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Abstract: In this paper, we obtain characterizations of solution sets of the interval-valued mathemati-
cal programming problems with switching constraints. Stationary conditions which are weaker than
the standard Karush–Kuhn–Tucker conditions need to be discussed in order to find the necessary
optimality conditions. We introduce corresponding weak, Mordukhovich, and strong stationary
conditions for the corresponding interval-valued mathematical programming problems with switch-
ing constraints (IVPSC) and interval-valued tightened nonlinear problems (IVTNP), because the
W-stationary condition of IVPSC is equivalent to Karush–Kuhn–Tucker conditions of the IVTNP.
Furthermore, we use strong stationary conditions to characterize the several solutions sets for IVTNP,
in which the last ones are particular solutions sets for IVPSC at the same time, because the feasible set
of tightened nonlinear problems (IVTNP) is a subset of the feasible set of the mathematical programs
with switching constraints (IVPSC).

Keywords: nonlinear programming; switching constraints; stationary conditions; interval-valued
optimization

MSC: 90C30; 90C33; 49K10

1. Introduction

Mathematical programming problems with equilibrium constraints (MPEC) [1] and
mathematical programming problems with vanishing constraints (MPVC) [2] have recently
found considerable attention in the area of optimal control, mathematical equilibrium, truss
topology, and other research fields [3] due to a wide range of applications in real-life problems.

Singh et al. [4] established Lagrange-type duality results and saddle point optimality
criteria for mathematical programs with equilibrium constraints for differentiable func-
tions. Pandey and Mishra [5] established Wolfe and Mond–Weir-type duality results for
mathematical programs with equilibrium constraints using convexificators. Pandey and
Mishra [6] obtained optimality and duality results for semi-infinite mathematical programs
with equilibrium constraints using convexificators. Pandey and Mishra [7] established that
the Mordukhovich (M) stationary conditions [7] are strong KKT-type sufficient optimality
conditions for the nonsmooth multiobjective semi-infinite mathematical programs with
equilibrium constraints. Mishra et al. [8] obtained duality results for mathematical pro-
grams with vanishing constraints for differentiable functions. Mishra et al. [9] showed that
Cottle, Slater, and Mangasarian–Fromovitz constraint qualifications do not hold at an effi-
cient solution under fairly mild assumptions, whereas the Guignard constraint qualification
was satisfied sometimes for mathematical programs with vanishing constraints. Mishra
et al. [9] introduced suitable modifications of said constraint qualifications, established
relationships, and derived the KKT-type necessary optimality conditions. Guu et al. [10]
established strong KKT-type sufficient optimality conditions for nonsmooth multiobjective
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semi-infinite programming problems with vanishing constraints. Lai et al. [11] estab-
lished Fritz–John and KKT-type stationary points conditions for nonsmooth semi-definite
multiobjective mathematical programs with vanishing constraints.

Mehlitz [12] introduced the mathematical program with switching constraints (MPSC).
It is not surprising that the issues involving the usual constraint qualifications for MPEC and
MPVC also exist for MPSC. Mehlitz [12] showed that if an MPSC is treated as a nonlinear
program, the Mangasarian–Fromovitz constraint qualifications fail at any feasible point
for which there is a pair of switching functions with a value equal to zero. As a result,
he introduced the concepts of weak, Mordukhovich (M-), and strong (S-) stationarity for
MPSC and presented some constraint qualifications. Kanzow et al. [13] provided several
relaxation methods from the numerical solutions of MPEC to MPSC. Liang and Ye [14]
obtained various optimality conditions and local error bounds for MPSC. Pandey and
Singh [15] studied several constraint qualifications and stationarity for multiobjective
mathematical programs with switching constraints.

Uncertainty in the real world is inevitable. Therefore, imposing uncertainty in op-
timization problems becomes an interesting research topic. Interval-valued nonlinear
programming is one such research area; see [16–19]. Lai et al. [20] established sufficient
optimality conditions and duality results for semidifferentiable mathematical programming
problems. Sharma et al. [21] established the Hermite–Hadamard inequalities for preinvex
interval-valued functions. Su and Dinh [22] established duality results for interval-valued
pseudoconvex optimization problems with equilibrium constraints with applications. Wang
and Wang [23] obtained duality results for nondifferentiable semi-infinite interval-valued
optimization problems with vanishing constraints.

The characterization of solution sets in mathematical programming is useful in under-
standing the development of solution methods for solving the problem. Mangasarian [24]
introduced the concept of the characterization of solutions sets for convex programs, and
Burke and Ferris [25] provided several characterizations of solution sets for nonsmooth
convex programs. Jeyakumar et al. [26] provided Lagrange multiplier-based characteri-
zations of solution sets of cone-constrained convex programs and semidefinite programs.
Dinh et al. [27] studied Lagrange multiplier characterizations of solution sets of constrained
pseudolinear optimization problems. Furthermore, Jeyakumar et al. [28] gave a dual char-
acterization of the weak and proper solution sets. Jeyakumar et al. [28] discussed Lagrange
multiplier characterizations of the solutions sets under regularity conditions. Lalitha and
Mehta [29] derived Lagrange multiplier characterizations of solution sets for nonlinear
mathematical programs with an h-convex objective and h-pseudolinear constraints. Several
Lagrange multiplier characterizations of solution sets for a convex infinite programming
problems are obtained in [30]. Mishra et al. [31] established several Lagrange multiplier
characterizations of solution sets for constrained nonsmooth pseudolinear optimization
problems. Recently, Sisarat and Wangkeeree [32] provided some characterizations of solu-
tion sets of constant pseudo Lagrangian-type functions and established Lagrange multiplier
characterizations. Some recent developments of significant research on characterizations
of solution sets are in [33–43] and references therein. Recently, Treanta [44] provided sev-
eral characterizations of solution sets of interval-valued variational control problems and
discussed its relationship with variational control problems.

Motivated by the above-mentioned work, firstly, we consider interval-valued mathe-
matical programming with switching constraints (IVPSC). We introduce corresponding
weak, Mordukhovich, and strong stationary conditions (W-stationary, M-stationary and S-
stationary for short). We propose an interval-valued tightened nonlinear problem (IVTNP)
associated with IVPSC. We provide several characterizations of solution sets for IVPSC
with the help of the S-stationary condition and IVTNP. We construct the corresponding
Lagrangian function for IVPSC. We use semiconvex functions introduced by Mifflin [45],
extend for interval-valued nonsmooth functions and provide the properties of interval-
valued semiconvex functions. Furthermore, we prove that the associated Lagrangian is
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constant under the S-stationary and semiconvexity conditions with a Clarke subdifferential.
We also provide an example to support the theoretical findings.

2. Preliminaries
2.1. Interval Analysis

We collect some basic concepts and essential definitions related to interval-valued
functions from Moore [46] and Wu [18].
We denote by I(R) the class of all closed intervals in R. Let U = [uL, uU ], where uL and uU

denote the lower and upper bounds of U, respectively. Let U = [uL, uU ] and V = [vL, vU ]
be in I(R); then, we have

(i) U + V = {u + v : u ∈ U, v ∈ V} = [uL + vL, uU + vU ],
(ii) −U = {−u : u ∈ U} = [−uU ,−uL],
(iii) U −V = U + (−V) = [uL − vU , uU − vL],

(iv) tU = {tu : u ∈ U} =
{

[tuL, tuU ] if t ≥ 0
[tuU , tuL] for t < 0

where t is a real number.

Let U = [uL, uU ] and V = [vL, vU ] be two closed intervals in R. We write U � V if and
only if uL ≤ vL and uU ≤ vU . It means that U is inferior to V, or V is superior to U. It is
easy to see that “ � ” is a partial ordering on I(R).

The function f : Rn → I is called an interval valued function; this means
f (u) = f (u1, · · · , un) is a closed interval in R for each u ∈ Rn. f can be written as
f (u) = [ f L(u), f U(u)], where f L and f U are two real valued functions defined on Rn

such that f L(u) ≤ f U(u), ∀u ∈ Rn.
We write U ≺LU V if and only if U �LU V and U 6= V. We say U = (U1, · · · , Up) is an

interval valued vector if each component Uk = [uL
k , uU

k ] is a closed interval for k = 1, · · · , p.
Suppose U = (U1, · · · , Up) and V = (V1, · · · , Vp) are two interval valued vectors. We
write U �LU V if and only if Uk �LU Vk ∀k = 1, · · · , p, and U ≺LU V if and only if
Uk �LU Vk, ∀k = 1, · · · , p and Uq ≺LU Vq for at least one q.

Definition 1 ([17]). An interval-valued function f (u) = [ f L(u), f U(u)] defined on X ⊆ Rn is
said to be LU-convex if ∀u, v ∈ X, λ ∈ (0, 1),

f (λu + (1− λ)v) �LU λ f (u) + (1− λ) f (v).

2.2. Generalized Derivatives

We collect the definitions and properties of generalized derivatives from Clarke [47].
Suppose f : Rn → R is a locally Lipschitz function at u ∈ Rn. The generalized directional
derivative of f at u in the direction d ∈ Rn is denoted by f c(u; d) and is defined by

f c(u; d) := lim sup
h→0
t↓0

f (u + h + td)− f (u + h)
t

and the Clarke’s subdifferential of f at u, denoted by ∂c f (u), is defined by

∂c f (u) := {u ∈ Rn : f c(u; d) ≥ 〈u, d〉, ∀d ∈ Rn}.

We denote by 〈u, v〉 the usual inner product in n-dimensional real Euclidean space Rn,
i.e.,

〈u, v〉 = uTv, for u, v ∈ Rn.

The directional derivatives of f at u in the direction of d, denoted by f
′
(u; d), are

defined by

lim
t↓0

f (u + td)− f (u)
t

provided the limit exists.
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f is said to be regular at u in the Clarke sense if f
′
(u; d) exists and is equal to f c(u; d) for

every d ∈ Rn [48].
Consider f : Rn → I(R) is an interval-valued function; then, f (u) = [ f L(u), f U(u)] is

regular if both the upper and lower bound functions f L and f U are regular.
Suppose M is the closed convex subset of Rn. The normal cone [49] to M at u is

N(M, u) = {η ∈ Rn : 〈η, v− u〉 ≤ 0, ∀v ∈ M}.

Definition 2 ([45]). Suppose X is a nonempty subset of Rn. A function f : Rn → R is said
to be semiconvex at u ∈ X if f is locally Lipschitz at u and regular at u, and it satisfies the
following condition

u + d ∈ X, d ∈ Rn, f
′
(u; d) ≥ 0 =⇒ f (u + d) ≥ f (u).

The interval-valued function f : Rn → I(R) is said to be semiconvex on X if f L and f U are
semiconvex at every u ∈ X.

We can easily see from the above definition that f is semiconvex at u if ∃ u ∈ ∂c f (u) :
〈η, v− u〉 ≥ 0 =⇒ f (v) ≥ f (u).

Mifflin [45] provided an important result on semiconvex functions, which can be
further generalized for interval-valued functions.

Lemma 1. Let the function f be semiconvex on a convex set X ⊂ Rn. Then, for u ∈ X, d ∈ Rn

with u + d ∈ X, we have

f (u + d) ≤ f (u) =⇒ f
′
(u; d) ≤ 0.

The interval-valued function f : Rn → I(R) is semiconvex; then, for u ∈ X ⊂ Rn, d ∈
Rn with u + d ∈ X, we have

f (u + d) �LU f (u) =⇒ f
′
(u; d) �LU 0.

This means that

f L(u + d) ≤ f L(u) =⇒ f L′(u; d) ≤ 0

and f U(u + d) ≤ f U(u) =⇒ f U′(u; d) ≤ 0.

2.3. Interval-Valued Mathematical Programs with Switching Constraints (IVPSC)

We consider the following interval-valued mathematical programs with switching
constraints (IVPSC)

min f (u) = [ f L(u), f U(u)] (1)

subject to gi(u) ≤ 0, ∀ i = 1, · · · , p,

hj(u) = 0, ∀ j = 1, · · · , q,

Gk(u)Hk(u) = 0, ∀ k = 1, · · · r,

where the functions f L, gi, hj, Gk, Hk : Rn → R are continuously differentiable on Rn.
We say Gk(u)Hk(u) = 0, while the switching constraint since functions Gk(u), Hk(u) are
active is at least one, Gk(u) = 0 or Hk(u) = 0 for all k = 1, · · · , r, at any feasible point
of IVPSC.

We denote the solution set of IVPSC by S.

S = {u ∈ M : f L(u) ≤ f L(v), f U(u) ≤ f U(v), g(u) ≤ 0,

h(u) = 0, Gk(u)Hk(u) = 0, ∀v ∈ M}.
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2.4. Stationary Conditions

We need to mention some index sets to define stationary conditions at the feasible
point ū for IVPSC.

Ig(ū) := {i ∈ {1, · · · , p} : gi(ū) = 0},
IG(ū) := {k ∈ {1, · · · , r} : Gk(ū) = 0 and Hk(ū) 6= 0},
IH(ū) := {k ∈ {1, · · · , r} : Gk(ū) 6= 0 and Hk(ū) = 0},
IGH(ū) := {k ∈ {1, · · · , r} : Gk(ū) = 0 and Hk(ū) = 0}.

We establish some stationary conditions in the Clarke subdifferential form motivated
by Mehlitz [12]. In order to define the stationary conditions, we need to introduce the KKT
system of IVPSC, which is as follows.

Definition 3. (KKT-type conditions): A feasible point ū of IVPSC is said to satisfy KKT-type
conditions if there exist multipliers λL, λU , λi(i ∈ {1, · · · , p}), λj(j ∈ {1, · · · , q}), λk, µk(k ∈
{1, · · · , r}) such that the following conditions hold

0 ∈ λL∂c f L(ū) + λU∂c f U(ū) +
p

∑
i=1

λi∂
cgi(ū) +

q

∑
j=1

λj∂
chi(ū)

+
r

∑
k=1

[λk∂cGk(ū) + µk∂cHk(ū)],

λi ≥ 0 ∀ i ∈ Ig(ū).

1. Weakly stationary point (W-stationary point): A feasible point ū of IVPSC is called W-
stationary if there exist multipliers λL, λU , λi(i ∈ {1, · · · , p}), λj(j ∈ {1, · · · , q}), λk,
µk(k ∈ {1, · · · , r}) such that the following conditions hold

0 ∈ λL∂c f L(ū) + λU∂c f U(ū) +
p

∑
i=1

λi∂
cgi(ū) +

q

∑
j=1

λj∂
chi(ū)

+
r

∑
k=1

[λk∂cGk(ū) + µk∂cHk(ū)],

λi ≥ 0 ∀ i ∈ Ig(ū), λk = 0 ∀ k ∈ IG(ū), µk = 0 ∀ k ∈ IH(ū).

2. Mordukhovich stationary point (M-stationary point): A feasible point ū of IVPSC
is called M-stationary if there exist multipliers λL, λU , λi(i ∈ {1, · · · , p}), λj(j ∈
{1, · · · , q}), λk, µk(k ∈ {1, · · · , r}) such that the following conditions hold

0 ∈ λL∂c f L(ū) + λU∂c f U(ū) +
p

∑
i=1

λi∂
cgi(ū) +

q

∑
j=1

λj∂
chi(ū)

+
r

∑
k=1

[λk∂cGk(ū) + µk∂cHk(ū)],

λi ≥ 0 ∀ i ∈ Ig(ū), λk = 0 ∀ k ∈ IG(ū), µk = 0 ∀ k ∈ IH(ū),

and λkµk = 0 ∀ k ∈ IGH(ū).

3. Strong stationary point (S-stationary point): A feasible point ū of IVPSC is called
S-stationary if there exist multipliers λL, λU , λi(i ∈ {1, · · · , p}), λj(j ∈ {1, · · · , q}), λk,
µk(k ∈ {1, · · · , r}) such that the following conditions hold

0 ∈ λL∂c f L(ū) + λU∂c f U(ū) +
p

∑
i=1

λi∂
cgi(ū) +

q

∑
j=1

λj∂
chi(ū)



Mathematics 2022, 10, 2763 6 of 16

+
r

∑
k=1

[λk∂cGk(ū) + µk∂c Hk(ū)],

λi ≥ 0 ∀ i ∈ Ig(ū), λk = 0 ∀ k ∈ IG(ū), µk = 0 ∀ k ∈ IH(ū),

and λk = 0, µk = 0 ∀ k ∈ IGH(ū).

We can easily see that the following relationship holds between the above stationary
conditions.

S-stationary condition =⇒ M-stationary condition =⇒ W-stationary condition.
The W-stationary condition of IVPSC at one of its feasible points ū is equivalent to

KKT conditions of the following tightened nonlinear problem.
We consider the interval-valued tightened nonlinear problem (IVTNP) at ū.

(IVTNP) min f (ū) = [ f L(ū), f U(ū)]

subject to gi(ū) ≤ 0, ∀ i = 1, · · · , p,

hj(ū) = 0, ∀ j = 1, · · · , q,

Gk(ū) = 0, ∀ k ∈ IG(ū) ∪ IGH(ū),

Hk(ū) = 0, ∀ k ∈ IH(ū) ∪ IGH(ū). (2)

The feasible set of IVTNP is a subset of the feasible set of IVPSC.

3. Lagrange Multiplier Characterization

We suppose that there exist multipliers λL, λU , λi(i ∈ {1, · · · , p}), λj(j ∈ {1, · · · , q}),
λk, µk(k ∈ {1, · · · , r}) such the the following optimality conditions hold

0 ∈ λL∂c f L(u) + λU∂c f U(u) +
p

∑
i=1

λi∂
cgi(u) +

q

∑
j=1

λj∂
chi(u)

+
r

∑
k=1

(
λk∂cGk(u) + µk∂cHk(u)

)
+ N(M, u),

λigi(u) = 0, ∀i ∈ {1, · · · , p}, λjhj(u) = 0, ∀j ∈ {1, · · · , q},
λkGk(u) = 0, ∀k ∈ IG(ū) ∪ IGH(ū), µk Hk(u) = 0, ∀k ∈ IH(ū) ∪ IGH(ū). (3)

The addition of normal cone N(M, u) in the above optimality condition is motivated
by Theorem 5.1.6 of [50].

The Lagrangian function is defined by

L(u, λ, µ) = λL f L(u) + λU f U(u) +
p

∑
i=1

λigi(u) +
q

∑
j=1

λjhi(u)

+
r

∑
k=1

(
λkGk(u) + µk Hk(u)

)
. (4)

Lemma 2. Let ū be the solution to the problem (IVTNP) such that the condition (3) and S-stationary
condition hold. Suppose that the functions f L, f U , gi(i ∈ {1, · · · , p}), hj(j ∈ {1, · · · , q}),
Gk, Hk(k ∈ {1, · · · , r}) are regular at ū and the Lagrangian function L(·, λ, µ) is semiconvex at ū;
then, L(·, λ.µ) is constant on S.

Proof. Let ū ∈ S, and there exist multipliers λg, λh, λG, λH such that condition (3) holds.
Then, there exist uL ∈ ∂c f L(ū), uU ∈ ∂c f U(ū), w ∈ N(M, ū), νg ∈ ∂cgi(ū)(i ∈ {1, · · · , p}),
νh ∈ ∂chj(ū)(j ∈ {1, · · · , q}), νG ∈ ∂cGk(ū), νH ∈ ∂cHk(ū)(k ∈ {1, · · · , r}), such that

λLuL + λUuU +
p

∑
i=1

λiνg +
q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
= −w.
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As M is a closed convex subset of X, 〈w, v− ū〉 ≤ 0 ∀v ∈ M, hence, we have〈
λLuL + λUuU +

p

∑
i=1

λiνg +
q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
, v− ū

〉
≥ 0. (5)

Now, since L(·, λ, µ) is regular at ū, we have

[
λL f L + λU f U + ∑

i∈Ig(ū)
λigi +

q

∑
j=1

λjhj +
r

∑
k=1

(
λkGk + µk Hk

)]c
(ū, v− ū)

=
[
λL f L + λU f U + ∑

i∈Ig(ū)
λigi +

q

∑
j=1

λjhj +
r

∑
k=1

(
λkGk + µk Hk

)]′
(ū, v− ū). (6)

Using the regularity of f L, f U , gi(i ∈ {1, · · · , p}), hj(j ∈ {1, · · · , q}), Gk,
Hk(k ∈ {1, · · · , r}) and from (5) and (6), we obtain

[
λL f L + λU f U + ∑

i∈Ig(ū)
λigi +

q

∑
j=1

λjhj +
r

∑
k=1

(
λkGk + µk Hk

)]′
(ū, v− ū) ≥ 0.

Since L(·, λ, µ) is semiconvex at ū, we have

λ f (ū) + ∑
i∈Ig(ū)

λigi(ū) +
q

∑
j=1

λjhj(ū) +
r

∑
k=1

(
λkGk(ū) + µk Hk(ū)

)

�LU λ f (v)) + ∑
i∈Ig(ū)

λigi(v) +
q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
.

This means

λL f L(v) + λU f U(v) + ∑
i∈Ig(ū)

λigi(v) +
q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)

≥ λL f L(ū) + λU f U(ū) + ∑
i∈Ig(ū)

λigi(ū) +
q

∑
j=1

λjhj(ū) +
r

∑
k=1

(
λkGk(ū) + µk Hk(ū)

)
. (7)

Since condition (3) and S-stationary condition hold at ū, so

λigi(ū) = 0, ∀i ∈ {1, · · · , p}, λjhj(ū) = 0, ∀j ∈ {1, · · · , q},
λkGk(ū) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

µk Hk(ū) = 0, ∀k ∈ IH(ū) ∪ IGH(ū).

Hence, (7) becomes

λL f L(v) + λU f U(v) + ∑
i∈Ig(ū)

λigi(v) +
q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
≥ λL f L(ū) + λU f U(ū). (8)

When v ∈ S, this means v ∈ M, gi(v) = 0 ∀i ∈ Ig(ū) and λL f L(v) + λU f U(v) =
λL f L(ū) + λU f U(ū). Hence,

λL f L(ū) + λU f U(ū) = λL f L(v) + λU f U(v)



Mathematics 2022, 10, 2763 8 of 16

≥λL f L(v) + λU f U(v) + ∑
i∈Ig(ū)

λigi(v) +
q

∑
j=1

λjhj(v)

+
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
≥ λL f L(ū) + λU f U(ū). (9)

Then, it follows from (8) and (9) that

∑
i∈Ig(ū)

λigi(v) = 0 i.e., gi = 0 (i ∈ Ig(ū)),

q

∑
j=1

λjhj(v) = 0 i.e., hj = 0 (j ∈ {1, · · · , q}),

r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
= 0 i.e., Gk = 0 = Hk (k ∈ {1, · · · , r}.

Therefore, L(·, λ, µ) is constant on S.

Theorem 1. Let ū be the solution to the problem (IVTNP), such that the condition (3) and S-
stationary condition hold. Suppose that the functions f L, f U are semiconvex on M and the La-
grangian function L(·, λ, µ) is semiconvex at ū, and suppose that the functions f L, f U ,
gi(i ∈ {1, · · · , p}), hj(j ∈ {1, · · · , q}), Gk, Hk(k ∈ {1, · · · , r}) are regular at ū. Then,
S = S1 = S

′
1, where

S1 =
{

v ∈ M : ∃η ∈ {λL∂c f L(ū) + λU∂c f U(ū)} ∩ {λL∂c f L(v) + λU∂c f U(v)},

〈η, ū− v〉 = 0, gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

,

S
′
1 =

{
v ∈ M : ∃η ∈ λL∂c f L(v) + λU∂c f U(v), 〈η, ū− v〉 = 0,

gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

.

Proof. Clearly, S1 ⊂ S
′
1, we claim that S ⊂ S1 and S

′
1 ⊂ S.

Let us suppose that v ∈ S
′
1, then ∃ η ∈ λL∂c f L(v) + λU∂c f U(v), such that 〈η, ū −

v〉 = 0, gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū), hj(v) = 0 ∀ j ∈
{1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū), Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū).

Since f L and f U are semiconvex on X, f L(ū) ≥ f L(v) and f U(ū) ≥ f U(v).
In addition, since ū, v ∈ M and ū is a solution to (IVPSC), v ∈ S.
Now, we claim that S ⊂ S1. Suppose v ∈ S, it follows from Lemma 2 that we have

gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū).
As ū satisfies condition (3) with λi ∈ R+ and the S-stationary condition holds at ū, then
there exists uL ∈ ∂c f L(ū), uU ∈ ∂c f U(ū), w ∈ N(M, ū), νg ∈ ∂cgi(ū)(i ∈ {1, · · · , p}),
νh ∈ ∂chj(ū)(j ∈ {1, · · · , q}), νG ∈ ∂cGk(ū), νH ∈ ∂cHk(ū)(k ∈ {1, · · · , r}), such that

λLuL + λUuU +
p

∑
i=1

λiνg +
q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
= −w.
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As M is a closed convex subset of X, 〈w, v− ū〉 ≤ 0 ∀v ∈ M, therefore, for v ∈ S ⊆ M,
we obtain〈

λLuL + λUuU +
p

∑
i=1

λiνg +
q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
, v− ū

〉
≥ 0.

i.e.,

〈λLuL + λUuU , v− ū〉 ≥ −
〈 p

∑
i=1

λiνg +
q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
, v− ū

〉
= −

〈
∑

i∈Ig(ū)
λiνg +

q

∑
j=1

λjνh +
r

∑
k=1

(
λkνG + µkνH

)
, v− ū

〉
. (10)

Since λigi(ū) = 0, ∀i ∈ {1, · · · , p}, λjhj(ū) = 0, ∀j ∈ {1, · · · , q} and S-stationary
holds at ū,

(λigi)
′
(ū, v− ū) = lim

t↓0

λigi(ū + t(v− ū))− λigi(ū)
t

= lim
t↓0

λigi(ū + t(v− ū))
t

, (11)

(λh
j hj)

′
(ū, v− ū) = lim

t↓0

λh
j hj(ū + t(v− ū))− λjhj(ū)

t
= lim

t↓0

λh
j hj(ū + t(v− ū))

t
, (12)

(λkGk)
′
(ū, v− ū) = lim

t↓0

λkGk(ū + t(v− ū))− λkGk(ū)
t

= lim
t↓0

λkGk(ū + t(v− ū))
t

, (13)

(µk Hk)
′
(ū, v− ū) = lim

t↓0

µk Hk(ū + t(v− ū))− µk Hk(ū)
t

= lim
t↓0

µk Hk(ū + t(v− ū))
t

. (14)

Since M is a convex subset of M, we have ū + t(v− ū) ∈ M, provided ū, v ∈ M and
t ∈ (0, 1).

Hence,

λigi(ū + t(v− ū)) ≤ 0, ∀i ∈ {1, · · · , p},
λjhj(ū + t(v− ū)) = 0, ∀j ∈ {1, · · · , q},

λkGk(ū + t(v− ū)) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

µk Hk(ū + t(v− ū)) = 0, ∀k ∈ IH(ū) ∪ IGH(ū).

From (11)–(14) and the above argument, we obtain

(λigi)
′
(ū, v− ū) ≤ 0, i ∈ {1, · · · , p},

(λh
j hj)

′
(ū, v− ū) = 0, j ∈ {1, · · · , q},

(λkGk)
′
(ū, v− ū) = 0, k ∈ {1, · · · , r},

(µk Hk)
′
(ū, v− ū) = 0, k ∈ {1, · · · , r}.

Since, gi, hj, Gk, Hk are regular at ū, i.e.,

(λigi)
′
(ū, v− ū) = (λigi)

c(ū, v− ū),

(λh
j hj)

′
(ū, v− ū) = (λh

j hj)
c(ū, v− ū),

(λkGk)
′
(ū, v− ū) = (λkGk)

c(ū, v− ū),
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(µk Hk)
′
(ū, v− ū) = (µk Hk)

c(ū, v− ū).

Let νg ∈ ∂cgi(ū)(i ∈ {1, · · · , p}), νh ∈ ∂chj(ū)(j ∈ {1, · · · , q}), νG ∈ ∂cGk(ū), νH ∈
∂cHk(ū)(k ∈ {1, · · · , r}), such that

〈λiνg, v− ū〉 ≤ 0, ∀ i ∈ {1, · · · , p},
〈λjνh, v− ū〉 = 0, ∀ j ∈ {1, · · · , q},

〈λkνG, v− ū〉 = 0, ∀ k ∈ IG(ū) ∪ IGH(ū),

〈µkνH , v− ū〉 = 0, ∀ k ∈ IH(ū) ∪ IGH(ū). (15)

From (15) and (10), we obtain 〈λLuL + λUuU , v− ū〉 ≥ 0.
Now, since f L(v) = f L(ū) and f U(v) = f U(ū), and f L, f U are semiconvex at ū.
Lemma 1 implies that f

′
(ū, v− ū) �LU 0; this means (λL f L + λU f U)

′
(ū, v− ū) ≤ 0.

Therefore,

〈λLuL + λUuU , v− ū〉 ≤ (λL f L + λU f U)c(ū, v− ū)

= (λL f L + λU f U)
′
(ū, v− ū) ≤ 0,

where uL ∈ ∂c f L(ū), uU ∈ ∂c f U(ū).

Hence, 〈λLuL + λUuU , v− ū〉 = 0.
Now, we have to prove that λLuL + λUuU ∈ λL∂ f L(ū) + λU∂ f U(ū) ∩ λL∂ f L(v) +

λU∂ f U(v).
Since λLuL + λUuU ∈ λL∂ f L(ū) + λU∂ f U(ū), it remains to prove that λLuL + λUuU ∈

λL∂ f L(v) + λU∂ f U(v).
f L and f U are regular at ū and v, so we have

(λL f L + λU f U)c(ū, d) = (λL f L + λU f U)
′
(ū, d),

(λL f L + λU f U)c(v, d) = (λL f L + λU f U)
′
(v, d), ∀d ∈ Rn.

Now, we claim that there does not exist any d0 ∈ Rn such that (λL f L +λU f U)
′
(ū, d0) <

(λL f L + λU f U)
′
(v, d0).

Suppose on contrary, there exists d0 ∈ Rn, such that (λL f L + λU f U)
′
(ū, d0) < (λL f L +

λU f U)
′
(v, d0), i.e.,

lim
t1↓0

(λL f L + λU f U)(v + t1d0)− (λL f L + λU f U)(v)
t1

− lim
t2↓0

(λL f L + λU f U)(ū + t2d0)− (λL f L + λU f U)(ū)
t2

< 0.

Then

lim
t↓0

[
(λL f L + λU f U)(v + td0)− (λL f L + λU f U)(v)

t

− (λL f L + λU f U)(ū + td0)− (λL f L + λU f U)(ū)
t

]
< 0.

Since (λL f L + λU f U)(v) = (λL f L + λU f U)(ū), we have

lim
t↓0

(λL f L + λU f U)(v + td0)− (λL f L + λU f U)(ū + td0)

t
< 0.
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Thus, ∃t0 ∈ (0, 1) and ε > 0 small enough such that

(λL f L + λU f U)(v + td0)− (λL f L + λU f U)(ū + td0) < −ε < 0∀t ∈ (0, t0). (16)

Easily, we can see that F(t) = (λL f L + λU f U)(v + td0)− (λL f L + λU f U)(ū + td0) is
continuous at t = 0.

Letting t → 0, we have (λL f L + λU f U)(v) − (λL f L + λU f U)(ū) < 0, which is a
contradiction, hence, if

λLuL(d) ≤ (λL f L + λU f U)
′
(ū, d) = (λL f L + λU f U)c(ū, d) ∀ d ∈ Rn,

and λUuU(d) ≤ (λL f L + λU f U)
′
(ū, d) = (λL f L + λU f U)c(ū, d) ∀ d ∈ Rn.

This proves that λLuL +λUuU ∈ λL∂c f L(ū)+λU∂c f U(ū) implies λLuL +λUuU ∈ λL∂c f L(v)
+λU∂c f U(v). We have λLuL + λUuU ∈ λL∂ f L(ū) + λU∂ f U(ū) ∩ λL∂ f L(v) + λU∂ f U(v).
Hence, v ∈ S1. This completes the proof.

Example 1. Consider an interval-valued optimization problem (IVPSC)

min f (u)

subject to u1 − u2 ≤ 0,

u1u2 = 0.

where f : R2 → I(R) is defined by

f (u1, u2) =
[
u2

2 − u2
1, u2

2

]
.

As f L(u) = u2
2 − u2

1 and f U(u) = u2
2 are differentiable convex functions so the coresponding

subgradient and gradient are the same.
∇ f L(u) = (−2u1, 2u2)

T and ∇ f U(u) = (0, 2u2)
T .

Consider a set M = {u = (u1, u2) : u1 − u2 ≤ 0, u1u2 = 0}. f is a LU-convex on the set

M = {u = (u1, u2) : u1 − u2 ≤ 0, u1u2 = 0}.

Lagrangian L(·, λ, µ)(u) = λL(u2
2 − u2

1) + λU(u2
2) + λg(u1 − u2) + λu1 + µu2.

Here, the solution set is S = {(0, 0)}. Let ū = (0, 0) hold the condition (3) and L(·, λ, µ)
is convex.

We can easily see that the condition (3) holds for the above interval-valued problem

λL
[
−2u1
2u2

]
+ λU

[
0

2u2

]
+ λg

[
1
−1

]
+ λG

[
1
0

]
+ λH

[
0
1

]
= (0, 0),

with λg = λG = λH = 0 and for any values of λL and λU at point ū = (0, 0). We can also see
that the S-stationary condition holds for IVPSC.

Choosing η = 0 ∈ λL∂ f L(ū) + λU∂ f U(ū) such that 〈η, ū− v〉 = 0⇔ v = 0.
Hence,

S
′
1 =

{
v ∈ M : ∃η ∈ λL∂c f L(v) + λU∂c f U(v), 〈η, ū− v〉 = 0,

gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}
= {(0, 0)} = S.

This verifies the above result.
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Figure 1 represents the lower and upper bound function f L(u) and f U(u) of interval-
valued objective function f (u). Figure 2 shows the constraint functions gi(u) and switching
constraints Gk(u)Hk(u) for Example 1.

(a) f L(u) (b) f U(u)
Figure 1. The lower and upper bound objective functions.

(a) gi(u) (b) Gk(u)Hk(u)
Figure 2. Constraints gi(u) and Gk(u)Hk(u).

Corollary 1. Let ū be the solution to the problem (IVTNP) such that the condition (3) and
S-stationary condition hold. Suppose that the functions f L, f U , gi(i ∈ {1, · · · , p}), hj(j ∈
{1, · · · , q}), Gk, Hk(k ∈ {1, · · · , r}) are semiconvex on M and if the Lagrangian function
L(·, λ, µ) is semiconvex at ū, then S = S1 = S

′
1, where

S1 =
{

v ∈ M : ∃η ∈ {λL∂c f L(ū) + λU∂c f U(ū)} ∩ {λL∂c f L(v) + λU∂c f U(v)},

〈η, ū− v〉 = 0, gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

,

S
′
1 =

{
v ∈ M : ∃η ∈ λL∂c f L(v) + λU∂c f U(v), 〈η, ū− v〉 = 0,

gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

.

We know that every convex function is semiconvex [51]. In the case where f L, f U , gi(i ∈
{1, · · · , p}), hj(j ∈ {1, · · · , q}), Gk, Hk(k ∈ {1, · · · , r}) are convex functions, the Clarke sub-
differential coincides with the subdifferential in the convex analysis.
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Corollary 2. Let ū be the solution to the problem (IVTNP) such that the condition (3) and
S-stationary condition hold. Suppose that the functions f L, f U , gi(i ∈ {1, · · · , p}), hj(j ∈
{1, · · · , q}), Gk, Hk(k ∈ {1, · · · , r}) are convex; then, S = S2 = S

′
2, where

S2 =
{

v ∈ M : ∃η ∈ {λL∂ f L(ū) + λU∂ f U(ū)} ∩ {λL∂ f L(v) + λU∂ f U(v)},

〈η, ū− v〉 = 0, gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

,

S
′
2 =

{
v ∈ M : ∃η ∈ λL∂ f L(v) + λU∂ f U(v), 〈η, ū− v〉 = 0,

gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū)
}

.

We can easily see that

[
ū ∈ M, ∑

i∈Ig(ū)
λigi(v) +

q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
= 0

]
⇔
[
ū ∈ M, gi(v) = 0 ∀ i ∈ Ig(ū), gi(v) ≤ 0 ∀ i ∈ {1, · · · , p} \ Ig(ū),

hj(v) = 0 ∀ j ∈ {1, · · · , q}, Gk(v) = 0, ∀k ∈ IG(ū) ∪ IGH(ū),

Hk(v) = 0, ∀k ∈ IH(ū) ∪ IGH(ū),
]
,

and by Lemma 2, L(v, λ, µ) = λL f L(v) + λU f U(v) ∀ v ∈ S.

Corollary 3. Suppose that the functions f L, f U , gi(i ∈ {1, · · · , p}), hj(j ∈ {1, · · · , q}), Gk,
Hk(k ∈ {1, · · · , r}) and L(·, λ, µ) are semiconvex on M, then S = S3 = S

′
3, where

S3 =
{

v ∈ M : ∑
i∈Ig(ū)

λigi(v) +
q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
= 0,

∃η ∈ ∂cL(·, λg, λh, λG, λH)(v), 〈η, ū− v〉 = 0
}

,

S
′
3 =

{
v ∈ M : ∑

i∈Ig(ū)
λigi(v) +

q

∑
j=1

λjhj(v) +
r

∑
k=1

(
λkGk(v) + µk Hk(v)

)
= 0,

∃η ∈ ∂cL(·, λg, λh, λG, λH)(ū) ∩ ∂cL(·, λg, λh, λG, λH)(v), 〈η, ū− v〉 = 0
}

.

4. Conclusions and Future Remarks

We have considered the interval-valued mathematical programming problem with
switching constraints (IVPSC) and studied the Lagrange multiplier characterizations of
solution sets with the help of a semiconvex function and S-stationary condition. The S-
stationary condition is stronger than the W-stationary and M-stationary conditions. We
have proved that the associated Lagrangian function is constant for IVTNP withholding
of the S-stationary condition. Thus, the W-stationary condition holds, too. Based on the
proved by Mehlitz [12] condition, for the W-stationary condition, the feasible set of a
tightened nonlinear problem (IVTNP) is a subset of the feasible set of the mathematical
programs with switching constraints (IVPSC). Therefore, we have characterized the par-
ticular solutions sets for IVTNP. The IVPSC is a new class of optimization problems with
significant applications. MPSC can be used for the discretized version of the optimal control
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problem with switching structure [12], and we can extend the results to interval-valued
optimization problems from a practical point of view. The IVPSC can be reformulated as
a mathematical program with disjunctive constraints (MPDC) [14]. We can introduce an
alternative approach to LICQ and establish the first and second order optimality conditions
for MPDC with interval-valued objective functions. To the best of our knowledge, there
are a few papers related to characterizations of solution sets and interval-valued nonlinear
optimization. This article can be extended for various nonlinear programming problems
such as MPEC, MPVC, MPDC, and many more from the application point of view.
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