; moreover,
the main causes of the non-linear stress–strain behavior of concrete in compression were
considered to be microcracks [6,8]. This approach changed in the 1970s. Cement is a
non-linear softening material, as is the mortar that makes up the concrete. The nonlinear
compressive behavior of concrete depends largely on the response of these two materials
and depends less than originally thought on the bond and microcracks of the mortar [9–11].
However a significant portion of the nonlinear deformation of mortar and cement is
due to the formation of microcracks several orders of magnitude smaller. The effect of
macroscopic cracks on the performance and failure characteristics of concrete is also an
important factor. They reduce the characteristic resistance of the material and are formed as
a union of microcracks in a given neighborhood. In the analysis of the AE signals generated
in concrete, it is assumed that each fracture consists of the sum of many microcracks
that join to compose a larger fracture. The largest crack will be characterized by the
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maximum amplitude of the AE signal. The signal is recorded by special acoustic emission
sensors operating at precise resonance frequencies and in the ranges between 50 and
400 kHz [12–14]. These frequencies represent the range in which the signal develops within
the concrete under stress.

(a)

(b)
Figure 1. Microphotography of a crack in mortar (a) and its schematic representation (b).

Different methods for studying and analyzing these signals can be found in the
literature. One of the most recent and interesting methods is the one that links the b value
to AE signals. This method is based on the Gutenberg Richter law (GBR), typically used in
seismology to study earthquakes [15,16]. The GBR law defines the relationship between
the magnitude and the total number of recognized earthquake events in a region during a
predetermined time interval. The b-value parameter, defined within the framework of the
GBR law, is used to select AE signals that identify critical damage events [17,18]. Specifically,
critical AE signals are selected provided that the b-value has a value in the neighborhood
of 1. In fact, in this neighborhood, the AE signals have the highest amplitude and are
generated by the most important damage events. This extension of a law of seismology
to AE was possible because of the strong similarities between acoustic waves and seismic
waves. In fact, both types of waves can be classified as damped waves, characterized by
a peak and a progressive damping of the signal. This technique is used to detect major
cracks that develop in concrete during different types of tests, such as the compressive
test or the three-point test. To date, the interest of the scientific community has focused
on the use of this and other methods to study composite materials and concrete under
flexural stresses in order to facilitate the identification of the area where damage develops.
The study of a brittle material, such as concrete, is more challenging because the entire
section of the compression-proof material is subjected to stress, making the area early
damage development uncertain. In addition, we briefly mention that another aspect
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that could influence the propagation of AE in a porous material, such as concrete, is the
aggression of the material by some chemical pollutant [19,20].

Another interesting issue is the localization of the damage which is the source of AE.
This is one of the most important criteria for damage detection and classification. In [21],
the authors investigated a microseismic/acoustic (MS/AE) emission source localization
method to predict and control the formation of potentially dangerous fractures in complex
structures. In order to avoid localization errors induced by both the irregular shape of
concrete structures and the propagation velocity of elastic waves, a velocity-free MS/AE
source localization method was developed. The method avoids repetitive manual training
by using equidistant grid points for path finding, introducing the A* search algorithm and
using grid points to fit complex structures and velocity-free source localization. Other
localization methods not aimed at damage localization in fragile materials such as concrete
but useful for improving the accuracy of indoor localization are based on the integration of
inertial navigation system (INS) with wireless sensor network (WSN) [22].

Several studies have been carried out by researches in relation to AE source localization
and are available in the literature [23,24]. These different methods are characterized by
uncertainty about the location of cracks and need to be improved for brittle materials
subject to compression. They often depend on the wave propagation velocity in the
material, and no index exists in the literature for materials such as concrete, but there are
uncertain ranges from 5000 to 10,000 m/s. A possible approach to validating and seeking
damage in concrete is based on the use of X-ray tomography. This technology is still in the
experimental stage, and it could provide 3D reconstructions of the specimens before and
after testing, allowing the exact location of cracks to be obtained, with results comparable to
those obtained with localization methods. Concrete is an X-ray shielding material, and so
far, the experimentation has only been applied to small specimens [25].

This paper addresses the theoretical foundation of a localization method for crack
detection in a concrete sample based on the time of arrival of the elastic wave, generated
by the crack formation, to a group of sensors positioned on the boundary of the sample.
The following Section 2 is devoted to writing the equation of motion for the elastic wave,
with a body force term which accounts for the sudden formation of a crack. A localization
method is described on Section 3, and, finally, some numerical experiments are performed
in Section 4 to assess the validity of the method.

2. Equations of Motion

We consider a sample of concrete, which is subject to pressure stress along the vertical
direction. The sample is not homogeneous, but it is possible to extract effective elastic
properties, so that it can be modeled as an elastic material with Lamé constants λ, µ.
The compression stress will eventually produce one or multiple cracks inside the sample,
which will cause the propagation of elastic waves. The waves can be detected by some
sensors located on the boundary of the sample. Here, the relevant information is the time
of detection of the wave arrival at each sensor. The problem that we want to solve is the
identification of the position of the cracks by using only the above information. Together
with the position, we also want to determine the time of the cracks’ formation.

Before discussing the identification procedure, we present the mathematical model
of the direct problem, that is, the propagation of an elastic wave in a concrete sample,
originated by a single pointsize crack formation inside it at a given time. We give a brief
summary of the classical theory, following [26]. Let us consider a displacement field
u(x, t) ∈ R3, with space coordinates x ∈ Ω ⊂ R3 and time t > 0. Here, Ω represent
the region occupied by the sample. The displacement field satisfies the dynamic elastic
equilibrium equations:

ρ
∂2u
∂t2 = ∇·σ + f, (1)

where ρ is the density, depending on space; σ is the stress tensor; and f is a body force term,
depending on space and time. For an isotropic medium, Hooke’s law provides a linear
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constitutive relation for the stress tensor σ in terms of the strain tensor ε := 1
2 (∇u +∇uT),

that is,
σ = λTr(ε)I + 2µε, (2)

where λ and µ are Lamé’s first and second parameters, respectively. They can be expressed
in terms of the Young modulus E and the bulk modulus K by λ = 3K(3K−E)

9K−E and µ = 3KE
9K−E .

In component form, let u = (u1, u2, u3), x = (x1, x2, x3), and the notation ua,t denote
the derivative of ua with respect to t, the notation ua,b denote the derivative of ua with
respect to xb, a, b = 1, 2, 3. Using Einstein’s convention of implicit summation for repeated
indices, we have:

εab =
1
2
(ua,b + ub,a), σab = λεccδab + 2µεab ≡ λuc,cδab + µ(ua,b + ub,a),

where δab is the Kronecker delta, and Equation (1) becomes:

ρua,tt = (λ + µ)uc,ca + µua,cc + fa, a = 1, 2, 3. (3)

The body force components fa will be chosen to model a sudden separation of two
sides of a fault localized in a point, which might be thought of as an infinitesimal planar
crack with a prescribed normal direction. Following the classical paper by Burridge and
Knopoff [27], let us assume that the displacement and its derivatives present a discontinuity
across a surface Σ embedded in Ω. Let n denote the normal direction to Σ, and [ua](x, t),
[ua,b](x, t) the discontinuity of ua, ua,b across Σ in the direction n. Then, the body force
equivalent is given by:

fa(x, t) =−
∫

Σ
nd

{
[uc](σ, t)ccdabδ,b(x− σ)

+ [uc,b](σ, t)cadcbδ(x− σ)
}

dΣσ ,
(4)

where δ is the Dirac delta function and δ,b is its (distributional) derivative with respect to
xb. The occurrence we want to describe is explicitly considered in [27], in the special case
when Σ collapses to the origin and n = e3 ≡ (0, 0, 1). Then, we have [u1] = 0, [u2] = 0,
[u3] = H(t)δ(x1)δ(x2), where H(t) is the Heaviside function, and the equivalent body
force has components:

f1(x, t) = −λH(t)δ,1(x1)δ(x2)δ(x3),

f2(x, t) = −λH(t)δ(x1)δ,2(x2)δ(x3),

f3(x, t) = −(λ + 2µ)H(t)δ(x1)δ(x2)δ,3(x3).

In compact form, introducing the diagonal matrix D = diag(λ, λ, λ+ 2µ), we can write:

[ua](x, t) = δa3H(t)δ(x1)δ(x2), fa(x, t) = −H(t)Dabδ,b(x). (5)

In the general case, we need to transform to new coordinates x′a with respect to a basis
e′a, such that e′3 = n. We then apply the previous result, and finally, we perform the inverse
transformation. Introducing the rotation matrix R, with R−1 = RT , defined by xa = Rabx′b,
na = Ra3, we have:

[ua](x, t) = na H(t)δ(Rb1xb)δ(Rb2xb), fa(x, t) = −H(t)RabDbcRdcδ,d(x). (6)

Here, we have used the inverse transformation x′a = Rbaxb and the property δ(Rx′) = δ(x).
The body force term can be translated to an arbitrary point x0 by replacing x with x− x0 inside
the Dirac delta functions.



Mathematics 2022, 10, 2673 5 of 14

Summing up, we model the formation of a crack in a concrete sample by Equation (3),
with

fa(x, t; n, x0) = −H(t)Rab(n)DbcRdc(n)δ,d(x− x0), (7)

where the parameter n is the normal direction to the crack and comprises three angular
variables in three dimensions (Euler angles) or an angular variable in two dimensions,
and the parameter x0 is the location of the crack, that is, three coordinates in three dimension,
or two coordinates in two dimensions, for a total of six parameters in three dimensions,
or three parameters in two dimensions. These parameters are treated as random variables.
The equations are supplemented with homogeneous Neumann boundary conditions on
the boundary of the space domain and with zero initial data.

Once we have a model for the propagation of the elastic wave generated by the
formation of a point crack, we need to address another important element for the definition
of the localization problem, described in the following section, that is, the velocity of
propagation of the elastic wave. To find the characteristic velocities, we look for a plane
wave solution for (3), with zero body force, of the form:

ua(x, t) = Uaei(k·x−ωt), k ∈ R3, ω ∈ R, (8)

where Ua and a = 1, 2, 3 are the amplitudes, k is the wavenumber vector, and ω is the an-
gular frequency. Plugging (8) in Equation (3) with fa = 0, we find the eigenvalue problem:

[(λ + µ)kakb + µ|k|2δab − ρω2δab]Ub = 0, a = 1, 2, 3, (9)

for the eigenvalue ω2 and eigenvector U = (U1, U2, U3). The solutions are:

ω2 =
λ + 2µ

ρ
|k|2 =: c2

p|k|2, U = k,

ω2 =
µ

ρ
|k|2 =: c2

s |k|2, U =

−k2
k1
0

,

−k3
0
k1

,

corresponding to dilatational and isochore waves, with velocities cp and cs, respectively. For
all the considerations in the next section, we will use the primary velocity cp to evaluate the
ratio between the distance of a sensor from the source of the crack and the corresponding
time of travel.

3. Crack Detection

As discussed in the previous section, the location and orientation of a sudden crack
are described by the vectors x0 and n. We assume to have N sensors, at the positions
xi = (x1

i , x2
i , x3

i )
T , with i = 1, 2, . . . , N. The i-th sensor detects the arrival of an elastic wave

at time ti, i = 1, . . . , N. We assume for simplicity that a crack only develops at the position
x0 = (x1

0, x2
0, x3

0)
T at time t0. As a working hypothesis, we also assume that the orientation

of the crack is not relevant for the effectiveness of the localization procedure that we will
present. We aim to identify x0 and t0 from the reading of the arrival times ti, i = 1, . . . , N.

We know that the speed of the elastic wave in the direction of the front propagation is
cp, so we have:

cp(ti − t0) = ‖xi − x0‖, i = 1, 2, . . . , N. (10)

To solve for (x0, t0), we need to minimize the residuals

ri = cp(ti − t0)− ‖xi − x0‖, i = 1, 2, . . . , N,
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that is, to minimize the function given by their quadratic norm,

S :=
N

∑
i=1

r2
i =

N

∑
i=1

(cp(ti − t0)− ‖xi − x0‖)2. (11)

This is a nonlinear least squares problem which can be solved by the Gauss–Newton
method. Before discussing this method, we present a strategy for choosing a good initial
guess by means of the simple intersection algorithm. The starting point is Equation (10),
which, after squaring both members, can be written in the form:

2xT
i x0 − 2c2

ptit0 = ‖xi‖2 − c2
pt2

i + ‖x0‖2 − c2
pt2

0. (12)

Introducing the vectors Xi = (x0
i , x1

i , x2
i , x3

i )
T , x0

i = cpti, i = 0, 1, . . . , N, and the matrix
η = diag {−1, 1, 1, 1}, we can write (12) as:2XT

1 η
...

2XT
n η

X0 =

XT
1 ηX1

...
XT

n ηXn

+

1
...
1

XT
0 ηX0,

that is:
AX0 = b + 1XT

0 ηX0. (13)

Finally, subtracting the first equation from the remaining N − 1 equations, we can
eliminate the nonlinear terms on the right-hand side and obtain an estimated value of X0:

X0 = (DA)†Db, D =
[
−1 IN−1

]
∈ RN−1×N , (14)

where the dagger denotes the Moore–Penrose pseudo-inverse of a matrix, that is:

M† = (MT M)−1MT .

Now, we can go back to the Gauss–Newton method, replacing the original least
squares problem for (11) with a sequence of linear least square problems. We write (11) as:

S =
N

∑
i=1

r2
i =

N

∑
i=1

(X0
i − fi(X0))

2, fi(X0) = X0
0 + ‖xi − x0‖, (15)

and the minimum occurs when the gradient of S with respect to X0 is zero:

∇X0 S = −2
N

∑
i=1

(X0
i − fi(X0))∇X0 fi(X0) = 0, (16)

with
∇X0 fi(X0) =

[
1 − xT

i −xT
0

‖xi−x0‖

]
. (17)

Assuming we know an approximation X(k)
0 of the solution for k ≥ 0, we set:

X(k+1)
0 = X(k)

0 + ∆X(k)
0 , (18)

and we solve for ∆X(k)
0 using the following approximate gradient equations:

− 2
N

∑
i=1

(
X0

i − fi
(
X(k)

0
)
−∇X0 fi

(
X(k)

0
)
∆X(k)

0

)
∇X0 fi

(
X(k)

0
)
= 0. (19)
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In compact form, introducing

r(X0) =

X0
1 − f1(X0)

...
X0

n − fn(X0)

 ∈ RN , J(X0) =

∇X0 f1(X0)
...

∇X0 fn(X0)

 ∈ RN×4, (20)

we can write:
J
(
X(k)

0
)T
(

r
(
X(k)

0
)
− J
(
X(k)

0
)
∆X(k)

0

)
= 0, (21)

which yields the gradient equations:(
J
(
X(k)

0
)T J
(
X(k)

0
))

∆X(k)
0 = J

(
X(k)

0
)Tr
(
X(k)

0
)
. (22)

In conclusion, the proposed localization method consists of an initialization step, using
expression (14), and an iterative method defined by Equations (18) and (22).

4. Numerical Simulations

To validate the localization method developed in the previous sections, we perform
a two-dimensional numerical simulation of Equation (3), with a body force given by the
expression (7). Then, the sensors will be represented by a set of points on the boundary,
and the reading of a specific sensor by the the first time at which the displacement vector at
that point becomes different from zero.

We consider the two-dimensional version of system (3) in a rectangular sample
Ω = [0, lx] × [0, ly], with homogeneous Neumann boundary conditions and zero ini-
tial value: 

ρutt = [(λ + 2µ)ux + λvy]x + [µvx + µuy]y + f ,
ρvtt = [µvx + µuy]x + [λux + (λ + 2µ)vy]y + g,

for (x, y) ∈ Ω, t > 0,
ux = vx = 0, for x = 0, lx, y ∈ [0, ly], t > 0,
uy = vy = 0, for x ∈ [0, lx], y = 0, ly, t > 0,
u = v = ut = vt = 0, for (x, y) ∈ Ω, t = 0.

(23)

Here, for simplicity, we do not use indices for the dependent and independent vari-
ables, so (u, v)T is the displacement vector, depending on space variables x = (x, y)T and
time t, and the body force is ( f , g)T . Let θ be the angle formed by the infinitesimal crack line
Σ with the x-axis, so that the tangent vector to Σ is (cos θ, sin θ)T , and the normal vector is
n = (− sin θ, cos θ)T , and let x0 = (x0, y0)

T be the location of the crack. Then, the rotation
matrix R and the diagonal matrix D are given by

R =

(
cos θ − sin θ
sin θ cos θ

)
, D =

(
λ 0
0 λ + 2µ

)
,

and the expression (7) which gives the corresponding body force becomes(
f
g

)
= −H(t)(λI + 2µnnT)

(
∂x
∂y

)
δ(x− x0). (24)

For the numerical simulations, we use a representation of the Dirac delta:

δ(x− x0) ≈ ηε(x) ≡
1

2πε
e−
|x−x0 |2

2ε ,

so that (24) will be replaced by:(
f
g

)
≈ H(t)(λI + 2µnnT)(x− x0)

1
ε

ηε(x). (25)
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The maximum of both components of this function is cp

2πe1/2ε3/2 , so we divide the above
expression by this constant to obtain an approximation of the theoretical body force with
reasonable magnitude.

To integrate numerically (23) and (24), we use a box-integration method with two
staggered grids. We subdivide the interval [0, lx] in nx subintervals of equal length
hx = lx/nx, the interval [0, ly] in ny subintervals of equal length hy = ly/ny, and introduce
the primary grid points:

(xi, yj) = (ihx, jhy), i = 0, 1, . . . , nx, j = 0, 1, . . . , ny,

and the dual grid points:

(xi+ 1
2
, yj+ 1

2
) = (xi +

1
2 hx, yj +

1
2 hy), i = 0, 1, . . . , nx − 1, j = 0, 1, . . . , ny − 1.

The boxes for the primary grid are rectangles Ii,j with length hx and height hy, centered
on the internal grid points (xi, yj):

Ii,j = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
], i = 1, . . . , nx − 1, j = 1, . . . , ny − 1,

while the boxes for the dual grid are rectangles Ji,j with the same size, not touching the
boundary, and centered on the internal grid points (xi+ 1

2
, yj+ 1

2
):

Ji,j = [xi−1, xi]× [yj−1, yj], i = 2, . . . , nx − 1, j = 2, . . . , ny − 1.

We integrate the first equation in (23) over the primary boxes Ii,j and the second
equation over the dual boxes Ji,j, obtaining the equations:∫∫

Ii,j

ρutt dx dy =
∫∫

Ii,j

((λ + 2µ)ux + λvy)x dx dy

+
∫∫

Ii,j

(µvx + µuy)y dx dy +
∫∫

Ii,j

f dx dy, (26)∫∫
Ji,j

ρvtt dx dy =
∫∫

Ji,j

(µvx + µuy)x dx dy

+
∫∫

Ji,j

(λux + (λ + 2µ)vy)y dx dy +
∫∫

Ji,j

g dx dy. (27)

Introducing the notation

ui,j(t) = u(xi, yj, t), i = 0, . . . , nx, j = 0, . . . , ny,

vi,j(t) = v(xi− 1
2
, yj− 1

2
, t), i = 1, . . . , nx, j = 1, . . . , ny,

we can approximate:

∫∫
Ii,j

ρutt dx dy ≈ hxhyρ
d2ui,j

dt2 ,
∫∫

Ii,j

f dx dy ≈ hxhy f (xi, yj, t),∫∫
Ii,j

((λ + 2µ)ux + λvy)x dx dy =
∫ y

j+ 1
2

y
j− 1

2

[(λ + 2µ)ux + λvy]
x

i+ 1
2

x
i− 1

2
dy

≈
hy

hx
(λ + 2µ)(ui+1,j − 2ui,j + ui−1,j) + λ(vi+1,j+1 − vi,j+1 − vi+1,j + vi,j),∫∫

Ii,j

(µvx + µuy)y dx dy =
∫ x

i+ 1
2

x
i− 1

2

[µvx + µuy]
y

j+ 1
2

y
j− 1

2
dx

≈µ(vi+1,j+1 − vi,j+1 − vi+1,j + vi,j) +
hx

hy
µ(ui,j+1 − 2ui,j + ui,j−1),



Mathematics 2022, 10, 2673 9 of 14

which leads to

d2ui,j

dt2 =
λ + 2µ

h2
xρ

(ui−1,j − 2ui,j + ui+1,j) +
µ

h2
yρ

(ui,j−1 − 2ui,j + ui,j+1)

+
λ + µ

hxhyρ
(vi+1,j+1 − vi,j+1 − vi+1,j + vi,j) + f (xi, yj, t). (28)

In the same fashion, we can approximate:

∫∫
Ji,j

ρvtt dx dy ≈ hxhyρ
d2vi,j

dt2 ,
∫∫

Ji,j

g dx dy ≈ hxhyg(xi− 1
2
, yj− 1

2
, t),∫∫

Ji,j

(µvx + µuy)x dx dy =
∫ yj

yj−1

[µvx + µuy]
xi
xi−1 dy

≈
hy

hx
µ(vi+1,j − 2vi,j + vi−1,j) + µ(ui,j − ui,j−1 − ui−1,j + ui−1,j−1),∫∫

Ji,j

(λux + (λ + 2µ)vy)y dx dy =
∫ xi

xi−1

[λux + (λ + 2µ)vy]
yj
yj−1 dx

≈λ(ui,j − ui−1,j − ui,j−1 + ui−1,j−1) +
hx

hy
(λ + 2µ)(vi,j+1 − 2vi,j + vi,j−1),

which leads to

d2vi,j

dt2 =
µ

h2
xρ

(vi−1,j − 2vi,j + vi+1,j) +
λ + 2µ

h2
yρ

(vi,j−1 − 2vi,j + vi,j+1)

+
λ + µ

hxhyρ
(ui−1,j−1 − ui−1,j − ui,j−1 + ui,j) + g(xi− 1

2
, yj− 1

2
, t). (29)

Equation (28) has been derived for i = 1, . . . , nx− 1, j = 1, . . . , ny− 1 and Equation (29)
for i = 2, . . . , nx − 1, j = 2, . . . , ny − 1. We can extend them to the other values of i and
j by using ghost nodes and enforcing the boundary conditions. We introduce the ghost
nodes x−1 = −hx, xnx+1 = lx + hx, y−1 = −hy, yny+1 = ly + hy, and the following mirror
conditions with respect to the boundary, which enforce homogeneous Neumann conditions
for u and v:

u−1,j = u1,j, unx+1,j = unx−1,j, j = 0, . . . , ny, (30)

ui,−1 = ui,1, ui,ny+1 = ui,ny−1, i = 0, . . . , nx, (31)

v0,j = u1,j, vnx+1,j = vnx ,j, j = 0, . . . , ny + 1, (32)

vi,0 = u1,j, vi,ny+1 = vi,ny , i = 0, . . . , nx + 1. (33)

In this way, we obtain (nx + 1)(ny + 1) Equation (28) for the unknowns ui,j,
i = 0, . . . , nx, j = 0, . . . , ny, coupled with nxny Equation (29) for the unknowns vi,j,
i = 1, . . . , nx, j = 1, . . . , ny.
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After a standard finite difference approximation with three points for the second-order
time derivative, with time step τ, we obtain the following scheme:

uk+1
i,j = 2uk

i,j − uk−1
i,j

+
(λ + 2µ)τ2

h2
xρ

(uk
i−1,j − 2uk

i,j + uk
i+1,j) +

µτ2

h2
yρ

(uk
i,j−1 − 2uk

i,j + uk
i,j+1)

+
(λ + µ)τ2

hxhyρ
(vk

i+1,j+1 − vk
i,j+1 − vk

i+1,j + vk
i,j) + τ2 f (xi, yj, tk), (34)

vk+1
i,j = 2vk

i,j − vk−1
i,j

+
µτ2

h2
xρ

(vk
i−1,j − 2vk

i,j + vk
i+1,j) +

(λ + 2µ)τ2

h2
yρ

(vk
i,j−1 − 2vk

i,j + vk
i,j+1)

+
(λ + µ)τ2

hxhyρ
(uk

i−1,j−1 − uk
i−1,j − uk

i,j−1 + uk
i,j) + τ2g(xi− 1

2
, yj− 1

2
, tk), (35)

where the superscript denotes the index of the time tk. The above scheme provides the
update for the unknowns on the grid points at time tk+1 in terms of the same unknowns at
times tk−1, tk. To initialize, we use:

u0
i,j = ui,j(0) = 0, v0

i,j = vi,j(0) = 0

u1
i,j ≈ ui,j(0) + τ

dui,j

dt
(0) +

τ2

2
d2ui,j

dt2 (0) =
τ2

2
d2ui,j

dt2 (0),

v1
i,j ≈ vi,j(0) + τ

dvi,j

dt
(0) +

τ2

2
d2vi,j

dt2 (0) =
τ2

2
d2vi,j

dt2 (0),

where the time second derivatives at t = 0 can be evaluated from the right-hand sides
of (28) and (29) with ui,j = u0

i,j, vi,j = v0
i,j.

We have solved this system in a square with size 15 cm, with 250× 250 grid points,
that is, space step hx = hy = 0.06 cm and time step τ = 0.08 µs. We have used Lamé’s
parameters λ = 9.7078 GPa, µ = 12.2883 GPa, and density ρ = 2200 kg/m3, which
are appropriate values for mortar [28]. The numerical scheme has been implemented in
Matlab, and the simulation time is approximately ten minutes. A crack formation has
been simulated at the position (x0, y0) = (5.3550, 8.9550) between a couple of adjacent
grid points, one on the primary grid and the other one on the dual grid, at a random time
t0 = 3.75 µs, with an angle θ = π/4 between the crack line and the x-axis. The initial shape
of the crack is shown in Figure 2.

Figure 2. Components of the displacement vector (u, v) at time t0 = 12 µs of crack formation.
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For subsequent times, we show some snapshots of the solution in Figures 3 and 4.

Figure 3. Components of the displacement vector u (top) and v (bottom) at times t = 26.5, 34, and
41.5 µs.

Figure 4. Components of the displacement vector u (top) and v (bottom) at times t = 49, 56.5 and
64 µs.

To validate the localization method discussed in Section 3, we have simulated four sen-
sors, located in the positions (x1, y1) = (4.92, 0), (x2, y2) = (0, 9.9), (x3, y3) = (9.9, 14.94),
and (x4, y4) = (14.94, 4.92). The values of u on each sensor, for all simulation times, are
shown in Figure 5. The readings of the sensors should be interpreted as the arrival times of
the elastic wave generated by the crack. To discriminate between false readings, we have
applied the rule to take the first time for which |u| is greater than 3% of its maximum value
on the simulation time. Our preliminary results are quite encouraging. For the simulation
performed in this section, the method gives an estimated location of the crack at (5.4438,
8.8606) and an estimated formation time of 11.7156 µs. These values are remarkably close
to the real crack location (5.355, 8.955) and formation time t0 = 12, with a relative error of
about 1%. It is worth noting that the linear initialization step (14) provides a poor result,
estimating the crack at (3.6848, 10.0165) at (negative) time −6.0384 µs, while the nonlinear
method reaches convergence with good results after three iteration steps.
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Figure 5. Values of the displacement vector u at the sensors’ location, at variance with time.

5. Conclusions

In this paper, we have revisited the equations of elasticity, including a “body force
term to be applied in the absence of a dislocation, which produces radiation identical to that
of the dislocation”, citing the classical paper [27] where the general expression of this term
was first derived. We have paid special attention to a specific kind of dislocation, “which
represents a sudden separation of the two sides of the fault as, for example, an explosion
in a plane crack” [27], because this mechanism seems adequate to describe what would
happen in a concrete sample under pressure tests which produce microcrack formation.
In Equation (7), we provide a generalization of the simple example in [27], which depends
on the location of the crack and on its orientation. This is particularly relevant since, to our
knowledge, no exact source function of acoustic emissions has been identified as of yet.
For 2D numerical simulations, an approximated version of (7) has been provided in (25).
The numerical results indicate that indeed it is a reasonable source.

The proposed method, through an experimental setup of acoustic emission acquisition,
as shown in [17], could ensure the localization of cracks within concrete structures without
the use of destructive or nondestructive survey methods. In fact, the latter are either
difficult to implement, as in the case of X-ray microtomography, or are inaccurate, as in
the case of ultrasonic methods. The data acquired in [17] can be processed by the method
proposed in the article and, based on the acquired delay times, provide the location of the
crack associated with the acoustic emissions.

This paper also aimed at establishing a theoretical foundation for the above localization
method, based on the arrival times of acoustic emissions produced by a crack’s formation to
a group of sensors dislocated on the boundary of a concrete sample. The preliminary results
that we have obtained are quite encouraging and suggest the validity of the proposed
localization method. Still, we believe that it is possible to improve the accuracy of the
method. In our opinion, the main point is to improve the simulation of the reading of the
sensors. Here, two observations are in order. The first one is that it is not clear how to
determine to correct arrival time, due to the complexity of the detected signals, as shown
in Figure 5. We have used the 3% rule, as stated at the end of last section, but other rules
might need to be assessed. The second observation is that we made a working assumption
that the arrival times do not depend on the angle θ formed by the crack line with the
x-axis. Actually, there is numerical evidence that such dependence does exist. In other
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words, for deriving an improved localization method, it might be necessary to include the
parameter θ as an additional value to be extracted from the sensors’ readings, together
with the time of formation and the position of the crack. This extension of the localization
method will be the subject of a subsequent paper.
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