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Abstract: Discrete wavelet transform is a useful means for crack identification of beam structures.
However, its accuracy is severely dependent on the selecting mother wavelet and vanishing moments,
which raises a significant challenge in practical structural crack identification. In this paper, a
novel approach is introduced for structural health monitoring of beams to fix this challenge. The
approach is based on the combination of statistical characteristics of vibrational mode shapes of the
beam structures and their discrete wavelet transforms. First, this paper suggests using regression
statistics between intact and damaged modes to monitor the health of beam structures. Then, it
suggests extracting quasi-Pearson-based mode shape index of the beam structures to use them as an
original signal in discrete wavelet transforms. Findings show that the proposed approach has several
advantages compared with the conventional mode shape signal processing by the discrete wavelet
transforms and significantly improves damage detection’s accuracy.

Keywords: Pearson correlation-based damage detection; beam structures; discrete wavelet
transforms; structural health monitoring

MSC: 37-01

1. Introduction

Damage detection of structures at the early stages plays a vital role in their health [1–3].
In addition, timely damage detection saves many repair costs. Many damage detection
methods have been developed to monitor structures’ health and detect their damages in
recent decades [4–6]. Vibration-based damage detection is a large class of damage detection
methods [7–9]. The modal characteristics such as structures’ stiffness, natural frequencies,
and mode shapes are used to detect damage in structures [10].

In [11], it was proved that the local stiffness at the damage region reduces due to the
damage. Moreover, in a study, it was reported that the existence of damage decreases the
natural frequencies of the structures [12]. In practice, obtaining the structures’ stiffness and
natural frequencies corresponding to higher modes is impossible. Thus, mode shapes are
suitable modal characteristics for simple damage detection in many structures. So far, many
mode-shape-based damage detection methods have been developed by various researchers.
Yazdanpanah et al. [13] proposed an indicator for damage detection in beam structures
using mode shape data. Moreover, Ratcliffe et al. [14] applied a modified Laplacian
indicator on the mode shapes’ data to detect damages in beam structures. Dahak et al. [15]
present a damage detection approach by combining the mode shape and the curvature of
beam structures. This investigation was based on the global first derivative of the beam’s
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mode shape. However, a practical signal processing-based damage detection method
called wavelet transform can process mode shapes locally. So far, many investigations
have been conducted for damage detection in beam structures by using wavelet transform.
Generally, there are two main classes of wavelet transforms for the beam structures’ one-
dimensional signal processing: one-dimensional continuous wavelet transforms (1D-CWTs)
and one-dimensional discrete wavelet transforms (1D-DWTs). In these transforms, signals
are processed to localize the damage’s position and severity via the signal information
obtained from the damaged structure [16]. Wavelets transform a signal into sub-signals
to indicate the damaged signal’s discontinuity [17]. Janeliukstis et al. [18] performed an
empirical investigation by 1D-CWTs for damage localization of beam structure based on
mode shapes’ signal. Moreover, Montanari et al. [19] utilized the 1D-CWTs to localize the
cracks of beam structures. Rucka et al. [20] studied the application of 1D-CWTs to detect
beams’ damage.

However, a significant weakness of the wavelet transform is that its accuracy depends
on the amount of vanishing moments and the mother wavelet function. In other words,
changing the amount of vanishing moments may change the outcome of the damage
detection. Dependence on the accuracy of damage detection on the mentioned parameters
is a significant disadvantage for detecting the damage because misidentifying it may have
irreparable outcomes. Investigations have shown that, especially for low-level damages,
this dependence is significantly increased, and the performance of the wavelet transform
is impaired. In order to fix this problem and improve the accuracy of damage detection
by 1D-DWTs in beam structures, this paper proposes creating a regression-based signal
obtained from the correlations of the intact and damaged mode shapes. The importance of
the study is that in this study, for the first time, it was suggested to use the Pearson-based
coefficient of damage mode shape for feeding in 1D-wavelet transform to have accurate
and robust damage detection.

2. Basic Formulations
2.1. Finite Element Modeling

The equation of motion based on the finite element model (FEM) for the free vibration
on the beam is presented as follows [21]:

[M]
{ ..

x (t)
}
+ [K]{x(t)} = 0 (1)

where [M] and [K] denote the mass and stiffness matrices in the global coordinate, re-
spectively. Likewise, the

{ ..
x (t)

}
and {x(t)} show the acceleration and displacement

vectors, respectively.
By assuming the response {x}={ϕ}eiωt, the Equation (1) is rewritten as follows:

[M]
{
−ω2{ϕ}

}
+ [K]{ϕ} = 0 (2)

For the ith mode, Equation (2) is rewritten as follows [22]:

[M]
{
−ωi

2{ϕi}
}
+ [K]{ϕi} = 0 (3)

where ωi shows the ith natural frequency, and ϕi is its corresponding ith mode shape.
Equation (4) is named as the ith eigenvalue equation. Assuming ωi

2 = λi, Equation (3) can
be written in the following standard form [23]:

[M]{−λi{ϕi}}+ [K]{λi} = 0 (4)
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The matrices [K] and [M] are obtained by assembling the element stiffness matrix
[Ke] and the element mass matrix [Me], respectively. The element stiffness matrix and the
element mass matrix for the steel beam structures are expressed as follows:

[Ke] =
EI
le3


12 6le −12 6le

4le2 −6le 4le2

12 −6le

Sym 4le2

 (5)

[Me] =
mle
420


156 22le 54 −13le

4le2 13le −3le2

156 22le

Sym 4le2

 (6)

The natural frequencies are obtained from the following equation:

determinant([K]− λi[M]) = 0 (7)

Finally, the mode shapes are obtained from the following expression:

[[M]{−λi}+ [K]]{ϕi} = 0 (8)

2.2. Regression

Regression is an index in which the relationship between one or more independent
variables and a dependent variable is estimated. The regression analysis has different
types, and one of the most widely used regression analyses is linear regression analysis. In
this paper, linear regression examines the modal shape’s data points to examine the beam
structure’s health.

Consider a dataset as
{

ϕintact
i , ϕ

operational
i

}n

i=1
containing n data points. When ϕintact

i

and ϕ
operational
i are considered as dependent (intact mode shape) and (damaged mode

shape) independent variables; respectively, a linear regression can be expressed as follows:

ϕintact
i = β0 + β1 ϕ

operational
i + ε (9)

The above equation shows a line equation with an additional term called error ε. The
parameters of this linear model are the vertical intercept β0 and the slope of the line β1. The
slope of the line in the linear regression model indicates the sensitivity of the independent
variable. The vertical intercept represents the value of the dependent variable, which is
calculated as zero for the value of the independent variable. Alternatively, the constant
value or the vertical intercept can be considered the average value of the dependent variable
for deleting the independent variable. There are several ways to define and minimize an
error ε. The criterion used in the simple linear regression model is to minimize the sum of
squares of error. Since the mean of the error values is zero, it is known that the sum of the
squares of the error will be minimal when the data distribution is normal. As a result, the
normality of the dependent variable or residual data is one of the essential assumptions for
a simple linear regression model.

In order to compute the Pearson-based correlation between the intact and damaged
modes, the following expression is used by setting ϕ

operational
i = κi and ϕintact

i = ζi:

C(i) =
(κi − κi)

(
ζi − ζi

)√
(κi − κi)2

(
ζi − ζi

) i = 1, 2, . . . , n (10)
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where ζi and κi are mean of the (intact mode shape, subtractable from arrays of the vector
ζi) dependent and mean of the (damaged mode shape, subtractable from arrays of the
vector κi) independent variables. Moreover, Ci are the quasi-correlation coefficients. n is the
number of sampling points of the signal. Finally, the Pearson-based correlation coefficients
mode shape index are defined as follows:

R(i) = κi −
(κi − κi)

(
ζi − ζi

)√
(κi − κi)2

(
ζi − ζi

) (11)

2.3. One-Dimensional Discrete Wavelet Transform

An important type of wavelet transform is a one-dimensional discrete wavelet trans-
form. The one-dimensional discrete wavelet transforms for the signal R(i) are defined
as follows:

R(i) = κi −
(κi − κi)

(
ζi − ζi

)√
(κi − κi)2

(
ζi − ζi

) = Aj(i) + ∑
j<J

Dj(i) (12)

where Aj show approximation signals at level j, Dj are detail signals at level j.
The approximation signals at level j are obtained as follows [24]:

Aj(i) =
+∞

∑
k=−∞

cAj,kφj,k(i) (13)

where cAj,k are approximation coefficients at level j. φj,k(i) indicate scaling functions at
level j.

The detail signals at level j denote expressed as follows [24]:

Dj(i) = ∑
kεZ

cDj,kψj,k(i) (14)

where cDj,k are detail coefficients at level j. ψj,k(i) indicate wavelet functions.

3. Proposed Approach

In this section, the proposed approach is presented. The approach is based on statistical
features of intact and damaged mode shapes related to the beam structures, and discrete
wavelet transforms. As seen in Figure 1, in the first step, the health of beam structure
is monitored by the regression applied between intact and damaged mode shapes. For
practical applications, the first intact and mode shapes can be used. Note that the pair
mode shapes are obtained either experimentally or numerically. As seen in Figure 1, when
the regression factor (R) is equal to 1, it means that the beam structure is intact, and when
it is between 0 and 1, it means that the beam structure has experienced damage, at least.
If 0 < R < 1, the damage detection process begins according to the flowchart shown in
Figure 2.

As seen in Figure 2, for the proposed damage detection approach, the quasi-Pearson-
based correlation signal between the intact and damaged mode shapes is calculated to use
as the processing signal in the one-dimensional discrete wavelet transform instead of using
a damaged mode shape signal. Therefore, in this study, damage detection is performed
based on the Pearson-based correlation coefficients between the intact and damaged mode
shapes in order to improve the power of damage detection by the one-dimensional discrete
wavelet transform and eliminate the weakness related to selecting the best mother wavelet
and vanishing moments.
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4. Results
4.1. Numerical Results

The FEM is applied to calculate the intact and damaged mode shapes of beam struc-
ture for the numerical investigation. As indicated in Figure 3, the beam is divided into
40 elements (81 nodes). The constant properties of the studied steel beam structure are
tabulated in Table 1.
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Figure 3. The considered beam in numerical investigation.

Table 1. The constant properties of the studied beam structure.

Property Symbol Value (Unit)

Cross-sectional area (m2) A 1.82 × 10−4

Moment of inertia (m4) I 1.46 × 10−9

Density (kg/m3) ρ 2685
Total length of beams (m) L 0.5

length of each element (m) le 0.1

According to Figure 3, the damage is applied to element number twenty. Moreover,
each element has three nodes. In the numerical investigations, four damage scenarios are
applied on the beam to investigate the performance of our proposed method. Damages are
applied by reducing the stiffness of the twentieth element as follows [25]:

[Ke]d = α[Ke]

D = [Ke ] − [K]ed
[K]e × 100 = [K]e − α[K]e

[K]e × 100 = (1− α)× 100
(15)

where D is damage level, [K]ed is stiffness of the damage element. Moreover, α is a constant
(0 < α < 1).

4.2. Numerical Investigations for Structural Health Monitoring

In this section, numerical investigations are performed for structural health monitoring.
According to Table 2, four different damage scenarios are considered to evaluate the
performance of our regression-based approach for structural health monitoring of beam-
like structures.

Table 2. Four damage scenarios for structural health monitoring.

Scenarios No.
Damage Location

Damage Level
Element No. Nodes No.

1 20 39, 40, 41 90%
2 20 39, 40, 41 70%
3 20 39, 40, 41 50%
4 20 39, 40, 41 30%

The 90% damage is applied to the twentieth element (i.e., in nodal coordinate, nodes 39,
40, and 41) in the first damage scenario. In the second, third, and fourth damage scenarios,
70%, 50%, and 30% of damages are applied to the same location (i.e., nodes 39, 40, and
41), respectively. Figure 4 shows eight mode shapes obtained from four different damage
scenarios. As seen in this figure, damage causes the shift of the intact mode shapes in all
scenarios. Moreover, results show that as the damage level increases, the shift increases.
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This finding was reported in the literature that stated that damage shifts mode shapes. As
seen in Figure 4, the location of damage cannot be determined using mode shape directly.
The damaged mode shapes provide a qualitative tool for structural health monitoring. This
qualitative way is considered a weakness when the level of damage is low. For fixing this
problem, this paper proposes a quantitative approach called regression.
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As mentioned, the regression index R can show the health of the beam, if the regression
index is R = 1, then the beam structure is intact, and when it is between 0 and 1, it means
that the structure has experienced damage, at least. Figure 5 shows the regression diagram
between the first mode and the first mode. As expected, the value of the regression index is
R = 1.

On the other hand, Figure 6 shows the regression diagram for the four considered
scenarios. This figure shows that the regression index 0 < R < 1 is different for the four
different scenarios considered. The findings demonstrate that as the damage level increases,
the R decreases. Moreover, Figure 6 shows that even for low-level damages, reporting R is
possible. In contrast, when the level of damage, it is challenging to detect the difference
between intact and damaged modes.
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After it is specified using the regression index that the beam is damaged. Our proposed
method is tested. Figure 7a shows the original signal s (damaged mode shape) and the
results of their one-dimensional discrete wavelet transform.
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4.3. Numerical Investigations for Damage Detection

After the structural health monitoring health phase, if 0 < R < 1, the beam structure
has experienced damage. Thus, damage detection should be performed to prevent further
losses. This section presents numerical investigations for damage detection. According to
Table 3, three different damage scenarios are considered for evaluating the performance of
our proposed damage detection method. Similar to the structural health monitoring health
phase, in this section, damages of all damage scenarios are located at element number 20
(i.e., in nodal coordinate, nodes 39, 40, and 41). In the first, second, and third scenarios,
damages levels are 90%, 70%, and 10%.

Table 3. Three damage scenarios for structural health monitoring.

Scenarios No.
Damage Location

Damage Level
Element No. Nodes No.

1 20 39, 40, 41 90%
2 20 39, 40, 41 70%
3 20 39, 40, 41 10%

After it is specified using the regression index (R) that the beam is damaged. Our
proposed method is tested. Figure 7a shows the original signal s (damaged mode shape)
and the results of its one-dimensional discrete wavelet transform. The wavelet family
Symlet decomposes the signal s, and the vanishing moment is equal to 2 for this figure. The
damage level in this figure equals 90%, and the damage is located at the twentieth element.
Results of numerical investigations for damage detection are presented in Figures 7–12.
These results prove that the performance approach acts better than the conventional.
Figures 7b, 8b, 9b, 10b, 11b and 12b demonstrate that using the vanishing moments 5,
damage detection both by model shape signals and Pearson-based mode shape signal
brings accurate results. However, for vanishing moments 2, the proposed Pearson-based
mode shape signals bring better damage detection results than the conventional mode
shape signals.

The results of the one-dimensional discrete wavelet transform for mode shape sig-
nals and Pearson-based signals for two vanishing moments (i.e., 2 and 5) are shown in
Figures 7–12 to simultaneously investigate the effect of both using the proposed Pearson-
based signals in the result and increasing the order of vanishing moments. In the results
presented in Figures 7–12, a1 indicates the approximation signal at level 1, and d1 indicates
the detail signal at level 1. The approximation a1 is the high-scale, low-frequency compo-
nent of the original signal. The detail d1 is the low-scale, high-frequency component of the
original signal. Therefore, it is expected to search the damage’s location in the detail signals.

By comparing the images shown in Figures 7–12, it is found that our proposed ap-
proach eliminates the need for selecting vanishing moments. It is also seen that our
proposed method introduces a good alternative for mode shape signals to improve the
accuracy of damage detection. Thus, using the Pearson-based correlation coefficients of the
mode shapes instead of the mode shapes in the wavelet transform can improve the damage
detection’s accuracy, especially in low-level damages. Moreover, the findings show that the
damage location, if detected, appears in the detail signals and the approximation signals,
as expected, are a general approximation of the signals. The results show that it is possible
to identify damage and cracks in the structure using wavelet transformation of Pearson-
based correlation coefficients at level 1; as a result, there is no need to choose vanishing
moments. This is an important advantage over the conventional wavelet transform because
it eliminates trial and error efforts for the selection of the best mother wavelet function.
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(b) vanishing moments = 5.
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Figure 11. The effect of increasing the vanishing moments on the accuracy of damage detection by
1D-DWT from the quasi-Pearson-based coefficient extracted from intact and damaged mode shapes
by 70% damage: (a) vanishing moments = 2, (b) vanishing moments = 5.
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4.4. Experimental Results

Careful design and maintenance of various structures such as buildings, bridges,
dams, airplanes, trains, beams, etc., is essential. One of the requirements for the design
and maintenance of structures is their dynamic analysis. Due to the unavailability of
analytical solutions for complex structures, with different loads and boundary conditions,
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as well as errors such errors resulting from the application of inappropriate assumptions
and theories, errors in modeling the details of complex structures, and lack of accurate
information about the properties materials, numerical approximation models such as the
finite element method also face problems. Therefore, modal testing is a suitable tool to
achieve the dynamic properties of the structure.

In order to implement the modal test, the intact steel beam is used, as shown in
Figure 13. Then, according to Figure 13a, the intact beam is cracked to be used to have the
corresponding cracked beam, as shown in Figure 13. The beams are suspended with a soft
clamp to implement free-free boundary conditions as seen in Figure 13b. A DJB A120V
accelerometer is used to measure acceleration. This accelerometer is installed at point 4 of
the structure. An 8202BK vibrating hammer equipped with an 8200BK dynamometer is
used to apply force to the structure. A 2647A amplifier is also used to convert the power
signal. The steel beam is divided into 10 points. The accelerometer is fixed at point 4, and
at all points, the impact force is applied with a hammer. This test is performed once for a
healthy beam and once for a damaged beam.
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Figure 13. Intact steel beam and its divisions.

In order to have damage on the steel beam, at a distance of 30 cm from the head of the
beam, slot-shape damage with 0.5 mm deep and 1 mm wide across the width of the beam
is created using a CNC milling machine (Figure 14a). Also, Figure 14b shows the cracked
steel beam and its free-free boundary conditions.
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Figure 14. (a) Using CNC milling machining for creating damage on the steel beam, (b) the cracked
steel beam and its free-free boundary conditions.

As mentioned, the modal test is performed at all beams’ points (the accelerometer is
fixed at point 4, and the hammer is moved at other points). The test frequency range is
0 to 100 Hz. The frequency response functions obtained for the intact beam (Figure 15)
have been calculated using the BK3560D analyzer and Pulse 8 software by performing
experiments and measuring force and acceleration signals.



Mathematics 2022, 10, 2689 18 of 23
Mathematics 2022, 10, x FOR PEER REVIEW 20 of 25 
 

 

 
Figure 15. The frequency response functions obtained for the intact beam. 

At the end of the experiment, the mentioned frequency response functions are sent 
to the Icats software and analyzed. After this analysis, the natural frequencies, damping 
coefficients, and the beam modes’ shape are obtained. The natural frequencies and damp-
ing coefficients are reported in Table 4. Moreover, the normalized mode shapes of the steel 
beam in intact conditions are presented in Table 5. 

Table 4. Experimental natural frequencies and damping coefficients of the intact steel beams. 

Mode Number 1 2 
Frequency (Hz) 27.309 73.9782 

Structural Damping coefficient 0.0037 0.0019 

Table 5. Experimental normalized mode shapes obtained from the modal test of the intact steel 
beam. 

Node Number Mode 1 Mode 2 
1 −2.599334 −2.051736 
2 −1.076546 0.222916 
3 0.260243 1.82904 
4 1.125964 1.509068 
5 1.677929 0.790353 
6 1.68134 −0.780846 
7 1.246111 −1.89759 
8 0.294394 −2.135082 
9 −0.808516 −0.486373 

10 −2.331891 1.687432 

Then, after applying damage to the beam, the test is performed again in the same 
way as before. The accelerometer is installed at point 4, and a hammer blow is applied at 
all points. The test frequency range is 0 to 100 Hz. The frequency response functions ob-
tained for the damaged beam (Figure 16) have been calculated using the BK3560D ana-
lyzer and Pulse 8 software by performing experiments and measuring force and accelera-
tion signals. 

Figure 15. The frequency response functions obtained for the intact beam.

At the end of the experiment, the mentioned frequency response functions are sent
to the Icats software and analyzed. After this analysis, the natural frequencies, damping
coefficients, and the beam modes’ shape are obtained. The natural frequencies and damping
coefficients are reported in Table 4. Moreover, the normalized mode shapes of the steel
beam in intact conditions are presented in Table 5.

Table 4. Experimental natural frequencies and damping coefficients of the intact steel beams.

Mode Number 1 2

Frequency (Hz) 27.309 73.9782
Structural Damping

coefficient 0.0037 0.0019

Table 5. Experimental normalized mode shapes obtained from the modal test of the intact steel beam.

Node Number Mode 1 Mode 2

1 −2.599334 −2.051736
2 −1.076546 0.222916
3 0.260243 1.82904
4 1.125964 1.509068
5 1.677929 0.790353
6 1.68134 −0.780846
7 1.246111 −1.89759
8 0.294394 −2.135082
9 −0.808516 −0.486373
10 −2.331891 1.687432

Then, after applying damage to the beam, the test is performed again in the same way
as before. The accelerometer is installed at point 4, and a hammer blow is applied at all
points. The test frequency range is 0 to 100 Hz. The frequency response functions obtained
for the damaged beam (Figure 16) have been calculated using the BK3560D analyzer and
Pulse 8 software by performing experiments and measuring force and acceleration signals.
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Figure 16. The frequency response functions obtained for the damaged beam.

After testing, the obtained frequency response functions are sent to the Icats software
and analyzed. After this analysis, the natural frequencies, damping coefficients, and
the damaged beam modes’ shape are obtained. The natural frequencies and damping
coefficients are reported in Table 6. Moreover, the normalized mode shapes of the steel beam
in the damaged conditions are presented in Table 7. Moreover, the plot of experimental
intact and cracked mode shapes is presented in Figure 17 with the red line and blue
line, respectively.

Table 6. Experimental natural frequencies and damping coefficients of the damaged steel beams.

Mode Number 1 2

Frequency (Hz) 27.303 73.9384
Structural Damping

coefficient 0.0035 0.0012

Table 7. Experimental normalized mode shapes obtained from the modal test of the damaged
steel beam.

Node Number Mode 1 Mode 2

1 −2.455124 −1.785898
2 −1.153495 0.273122
3 0.209485 1.536691
4 1.168128 1.984244
5 2.038565 0.724189
6 1.864971 −0.814256
7 1.316461 −1.883213
8 0.365667 −1.860149
9 −0.942927 −0.424004
10 −2.225317 1.283471
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Figure 17. Experimental damaged and intact first mode shapes.

Experimental findings demonstrate that damage causes reduced natural frequencies
(Tables 3 and 5). Moreover, similar to the numerical study, damage causes shift mode
shapes (Figure 17). Experimental results verify that our proposed method for structural
health monitoring is effective (Figure 18). In addition, the experimental findings ver-
ify that our proposed method improves the performance of the conventional 1D-DWT
(Figures 19 and 20).
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5. Conclusions

In this study, a novel strategy for structural health monitoring and damage detection
of the beam structure is present to improve the efficiency of the one-dimensional discrete
wavelet transforms 1D-DWT. For structural health monitoring of beam structures, it is pro-
posed to use regression index (R) to know damage conditions numerically. The regression
index is beneficial, especially for level damages and great damage-sensitive application
of beam structures. There is no apparent difference between intact and damaged mode
shapes under low-level damages. Findings show that the performance approach acts better
than the conventional. In addition, findings demonstrate that using the vanishing moments
5, damage detection both by model shape signals and Pearson-based mode shape signal
brings accurate results. However, for vanishing moments 2, the proposed Pearson-based
mode shape signals bring better damage detection results than the conventional mode
shape signals. In order to verify the performance of our proposed method in practice,
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experimental investigations are performed. The experimental results demonstrate the
efficiency of using the Pearson-based coefficients of vibrational mode shapes of the beam
structures instead of damaged mode shaped to process by 1D-DWT.
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