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Abstract: In this paper, the asymptotic stability problem of neural networks with time-varying delays
is investigated. First, a new sufficient and necessary condition on a general polynomial inequality
was developed. Then, a novel augmented Lyapunov–Krasovskii functional (LKF) was constructed,
which efficiently introduces some new terms related to the previous information of neuron activation
function. Furthermore, based on the suitable LKF and the stated negative condition of the general
polynomial, two criteria with less conservatism were derived in the form of linear matrix inequalities.
Finally, two numerical examples were carried out to confirm the superiority of the proposed criteria,
and a larger allowable upper bound of delays was achieved.
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1. Introduction

Neural networks (NNs) are generally recognized as one of the mathematical models
that simulates the intelligent activities of the human brain [1]. Because of its strong ability
to model complex and nonlinear relationships between the input and output, NNs have
attracted widespread attention over the past decades and have been applied in many
areas, such as image processing [2], optimization problems [3], signal processing [4],
parallel computation [5] and other scientific fields. However, due to the limited switching
frequency of amplifiers and the inherent communication time among neurons, time delays
are inevitable, which may affect the performance of NNs and lead to undesired dynamics,
such as oscillation or even instability [6–8]. Therefore, it is essential to consider an allowable
upper bound of delays such that the NNs with a delay less than this bound remain stable,
and many excellent results have been achieved to reduce the conservatism of the stability
conditions [9–12].

It is well recognized that the Lyapunov–Krasovskii functional (LKF) method is pow-
erful in analyzing such delayed NNs. The key point is concerned with the choice of
LKF [13,14]. It has been verified that an LKF with delay-dependent matrices can yield
less conservatism. A delay-product-type LKF is proposed in [15], which contains a matrix-
valued polynomial of any chosen degree in time-varying delay. It shows that the con-
servatism is affected by the maximal degree of time-varying delay included in the delay-
product-type terms of the LKF. Additionally, by taking into consideration more information
on state-related vectors and the activation function, some newly augmented LKFs are
presented in [13,14,16,17]. As a result, less conservative conditions are predicted, as more
information about the state, delay or neuron activation functions are beneficial for re-
ducing conservatism. Therefore, one of the research contents of this work is to build a
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delay-product-type LKF that contains more information on state-related vectors and the
activation function, and hence is able to lead to a less conservative stability criterion.

Besides the construction of a proper LKF, the estimation of an integral term originating
in the derivative of LKF is strongly related to the conservatism of criteria [18]. A common
term with the form

∫ t
t−h

∫ t
θ zT(s)Tz(s)dsdθ is always included in different LKFs. Then, its

derivative contains the term as follows: −
∫ t

t−h zT(t)Tz(t)ds. Various integral inequalities
techniques have been proposed to bound such integral terms. The Jensen inequality [19]
is known as an efficient tool to estimate the integral terms, but the reciprocally convex
combination terms are usually encountered with respect to the time-varying delays, and
the reciprocally convex lemma must be used to handle them [20,21]. Based on this work,
many researchers have focus on the investigation of novel integral inequalities to obtain
less conservative results of stability for the systems. Wirtinger-based integral inequality is
investigated in [18], which encompasses Jensen inequality and obtains better results than
Jensen inequality. Free-matrix-based integral inequality with a tighter bound has been
proposed, while the reciprocally convex lemma is no longer required, but this increased
the computational complexity [22]. Several zero-value equalities that add cross terms to
the time derivative LKF terms are proposed, and improved results are derived. A novel
estimating method called the general free-weighting-matrix approach is created in [17]. It
is shown that this approach can incorporate Wirtinger-based inequality and free-matrix-
based integral inequality. It has to be pointed out that the construction of an LKF should
take integral inequalities into account to ensure that the derivative of the LKF includes
those vectors appearing in the integral inequality used [23]. Therefore, utilizing a valid
integral inequality technique to bound the integral terms is strongly connected with the
conservatism of stability criteria. This paper investigates the stability of NNs following this
direction.

In this paper, we further investigate the stability problem for NNs with time-varying
delays. The contributions of this paper are summarized as follows:

(i) A new sufficient and necessary condition for the general polynomial inequalities
was developed by introducing some slack variables. The negative definiteness
determination method was applied to derive less conservative stablity criteria.

(ii) A suitable delay-product-type LKF was constructed by efficiently introducing some
new terms relating to the previous information of neuron activation function. As a
result, the stability criterion based on the established LKF becomes more dependent
on the technique for dealing with the single integrations of activation function.

(iii) Based on the LKF and the stated negative condition of the general polynomial,
two less conservative criteria were derived, which are demonstrated through two
numerical examples, and a larger allowable upper bound of delays is achieved.

Notations: Throughout this paper, N+ represents the set of positive integers. Rn and
Rm×n denote the n-dimensional vector space and the set of all m× n real matrices, respec-
tively. Z−1 and ZT stand for the inverse and the transpose of the matrix Z, respectively.
P > 0 (P ≥ 0) means that P is a symmetric and positive definite (semi-definite) matrix.
I and 0 denote the identity matrix and zero matrix. diag(x1, . . . , xn) represents a diago-
nal matrix, in which, its diagonal elements are x1, . . . , xn. col(x1, . . . , xn) = [xT

1 , . . . , xT
n ]

T ,

Sym{Z} = Z + ZT . ∗ stands for the symmetric terms in a symmetric matrix.
(

n
m

)
represents n!

m!(n−m)! .

2. Preliminaries

In this section, we consider the following NNs system:

ẋ(t) =− Ax(t) + W0 f (Wx(t)) + W1 f (Wx(t− d(t))), (1)



Mathematics 2022, 10, 2768 3 of 14

where x(t) ∈ Rn denotes the neuron state vector and A ∈ Rn×n is a diagonal matrix.
W = col(W̄1, W̄2, · · · , W̄n), W0 and W1 are the interconnection weight matrices, and
f (Wx(t)) = col( f1(W̄1x1(t)), f2(W̄2x2(t)), · · · , fn(W̄nxn(t)) ∈ Rn is the activation func-
tion with fi(0) = 0. The time-varying delay d(t) satisfies

0 ≤ d(t) ≤ h,−µ ≤ ḋ(t) ≤ µ, (2)

where h and µ are known positive constants. The neuron activation function f (·) is
bounded by

δ−i ≤
fi(u1)− fi(u2)

u1 − u2
≤ δ+i , i = 1, 2, · · · , n, (3)

where u1, u2 ∈ R, u1 6= u2, δ−i and δ+i are real scalars. For convenience, define
Kp = diag(δ+1 , δ+2 , · · · , δ+n ), Km = diag(δ−1 , δ−2 , · · · , δ−n ).

In order to derive the stability criteria for the system (1), the following lemmas were
utilized.

Lemma 1 ([24]). For an integer m ≥ 0, two scalars a and b with a < b, a real positive matrix R
and a differentiable function x : [a, b]→ Rn such that the integration below is well defined, then

−(b− a)
∫ b

a
ẋT(s)Rẋ(s)ds ≤ −(ΘmΛmvm)

TRmΘmΛmvm (4)

whereRm = diag(R, 3R, · · · , (2m + 1)R),

Θm =



I 0 · · · 0

I (−1)1
(

1
1

)(
2
1

)
I · · · 0

...
...

...
...

I (−1)1
(

m
1

)(
m + 1

1

)
I · · · (−1)m

(
m
m

)(
2m
m

)
I


, (5)

Λm =


I −I 0 0 · · · 0
0 −I I 0 · · · 0
0 −I 0 2I · · · 0
...

...
...

...
...

...
0 −I 0 0 · · · mI

, (6)

vm = col(x(b), x(a), γ1(a, b), . . . , γm(a, b)), γk(a, b) = 1
(b−a)k

∫ b
a (b − s)k−1x(s)ds,

(k = 1, 2, . . . , m).

Lemma 2 ([21]). For a given scalar α ∈ (0, 1), vectors ω1, ω2 ∈ Rn and matrices R > 0,
X1 > 0, X2 > 0, Y1, Y2 ∈ Rn×n, such that[

R− X1 Y1
∗ R

]
≥ 0,

[
R Y2
∗ R− X2

]
≥ 0,

the following inequality holds.

1
α

ωT
1 Rω1 +

1
1− α

ωT
2 Rω2 ≥ω1[R + (1− α)X1]ω1 + ω2[R + αX2]ω2

+ 2ω1[αY1 + (1− α)Y2]ω2. (7)
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Lemma 3 ([25]). Consider an integrable function x(u) in [a, b], R > 0 and a matrix T with
appropriate dimensions. The following inequality is true.

−
∫ b

a
xT(s)Rx(s)ds ≤ Sym

{
βTTλ

}
+ (b− a)βTTR−1TT β, (8)

where β is an arbitrary vector, and λ =
∫ b

a x(s)ds.

Lemma 4. Consider the following polynomial described by f (z) = a2nz2n + a2n−1z2n−1 + · · ·+
a1z + a0, where n ∈ N+, z ∈ [0, h] with h is a constant; then,

(i) f (z) < 0 for all z ∈ [0, h] if and only if there exists a scalar m ≥ 0 such that

Υ2 =



a0 q1 · · · 0 0

∗ q2
. . . 0 0

...
...

. . . . . .
...

∗ ∗ · · · q2n−2 q2n−1
∗ ∗ · · · ∗ q2n

 < 0, (9)

where q2n−1 = 1
2 a2n−1 + hm, and q2n = a2n − 2m.

(ii) f (z) > 0 for all z ∈ [0, h] if and only if there exists a scalar m ≥ 0 such that

Υ1 =



a0 p1 · · · 0 0

∗ p2
. . . 0 0

...
...

. . . . . .
...

∗ ∗ · · · p2n−2 p2n−1
∗ ∗ · · · ∗ p2n

 > 0, (10)

where p2n−1 = 1
2 a2n−1 − hm, and p2n = a2n + 2m.

Proof. (i) First, for z ∈ [0, h], we define g(z) = z
(
z2n−1 − 2hz2n−2 + · · ·+ z3 − 2hz2 + z− 2h

)
6 0. f (z) and g(z) can be represented as f̂ (ẑ) and ĝ(ẑ), respectively.

f̂ (ẑ) = ẑTΛ1ẑ, ĝ(ẑ) = ẑTΛ2ẑ, ẑ = col(1, z, · · · , zN−1, zN),

Λ1 =



a0
1
2 a1 · · · 0 0

1
2 a1 a2

. . . 0 0
...

...
. . . . . .

...
0 0 · · · a2n−2

1
2 a2n−1

0 0 · · · 1
2 a2n−1 a2n

, Λ2 =



0 −h · · · 0 0

−h 2
. . . 0 0

...
...

. . . . . .
...

0 0 · · · 2 −h
0 0 · · · −h 2

.

(Sufficiency) If there exists a scalar m ≥ 0 satisfying f (z)−mg(z) = ẑTΥ1ẑ < 0, then
f (z) < 0 for all z ∈ [0, h].

(Necessity)H =
{
( f̂ (ẑ), ĝ(ẑ)) : ẑ ∈ Rn

}
is a convex set. Then, we set an open convex

cone as T = {(α1, α2) : α1 > 0, α2 < 0}. If there exists a nonzero two-tuple (β1,−β2),
we have

α1β1 − α2β2 > 0, ∀(α1, α2) ∈ T (11)

β1 f̂ (ẑ)− β2 ĝ(ẑ) ≤ 0, ∀( f̂ (ẑ), ĝ(ẑ)) ∈ H (12)
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For any given ε > 0, we have (ε, α2) ∈ T , for all α1 > 0. Thus, (11) implies that β2 > 0.
Since ĝ(ẑ) < 0 is regular, (12) shows that β1 > 0. Hence, the following inequality can be
obtained by using β1 > 0:

f̂ (ẑ)− β2

β1
ĝ(ẑ) ≤ 0 (13)

for m = β2
β1
≥ 0. This means that there exists m ≥ 0 such that f̂ (z)−mĝ(z) = ẑTΥ1ẑ < 0.

This completes the proof of (i).
(ii) Set f̃ (z) = − f (z) > 0; then, g(z) can be rewritten as g̃(ẑ) = ẑTΛ3ẑ, where

Λ3 =



0 h · · · 0 0

h −2
. . . 0 0

...
...

. . . . . .
...

0 0 · · · −2 h
0 0 · · · h −2

,

Then, the proof is straightforward from the proof of (i).

Remark 1. Lemma 4 provides necessary and sufficient conditions of high-order polynomial in-
equality f (s) < 0 and f (s) > 0 for ∀z ∈ [0, h]. When a2n = 0, f (z) represents an odd polynomial
on z if a2n−1 6= 0. Thus, Lemma 4 covers both even and odd polynomials. It is worth men-
tioning that Lemma 2 in [26] is a special case of Lemma 4 with n = 1. A quadratic function
f (z) = a2z2 + a1z + a0 < 0 for all z ∈ [0, h] if and only if there exists a scalar m ≥ 0 such that[

a0
1
2 a1 + hm

1
2 a1 + hm a2 − 2m

]
< 0.

3. Main Results

In this section, two improved stability criteria are developed. For simplification, the
following notations are defined.
v1(t) = col

(∫ t
t−d(t)

x(s)
d(t) ds,

∫ t
t−d(t)

(t−s)x(s)
d2(t) ds

)
,

v2(t) = col
(∫ t−d(t)

t−h
x(s)

h−d(t)ds,
∫ t−d(t)

t−h
(t−d(t)−s)x(s)

(h−d(t))2 ds
)

,

v3(t) =
∫ t

t−d(t) f (Wx(s))ds, v4(t) =
∫ t−d(t)

t−h f (Wx(s))ds,
ηa(t) = col(x(t), x(t− d(t)), x(t− h)), ηb(t) = col(v3(t), v4(t)),
η1(t) = col(ηa(t), ηb(t), d(t)v1(t), (h− d(t))v2(t)),
η2(s, t) = col

(
ẋ(s), x(s), x(t),

∫ s
t−d(t) x(θ)dθ,

∫ t
s x(θ)dθ

)
,

η3(s, t) = col
(

x(s), x(s), x(t),
∫ s

t−h x(θ)dθ,
∫ t−d(t)

s x(θ)dθ
)

, η4(t) = col(ẋ(t), x(t), f (Wx(t))),
f (t) = f (Wx(t)), fd(t) = f (W(t− d(t))), fh(t) = f (Wx(t− h)),
ξ(t) = col(ηa(t), ẋ(t− d(t)), ẋ(t− h), v1(t), v2(t), f (t), fd(t), fh(t), ηb(t)),
ei =

(
0n×(i−1)n In 0n×(14−i)n

)
(i = 1, 2, · · · , 14), es = −Ae1 + W0e10 + W1e11.

Now, we present the following stability conditions.

Theorem 1. For given scalars h > 0 and u > 0, the system (1) is asymptotically stable if there
exist symmetric matrices Pi > 0, Qi > 0, Ri > 0 (i = 1, 2), Z > 0, T > 0, diagonal matrices
Uj > 0, Vj > 0 (j = 1, 2, 3), ∆k > 0 (k = 1, . . . , 6) and any matrices Xl , Yl , Ml , Nl (l = 1, 2),
such that
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[
Z̃− X1 Y1
∗ Z̃

]
≥ 0,

[
Z̃ Y2
∗ Z̃− X2

]
≥ 0, (14)Mi + MT

i NT
1 NT

2
∗ hT 0
∗ ∗ hT

 > 0, (15)


Φ0(−µ) 0.5Φ1(−µ) + hM1 hNT

2 0
∗ Φ2(−µ)−M1 −MT

1 −NT
2 NT

1
∗ ∗ −hT 0
∗ ∗ ∗ −hT

 < 0, (16)


Φ0(µ) 0.5Φ1(µ) + hM2 hNT

2 0
∗ Φ2(µ)−M2 −MT

2 −NT
2 NT

1
∗ ∗ −hT 0
∗ ∗ ∗ −hT

 < 0, (17)

where Z̃ = diag(Z, 3Z, 5Z), Φ(d(t), ḋ(t)) = Φ2(ḋ(t))d2(t) + Φ1(ḋ(t))d(t) + Φ0(ḋ(t)) with

Φ0(ḋ(t)) = Sym
{

hrT
11P2r2

}
+ ḋ(t)rT

11(P1 − P2)r11 + rT
31Q1r31 − rT

41Q2r41

− (1− ḋ(t))
(

rT
51Q1r51 − rT

61Q2r61

)
+ Sym

{
rT

9 Q1r71 + rT
10Q2r81

}
+ Sym

{((
KpWe1 − e10

)T∆1 + (e10 − KmWe1)
T∆2

)
Wes

}
+ Sym

{((
KpWe2 − e11

)T∆3 + (e11 − KmWe2)
T∆4

)
We4(1− ḋ(t))

}
+ Sym

{((
KpWe3 − e12

)T∆5 + (e12 − KmWe3)
T∆6

)
We5

}
+ Sym

{
3

∑
c=1

(
KpWec − ec+9

)TUc(ec+9 − KmWec)

}

+ Sym

{
2

∑
c=1

(
KpW(ec − ec+1)− (ec+9 − ec+10)

)TVc((ec+9 − ec+10)− KmW(ec − ec+1))

}
+ Sym

{(
KpW(e1 − e3)− (e10 − e12)

)TV3((e10 − e12)− KmW(e1 − e3))
}

+ ρT
1 R1ρ1 + (1− ḋ(t))ρT

2 (R2 − R1)ρ2 − ρT
3 R2ρ3 + h2eT

s Zes

− ρT
4

(
Z̃ + X1

)
ρ4 − ρT

5 Z̃ρ5 − Sym
{

ρT
4 Y2ρ5

}
+ heT

10Te10 + Sym
{

eT
13N1 + eT

14N2

}
,

Φ1(ḋ(t)) = Sym
{

rT
11(P1 − P2)r2 + hrT

12P2r2 + ḋ(t)rT
11(P1 − P2)r12 + rT

31Q1r32 − rT
41Q2r42

−(1− ḋ(t))
(

rT
51Q1r52 − rT

61Q2r62

)
+ rT

9 Q1r72 + rT
10Q2r82

}
− 1

h
Sym

{
ρT

4 (Y1 −Y2)ρ5

}
+

1
h

(
ρT

4 X1ρ4 − ρT
5 X2ρ5

)
,

Φ2(ḋ(t)) = Sym
{

rT
12(P1 − P2)r2

}
+ ḋ(t)rT

12(P1 − P2)r12 + rT
32Q1r32 − rT

42Q2r42

− (1− ḋ(t))
(

rT
52Q1r52 − rT

62Q2r62

)
+ Sym

{
rT

9 Q1r73 + rT
10Q2r83

}
,



Mathematics 2022, 10, 2768 7 of 14

r1 = r11 + d(t)r12, r11 = col(e1, e2, e3, e13, e14, 0, 0, he8, he9), r12 = col(0, 0, 0, 0, 0, e6, e2,−e8,−e9),

r2 = col(es, (1− ḋ(t))e4, e5, e10 − (1− ḋ(t))e11, (1− ḋ(t))e11 − e12, e1 − (1− ḋ(t))e2,

− (1− ḋ(t))e2 + e6 − ḋ(t)e7, (1− ḋ(t))e2 − e3,−e3 + (1− ḋ(t))e8 + ḋ(t)e9),

ri = ri1 + d(t)ri2 (i = 3, 4, 5, 6), rj = rj1 + d(t)rj2 + d2(t)rj3 (j = 7, 8),

r31 = col(es, e1, e1, 0, 0), r32 = col(0, 0, 0, e6, 0), r41 = col(e5, e3, e1, 0, he8),

r42 = col(0, 0, 0, 0,−e8), r51 = col(e4, e2, e1, 0, 0), r52 = col(0, 0, 0, 0, e6),

r61 = col(e4, e2, e1, he8, 0), r62 = col(0, 0, 0,−e8, 0), r71 = col(e1 − e2, 0, 0, 0, 0),

r72 = col(0, e6, e1, 0, 0), r73 = col(0, 0, 0, e7, e6 − e7), r83 = col(0, 0, 0, e9, e8 − e9),

r81 = col(e2 − e3, he8, he1, h2e9, h2(e8 − e9), r82 = col(0,−e8,−e1,−2he9,−2h(e8 − e9)),

r9 = col(0, 0, es,−(1− ḋ(t))e2, e1), r10 = col(0, 0, es,−e3, (1− ḋ(t))e2),

ρ1 = col(es, e1, e10), ρ2 = col(e4, e2, e11), ρ3 = col(e5, e3, e12),

ρ4 = col(e1 − e2, e1 + e2 − 2e6, e1 − e2 − 6e6 + 12e7),

ρ5 = col(e2 − e3, e2 + e3 − 2e8, e2 − e3 − 6e8 + 12e9).

Proof. To prove the stability of the system (1), we constructed the following LKF:

V(t) =
6

∑
i=1

Vi(t), (18)

where

V1(t) = ηT
1 (t)P(d(t))η1(t),

V2(t) =
∫ t

t−d(t)
ηT

2 (s, t)Q1η2(s, t)ds +
∫ t−d(t)

t−h
ηT

3 (s, t)Q2η3(s, t)ds,

V3(t) = 2
n

∑
i=1

∫ Wix(t)

0

[
λ1i
(
δ+i s− fi(s)

)]
+
[
λ2i
(

fi(s)− δ−i s
)]

ds,

+ 2
n

∑
i=1

∫ Wix(t−d(t))

0

[
λ3i
(
δ+i s− fi(s)

)]
+
[
λ4i
(

fi(s)− δ−i s
)]

ds,

+ 2
n

∑
i=1

∫ Wix(t−h)

0

[
λ5i
(
δ+i s− fi(s)

)]
+
[
λ6i
(

fi(s)− δ−i s
)]

ds,

V4(t) =
∫ t

t−d(t)
ηT

4 (s)R1η4(s)ds +
∫ t−d(t)

t−h
ηT

4 (s)R2η4(s)ds,

V5(t) = h
∫ t

t−h
(h− t + s)ẋT(s)Zẋ(s)ds,

V6(t) =
∫ t

t−h

∫ t

θ
f T(Wx(s))T f (Wx(s))dsdθ.

where P(d(t)) = d(t)P1 + (h− d(t))P2.
Then, taking the derivatives of V(t) along the trajectory of system (1) yields
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V̇1(t) = 2ηT
1 (t)P(d(t))η̇1(t) + ηT

1 (t)Ṗ(d(t))η1(t), (19)

V̇2(t) = ηT
2 (t, t)Q1η2(t, t)− (1− ḋ(t))ηT

2 (t− d(t), t)Q1η2(t− d(t), t)

− ηT
3 (t− h, t)Q2η3(t− h, t) + (1− ḋ(t))ηT

3 (t− d(t), t)Q2η3(t− d(t), t)

+ 2
∂

∂t
ηT

2 (s, t)Q1

∫ t

t−d(t)
η2(s, t)ds + 2

∂

∂t
ηT

3 (s, t)Q2

∫ t−d(t)

t−h
η3(s, t)ds, (20)

V̇3(t) = Sym
{((

KpWx(t)− f (t)
)T∆1 + ( f (t)− KmWx(t))T∆2

)
Wẋ(t)

+
(
(KpWx(t−d(t))− fd(t))T∆3+( fd(t)−KmWx(t−d(t)))T∆4

)
Wẋ(t−d(t))(1−ḋ(t))

+
((

KpWx(t− h)− fh(t)
)T∆5 + ( fh(t)− KmWx(t− h))T∆6

)
Wẋ(t− h)

}
, (21)

V̇4(t) = ηT
4 (t)R1η4(t) + (1− ḋ(t))ηT

4 (t− d(t))(R2 − R1)η4(t− d(t))

− ηT
4 (t− h)R2η4(t− h), (22)

V̇5(t) = h2 ẋT(t)Zẋ(t)− h
∫ t

t−h
ẋT(s)Zẋ(s)ds, (23)

V̇6(t) = h f T(Wx(t))T f (Wx(t))−
∫ t

t−h
f T(Wx(t))T f (Wx(t))ds. (24)

Based on Lemmas 1 and 2, it follows from (14) that

−h
∫ t

t−h
ẋT(s)Zẋ(s)ds = −h

∫ t−d(t)

t−h
ẋT(s)Zẋ(s)ds− h

∫ t

t−d(t)
ẋT(s)Zẋ(s)ds

≤ − h
d(t)

ξT(t)ρT
4 Zρ4ξ(t)− h

h− d(t)
ξT(t)ρT

5 Zρ5ξ(t)

≤ ξT(t)
(
−ρT

4

(
Z̃ + X1

)
ρ4 − ρT

5 Z̃ρ5 − Sym
{

ρT
4 Y2ρ5

}
+

d(t)
h

(
ρT

4 X1ρ4 − ρT
5 X2ρ5 − Sym

{
ρT

4 (Y1 −Y2)ρ5

}))
ξ(t), (25)

Using Lemma 3, one has the following inequality:

−
∫ t

t−h
f T(Wx(t))T f (Wx(t))ds

≤ ξT(t)(Sym
{

eT
13N1 + eT

14N2

}
+ d(t)NT

1 T−1N1 + (h− d(t))NT
2 T−1N2)ξ(t). (26)

To make use of the information of the activation function, we can obtain

φj(u) = 2
(
KpWx(u)− f (Wx(u))

)TUj
(

f (Wx(u))− KmWx(u)
)
≥ 0, (27)

ϕj(u1, u2) = 2
(
KpW(x(u1)− x(u2))− ( f (Wx(u1))− f (Wx(u2)))

)T

×Vj
(
( f (Wx(u1))− f (Wx(u2)))− KmW(x(u1)− x(u2))

)
≥ 0, (28)

where u1, u2 ∈ R, Uj = diag
{

uj1, uj2, · · · , ujn
}
∈ Sn

+, Vj = diag
{

vj1, vj2, · · · , vjn
}
∈

Sn
+ (j = 1, 2, 3); then, it is clear that

φ1(t) + φ2(t− d(t)) + φ3(t− h) ≥ 0, (29)

ϕ1(t, t− d(t)) + ϕ2(t− d(t), t− h) + ϕ3(t, t− h) ≥ 0. (30)

From (19) to (30), the following inequality can be obtained:

V̇(t) ≤ ξT(t)Ωξ(t), (31)
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where

Ω = Φ2(ḋ(t))d2(t) +
(

Φ1(ḋ(t)) + NT
1 T−1N1 − NT

2 T−1N2

)
d(t)

+ Φ0(ḋ(t)) + hNT
2 T−1N2. (32)

To guarantee that V̇(t) < 0, applying Lemma 2 and M̄i + M̄T
i > 0 (i = 1, 2), Ω < 0 is

equivalent to[
Φ0(ḋ(t)) 0.5Φ1(ḋ(t)) + hMi
∗ Φ2(ḋ(t))−Mi −MT

i

]
+

[
hNT

1 T−1N1 −NT
1 T−1N1

∗ 1
h NT

1 T−1N1 +
1
h N2T−1NT

2

]
< 0, (33)

where M̄i = − 1
2h NT

1 T−1N1 − 1
2h N2T−1NT

2 + Mi (i = 1, 2). Finally, if (16) and (17) are
satisfied, then V̇(t) < 0 for Mi satisfying (15) by a Schur complement [27], which means
that the NNs (1) are asymptotically stable. The proof is completed.

Remark 2. To derive the stability criterion in terms of linear matrix inequality, the matrix
M̄i (i = 1, 2) should be appropriately designed. In Theorem 1, M̄i (i = 1, 2) are set as
M̄i = − 1

2h NT
1 T−1N1 − 1

2h N2T−1NT
2 + Mi (i = 1, 2) to handle 1

2 NT
1 T−1N1 and 1

2 N2T−1NT
2 of

Ω. The slack variable M̄i (i = 1, 2) helps in reducing the conservativeness by giving the freedom
for checking the feasibility of the linear matrix inequality conditions.

Remark 3. It should be pointed out that most literature [11,28] only propose the information of
activation functions, such as f (x(t)), f (x(t− d(t))) and f (x(t− d)). In this paper, the information
of single integrations of activation functions, i.e.,

∫ t
t−d(t) f (Wx(s))ds and

∫ t−d(t)
t−h f (Wx(s))ds, are

considered in V1(t). According to this construction, more activation function information on NNs can
be adequately utilized, which leads to less conservative results.

∫ t
t−h

∫ t
θ f T(Wx(s))T f (Wx(s))dsdθ

is firstly proposed in [11]; different from its derivative handled method, this paper estimates the
integral term by Lemma 3, which makes full use of cross-terms from the single integrations of
activation function to others, and leads to a tighter bound.

Corollary 1. For given scalars h > 0 and u > 0, the system (1) is asymptotically stable if there
exist symmetric matrices P > 0, Z > 0, T > 0, Qi > 0, Ri > 0 (i = 1, 2), diagonal matrices
Uj > 0, Vj > 0 (j = 1, 2, 3), ∆k > 0 (k = 1, . . . , 6) and any matrices Xl , Yl , Ml , Nl (l = 1, 2),
such that [

Z̃− X1 Y1
∗ Z̃

]
≥ 0,

[
Z̃ Y2
∗ Z̃− X2

]
≥ 0, (34)Mi + MT

i NT
1 NT

2
∗ hT 0
∗ ∗ hT

 > 0, (35)


Φ0(−µ) 0.5Φ1(−µ) + hM1 hNT

2 0
∗ Φ2(−µ)−M1 −MT

1 −NT
2 NT

1
∗ ∗ −hT 0
∗ ∗ ∗ −hT

 < 0, (36)


Φ0(µ) 0.5Φ1(µ) + hM2 hNT

2 0
∗ Φ2(µ)−M2 −MT

2 −NT
2 NT

1
∗ ∗ −hT 0
∗ ∗ ∗ −hT

 < 0, (37)

where
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Φ0(ḋ(t)) = Sym
{

rT
11Pr2

}
+ rT

31Q1r31 − rT
41Q2r41 − (1− ḋ(t))

(
rT

51Q1r51 − rT
61Q2r61

)
+ Sym

{
rT

9 Q1r71 + rT
10Q2r81

}
+ Sym

{((
KpWe1 − e10

)T∆1 + (e10 − KmWe1)
T∆2

)
Wes

}
+ Sym

{((
KpWe2 − e11

)T∆3 + (e11 − KmWe2)
T∆4

)
We4(1− ḋ(t))

}
+ Sym

{((
KpWe3 − e12

)T∆5 + (e12 − KmWe3)
T∆6

)
We5

}
+ Sym

{
3

∑
c=1

(
KpWec − ec+9

)TUc(ec+9 − KmWec)

}

+ Sym

{
2

∑
c=1

(
KpW(ec − ec+1)− (ec+9 − ec+10)

)TVc((ec+9 − ec+10)− KmW(ec − ec+1))

}
+ Sym

{(
KpW(e1 − e3)− (e10 − e12)

)TV3((e10 − e12)− KmW(e1 − e3))
}
+ ρT

1 R1ρ1

+ (1− ḋ(t))ρT
2 (R2 − R1)ρ2 − ρT

3 R2ρ3 + h2eT
s Zes − ρT

4

(
Z̃ + X1

)
ρ4 − ρT

5 Z̃ρ5

− Sym
{

ρT
4 Y2ρ5

}
+ heT

10Te10 + Sym
{

eT
13N1 + eT

14N2

}
Φ1(ḋ(t)) = Sym

{
rT

12 pr2 + rT
31Q1r32 − rT

41Q2r42 − (1− ḋ(t))
(

rT
51Q1r52 − rT

61Q2r62

)
+ rT

9 Q1r72

+rT
10Q2r82

}
− 1

h
Sym

{
ρT

4 (Y1 −Y2)ρ5

}
+

1
h

(
ρT

4 X1ρ4 − ρT
5 X2ρ5

)
,

Φ2(ḋ(t)) = rT
32Q1r32 − rT

42Q2r42 − (1− ḋ(t))
(

rT
52Q1r52 − rT

62Q2r62

)
+ Sym

{
rT

9 Q1r73 + rT
10Q2r83

}
,

where the other notions are defined well in Theorem 1.

Proof. From the proof of Theorem 1, we choose the LKF (19) with P(d(t)) = P in V1(t). The
rest of the process is similar to that in the proof of Theorem 1; hence, we omit it here.

Remark 4. Theorem 1 and Corollary 1 are related to the stability problem of NNs with time-
varying delays. It is possible to apply the proposed methods to other control problems, e.g., H∞
control [29] and sampled-data control [30,31].

4. Illustrative Examples

In this section, two numerical examples are presented to demonstrate the superiority
and the effectivity of the derived criteria.

Example 1. Consider the delayed NNs (1) with the following parameters:

A = diag(1.5, 0.7), W = diag(1, 1), Km = diag(0, 0), Kp = diag(0.3, 0.8),

W0 =

[
0.0503 0.0454
0.0987 0.2075

]
, W1 =

[
0.2381 0.9320
0.0388 0.5062

]
.

For various µ, the allowable maximum delay bounds by Theorem 1 and Corollary 1
in this paper and the related methods in [17,32–34] are listed in Table 1. The results show
that Theorem 1 provides a bigger allowable maximum upper bound of delays than the
related methods of [17,32–34] do, which verifies the lower conservatism of the proposed
criteria. Theorem 1 and Corollary 1 are derived via a similar approach; it can be seen that
Theorem 1 provides larger allowable upper delay bounds than Corollary 1, which means
that the LKF that contains delay-dependent matrices can lead to a less conservative result.
In addition, when h = 42.2617, µ = 0.4, f (x) = col(0.3tanh(x1), 0.8tanh(x2)), the initial
state x(t) = col(1,−1), t ∈ [−42.2617, 0] and d(t) = 42.2617

2 + 42.2617
2 sin( 0.8

42.2617 t). The state
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trajectories of the x(t) given in Figure 1 show that the NNs (1) are stable at their equilibrium
points, which verifies the effectiveness of our methods.

0 50 100 150 200 250 300 350 400
Time(s)

-1

-0.5

0

0.5

1

x
(t
)

x1(t)

x2(t)

0 100 200 300 400
Time(s)

0

50

x
(t
)

Figure 1. State trajectories for µ = 0.4 and h = 42.2617.

Table 1. The allowable upper bound of delays for different µ (Example 1).

Methods µ = 0.4 µ = 0.5

Theorem 1 (Case II) [32] 8.5669 7.2809
Theorem 3 [17] 13.8671 10.0050

Proposition 3 (N = 2) [33] 23.8409 14.8593
Corollary 1[34] 24.2322 15.0214
Theorem 1 [34] 33.5828 18.4200

Corollary 1 27.4594 14.9889
Theorem 1 42.2617 22.4641

Improvement 25.8433% 21.9549%

Example 2. Consider the delayed NNs (1) with the following parameters:

A = diag(7.3458, 6.9987, 5.5949), Km = diag(0, 0, 0), Kp = diag(0.3680, 0.1795, 0.2876),

W0 = diag(0, 0, 0), W1 = diag(1, 1, 1), W =

13.6014 −2.9616 −0.6936
7.4736 21.6810 3.2100
0.7290 −2.6334 −20.1300

.

It can be easily found that the proposed stability criteria can produce a larger allow-
able maximum upper bound for all cases than those given in the existing literature. This
shows that the proposed criteria are indeed less conservative than the ones in the literature.
Table 2 shows the allowable maximum upper bound of delays for various µ. When h = 2.4705,
µ = 0.5, d(t) = 2.4705

2 + 2.4705
2 sin( 1

2.4705 t), the initial state x(t) = col(0.2, 0.1, 0.3),
t ∈ [−2.4705, 0] and the activation function f (x) = col(0.3680tanh(x1), 0.1795tanh(x2),
0.2876tanh(x3)); the state trajectories of NNs in Example 2 are shown in Figure 2. The
results given reveal that the LKF with a more integral term of activation function (i.e.,∫ t

t−d(t) f (Wx(s))ds and
∫ t−d(t)

t−h f (Wx(s))ds ) has improved the results.
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Table 2. The allowable upper bound of delays for different µ (Example 2).

Methods µ = 0.1 µ = 0.5

Theorem 1 (N = 2) [11] 1.1545 0.6010
Proposition 3 (N = 3) [33] 1.1554 0.5967

Corollary 1[34] 1.1612 0.6162
Theorem 1 [34] 1.1845 0.6572
Theorem 1 [35] 2.0497 0.9860
Theorem 1 [1] 2.3679 1.0187

Corollary 1 7.9145 1.5412
Theorem 1 10.9334 2.4705

Improvement 361.7340% 142.5149%

0 2 4 6 8 10 12 14 16 18 20
Time(s)
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x2(t)

x3(t)

0 5 10 15 20
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0

2

4

x
(t
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Figure 2. State trajectories for µ = 0.5 and h = 2.4705.

5. Conclusions

This paper has investigated the stability problem of NNs with time-varying delays. A
positivity and negativity definiteness condition for a general polynomial with any chosen
degree in time-varying delay has been established and a relaxed LKF that includes more
previous information of the neuron activation function has been proposed. Benefiting from
the relaxed LKF and the negative definiteness determination method, two stability criteria
with less conservatism have been derived, which has been demonstrated by two numerical
examples. Nevertheless, the definiteness condition is still proposed with conservatism, and
future work on reducing its conservatism is meaningful.
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