
Citation: Olteanu, O. Convexity,

Markov Operators, Approximation,

and Related Optimization.

Mathematics 2022, 10, 2775. https://

doi.org/10.3390/math10152775

Academic Editor: Ioannis K. Argyros

Received: 10 July 2022

Accepted: 2 August 2022

Published: 4 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

Convexity, Markov Operators, Approximation, and
Related Optimization
Octav Olteanu

Department of Mathematics and Informatics, University Politehnica of Bucharest, 060042 Bucharest, Romania;
octav.olteanu50@gmail.com
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1. Introduction

This review paper provides information on recent applications of convexity to con-
strained extension of linear operators, Markov moment problems, Markov operators, ap-
proximation, and elements of convex optimization. These topics have further applications
in analysis, functional analysis, and other research domains.

For notions, results, and further references related to this paper, see the monographs or
books [1–11]. A very powerful tool in solving the existence problem for solutions of many
classical moment problems is pointed out in [12]. Results on Hahn–Banach theorem and its
applications, some of them in the operator setting, have been published [13–26]. On the
other hand, knowing the explicit form of non-negative polynomials on multidimensional
closed unbounded subsets is a very difficult task. It was solved in [27] for non-negative
polynomials on a strip. Old results on characterizations of the existence of a linear extension
with two constraints [16–18] found recent applications and completions in [19], where they
appear among other interesting results.

In [28], new checkable sufficient conditions for the moment determinacy of measures
on R and on R+ are proven. References [29–31] emphasize various aspects of the moment
problem, some of them being related to optimization theory. Other results on optimization
and related subjects are discussed in articles [32–34], while approximation on weighted
spaces or on unbounded subsets can be found in articles/papers [35,36].

In the sequel, we review the classical moment problem and Markov moment problem,
and their relationship or applications to other areas of research. The classical full moment
problem is formulated as follows: given a sequence (yn)n∈Nn of real numbers, and a non-
empty closed subset F ⊆ Rn, find a positive regular Borel measure ν on F such that the
interpolation moment conditions hold:
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∫
F

tjdν = yj, j ∈ Nn.

Here we use the notations

N = {0, 1, 2, . . .}, ϕj(t) = tj = tj1
1 · · · t

jn
n , j = (j1, . . . , jn) ∈ Nn,

t = (t1, . . . , tn) ∈ F ⊆ Rn,P = R[t1, . . . , tn], n ∈ N, n ≥ 1.

The moment problem is an inverse problem: we are looking for an unknown positive
measure ν on F, starting from its moments

∫
F tjdν = yj, j ∈ Nn. Finding the measure ν

means studying its existence and uniqueness and eventually constructing it. If n = 1,
the corresponding moment problem is called one-dimensional. If n ≥ 2, we have a
multidimensional moment problem. In a Markov moment problem, an upper constraint on
the solution ν is required. This constraint might be:∫

F
ψdν ≤ P(ψ), for all ψ ∈ X+,

where X is an ordered Banach space (see below) of functions defined on F, containing the
polynomials and all real-valued continuous compactly supported functions on F. With
X+ we denote the positive cone of X, which is the convex cone of functions which take
non-negative values at any point of F or for almost all t ∈ F, with respect to the measure
ν. The vector-valued Markov moment problem variant is: being given an order-complete
Banach lattice Y and a sequence (yn)n∈Nn of elements in Y, find a positive linear operator
T : X → Y such that the interpolation moment conditions

T
(

ϕj
)
= yj, j ∈ Nn

are satisfied and T ≤ P on X, where P : X → Y is a given continuous convex operator. If P
is sublinear (and continuous), then this last upper bondedness condition on T controls the
continuity and sometimes the norm of the solution T. A variant of the full Markov moment
problem is the following one: find T with the interpolation moment conditions, such that

T1(ψ) ≤ T(ψ) ≤ T2(ψ), ψ ∈ X+,

where T1, T2 are given bounded linear operators applying X into Y. In the case of a truncated
(reduced) moment problem, the interpolation moment conditions T

(
ϕj
)
= yj should hold

only for jk ≤ d, k = 1, . . . , n, where d is a positive integer, j = (j1, . . . , jn). If K ⊂ Rn is a
compact subset, then any bounded linear solution of the full moment problem is unique
due to the Weierstrass approximation theorem; any continuous real function f ∈ C(K) is
the limit of a sequence of polynomials, the convergence being uniform on K. Unlike the this
case, the solution of a truncated classical moment problem cannot be unique (its values on
the entire space C(K) cannot be decided by its values on a finite dimensional subspace of
C(K)). An interesting problem is that of solving moment problems on closed unbounded
subsets F of Rn, n ≥ 2 in terms of quadratic forms. This problem is not easy since, unlike
the one-dimensional case [1,4], the non-negative polynomials on unbounded subsets (such
as Rn, Rn

+) are not expressible in terms of sums of squares [4]. In case of the Markov
moment problem, the problem was discussed and solved by means of approximation of
any continuous nonnegative compactly supported real-valued function defined on Rn,
or on Rn

+, by a sequence of special nonnegative polynomials, which are expressible in
terms of sums of squares ([21,36] and the references therein). The approximation holds
in spaces L1

ν(Rn), or respectively, in L1
ν

(
Rn
+

)
, where ν = ν1 × · · · × νn, νj, being a positive

regular Borel moment determinate measure on R or R+, j = 1, . . . , n, respectively, with
finite moments of all orders. We recall that a measure µ on the closed subset F ⊆ Rn is
called moment-determinate (M-determinate) if it is uniquely determined by its moments∫

F tjdµ, j ∈ Nn (all the involved measures appearing in this work are assumed to be
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regular Borel measures, with finite moments of all orders. Although the approximations
on unbounded subsets were motivated first by solving Markov moment problems in
terms of quadratic forms, such results found an application to characterizing the positivity
of some bounded linear operators defined on L1

ν(Rn) only in terms of quadratic forms,
where ν is as above. A similar result works for bounded linear operators defined on
L1

ν

(
Rn
+

)
, (ν = ν1 × · · · × νn, each νj being M-determinate on R+, j = 1, . . . , n). Another

application of the solution of an abstract moment problem was recently reviewed in [37],
where the existence of at least one feasible solution for an optimization problem with
infinitely many constraints is characterized ([37], Theorem 4). The existence of at least one
optimal feasible solution is proven as well. The idea of solving such problems comes from
the PhD thesis [38], in which a similar problem involving a finite number of moments, in an
L∞ space, is solved. Unlike the case of infinitely many moments interpolation conditions, if
only a finite number of moments are involved, construction of the solutions comes under
attention. This is also the case for references [39,40], in which construction of a solution
for a truncated Markov moment problem is studied, and related algorithms are provided
using deep results in matrix theory, measure theory, and other areas of analysis and algebra.
Other optimization problems related to reduced moment problems are discussed in [30,31].
In [21], among other theorems, the positivity of some bounded linear operators on spaces
of functions of several real variables is characterized only in terms of quadratic forms.
In [41], an unusual sandwich-type result on finite simplicial sets is proven for the first time.
The point is the fact that a finite simplicial set may be unbounded in any locally convex
topology on the domain space. Finally, the article [42] provides a characterization of the
finite dimensional bounded convex subsets in an arbitrary vector space in terms of the
lower boundedness of convex operators defined on them. The codomain is assumed to be
order-complete to make the Hahn–Banach theorem and its application to the existence of
subgradients of convex operators effective. Other old results from [16,17] on constrained
extension and decomposition as a difference of two positive linear operators found recent
applications in [19]. Namely, in [19], among other results, the isotonicity (the property of
being monotone increasing) for a continuous convex operator defined on the positive cone
of the domain space is characterized in terms of its subgradients. Notably, we recall that
Krein–Milman theorem plays an important role in the representation theory [2,8,21]. Almost
all the abovementioned results have interesting geometric meaning, which is supported
by clear rigorous proofs. For example, the sandwich-type result proven in reference [41]
is relevant since it proves the existence of an affine function h, f ≤ h ≤ g on F, in which
the two functions f and −g are given convex functions on a finite simplicial convex set F.
This is an unusual sandwich result since it is a converse variant of sandwich results based
on the separation of convex sets. Moreover, generally, a finite simplicial convex set may
be unbounded. The proof of the first such result is essentially based on the solution of an
abstract Markov moment problem.

The notion of a Markov operator is emphasized in [19,20]. These special bounded
linear operators have interesting properties and appear naturally as subgradients of contin-
uous sublinear operators, or as solutions of Markov moment problems or Mazur–Orlicz
type problems. We hope this work will be useful for readers interested in analysis and its
applications because it joins various directions of applications under the general thematic
of convexity. In the sequel, we recall some basic definitions. If X, Y are ordered vector
spaces with positive cones X+ and Y+, respectively, then a linear operator T : X → Y is
called positive if

x ∈ X+ ⇒ T(x) ∈ Y+.

In other words, x ≥ 0 in X ⇒ T(x) ≥ 0 in Y. From the linearity of T, we infer that
T is positive if and only if x1 ≤ x2 ∈ X ⇒ T(x1) ≤ T(x2), which means that T is isotone
(increasingly monotone) on X. An ordered vector space X which is also a Banach space
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is called an ordered Banach space if the positive cone X+ is topologically closed and the
norm is increasingly monotone on X+ :

0 ≤ x1 ≤ x2 ⇒ ‖x1‖ ≤ ‖x2‖.

Thus, in an ordered Banach space, the norm is compatible with the (linear) order
relation. Banach lattice X is a Banach space which is also a vector lattice such that

|x1| ≤ |x2| ⇒ ‖x1‖ ≤ ‖x2‖.

We recall that in a vector lattice X, for any x ∈ X, one defines

|x| := sup{x,−x} := x ∨ (−x).

Thus, |x| is the least upper bound of the set {x,−x}; it exists according to the definition
of a vector lattice (see [6] or [7]). From these definitions, it follows that any Banach
lattice is an ordered Banach space, but the converse is not true. Most of the function
spaces (and sequence spaces) are Banach lattices. An example of an ordered Banach
space which is not a lattice is the space SM(n) of all symmetric n× n matrixes with real
entries. The order relation on this space is defined by: A ≤ B⇐⇒ 〈Ah, h〉 ≤ 〈Bh, h〉 for
all h ∈ Rn. The norm of a matrix A ∈ SM(n) is defined by ‖A‖ = sup

‖h‖≤1
|〈Ah, h〉|, where

‖h‖ = 〈h, h〉1/2 is the Euclidean norm on Rn. As is well known, the symmetric matrix
A naturally defines a symmetric linear operator (denoted also by A), acting on Rn. The
symmetry condition for this linear operator is written as follows: 〈Ax, y〉 = 〈x, Ay〉 for all
x, y ∈ Rn. Conversely, being given a linear operator A which maps Rn into itself for which
the above symmetry condition is verified, the associated matrix A =

(
ai,j
)

1≤i,j≤n, where

ai,j :=
〈

Aei, ej
〉

, 1 ≤ i, j ≤ n, is symmetric. Here, {e1, . . . , en} is an orthonormal base of Rn.
Referencing the infinite dimensional Hilbert space case, let H be a real or complex infinite
dimensional Hilbert space. A self-adjoint operator A acting on H is a bounded linear
symmetric operator applying H into H. The symmetry condition is written as follows, from
the matrix setting mentioned above:

〈Ax, y〉 = 〈x, Ay〉 for all x, y ∈ H.

The order relation and the norm on the real vector space A(H) of all self-adjoint
operators acting on H can be written as above for symmetric matrixes. With these structures,
A(H) is an ordered real Banach space, which is not a lattice. Finally, we recall that any
positive linear operator acting on ordered Banach spaces is continuous [9,19]. This result is
relevant because it avoids the effort of the reader in proving the continuity of such operators.
For example, if X, Y are Banach lattices and T1, T2 are two linear operators mapping X into
Y such that 0 ≤ T1 ≤ T2 on X+, then, according to the invoked result, the two operators
are continuous. Moreover, it is easy to prove that our conditions imply ‖T1‖ ≤ ‖T2‖.

The rest of the paper is organized as follows. Section 2 summarizes the basic methods
applied along the proofs of the results. In Section 3, the results are stated, and some of them
are proven. Section 4 concludes the paper.

2. Methods

The basic methods applied in the sequel are:

1. General notions and results on positive linear operators, convex operators and their
subdifferentials, ordered Banach spaces, Banach lattices.

2. General Hahn–Banach-type theorems and some of their applications.
3. The classical full and/or truncated moment problem. Markov operators as solutions

of moment problems in concrete spaces or as solutions of Mazur–Orlicz theorems.
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4. Extending inequalities from a small set to an entire convex cone via approximation
provided by the Krein–Milman theorem. Elements of convex optimization theory are
also applied.

5. Results on polynomial approximation on unbounded subsets are applied in Section 3.3.
The role played by regular moment determinate positive Borel measures on closed
unbounded finite dimensional sets is a key point in this topic [21,36].

3. Results
3.1. Hahn–Banach Theorem, Markov Moment Problem, and Markov Operators

First variants of Hahn–Banach theorem on extension of linear operators dominated
by convex continuous operators have been applied to the subject of subdifferentiability of
convex continuous operators [13–15]. Another domain of applications of Hahn–Banach-
type results—and, conversely, a motivation for stating and proving such results—was that
of solving moment problems. The full classical moment problem in the operator setting
is an interpolation problem, with the positivity constraint on the linear solution T on the
positive cone of the domain function Banach space X, which must contain the polynomials
P and the space Cc(F) of real-valued continuous compactly supported functions defined
on an arbitrary closed subset F of Rn. The values of the solution T on the basic polynomials

ϕj(t) = tj = tj1
1 · · · t

jn
n , t = (t1, . . . , tn) ∈ F, j = (j1, . . . , jn) ∈ Nn,N = {0, 1, 2, . . .},

are prescribed: we must have
T
(

ϕj
)
= yj, j ∈ Nn, (1)

and the positivity condition
ψ ∈ X+ ⇒ T(ψ) ∈ Y+. (2)

Here, the elements yj, j ∈ Nn are contained in the order-complete Banach lattice Y.
The order completeness requirement on Y allows applying Hahn–Banach-type results to
the extension of linear operators having Y as their codomain. The existence, the uniqueness,
and the construction of the linear solution T are studied. The Markov moment problem
requires one more condition on the solution T. This requirement can be written as

T ≤ P on X or T ≤ P on X+, (3)

where P : X → Y is a continuous sublinear operator (or, more generally, P is a continuous
convex operator). Sometimes, P is defined only on X+, with range contained in Y. The
above stated moment problem is the full moment problem since it involves the moments of
all orders. If condition (1) is required only for jl ≤ m, l = 1, . . . , n, for some fixed positive
integer m, then we have a truncated (reduced) moment problem.

Notably, the existence problem is an extension problem of the linear operator defined
on the space P of all polynomial functions to the entire Banach space X such that the
moment conditions (1) and the constraints (2) (and, for a Markov moment problem also (3))
are satisfied. Hence, we can apply a Hahn–Banach-type theorem. We start by recalling a
general result and its variant related to the Mazur–Orlicz theorem. Then, we apply these
theoretical results to concrete spaces, pointing out the notion of a Markov operator.

Theorem 1 ([18]). Let X be a preordered vector space, Y an order complete vector lattice,
P : X → Y a convex operator,

{
xj
}

j∈J ⊂ X,
{

yj
}

j∈J ⊂ Y given families. The following state-
ments are equivalent:

(a) there exists a linear positive operator T : X → Y such that

T
(
xj
)
= yj, j ∈ J, T(x) ≤ P(x), x ∈ X;

(b) for any finite subset J0 ⊆ J, and any
{

λj; j ∈ J0
}
⊆ R, we have
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∑
j∈J0

λjxj ≤ x ∈ X ⇒ ∑
j∈J0

λjyj ≤ P(x).

If we additionally we assume that P is isotone (u ≤ v⇒ P(u) ≤ P(v)), the assertions (a)
and (b) are equivalent to (c), where:

(c) for any finite subset J0 ⊂ J and any
{

λj
}

j∈J0
⊂ R, the following inequality holds:

∑
j∈J0

λjyj ≤ P

(
∑
j∈J0

λjxj

)
.

Theorem 1 is the reformulation of the following extension result, in which the interpo-
lation moment conditions do not appear explicitly. Theorem 2 below was initially stated
in [16] and proven in [17], where it was deduced from a more general result (Theorem 1
of [16]).

Theorem 2. Let X be an ordered vector space, Y an order complete vector space, M ⊂ X a vector
subspace, T1 : M→ Y a linear operator, P : X → Y a convex operator. The following statements
are equivalent:

(a) there exists a positive linear extension T : X → Y of T1 such that T ≤ P on X;

(b) we have T1(h) ≤ P(x) for all (h, x) ∈ M× X such that h ≤ x.

One observes that in the very particular case X+ = {0}, when the order relation on X
is the equality, from Theorem 2, one obtains the Hahn–Banach extension theorem for linear
operators dominated by convex operators.

Another version of the same result is found in [21].

Theorem 3. Let X be an ordered vector space, Y an order complete vector space, M ⊂ X a vector
subspace, T1 : M→ Y a linear operator, P : X+ → Y a convex operator. The following statements
are equivalent:

(a) there exists a positive linear extension T : X → Y of T1 such that T
∣∣X+ ≤ P;

(b) we have T1(h) ≤ P(x) for all (h, x) ∈ M× X+ such that h ≤ x.

Theorem 4 (Mazur-Orlicz [18]). Let X be a preordered vector space, Y an order complete vector
space,

{
xj
}

j∈J ,
{

yj
}

j∈J families of elements in X, respectively in Y, P : X → Y a sublinear operator.
The following statements are equivalent:

(a) there exists a linear positive operator T : X → Y such that

T
(
xj
)
≥ yj, j ∈ J, T(x) ≤ P(x), x ∈ X;

(b) for any finite subset J0 ⊂ J and any
{

λj
}

j∈J0
⊂ R+ = [0, ∞), the following implication

holds true

∑
j∈J0

λjxj ≤ x ∈ X ⇒ ∑
j∈J0

λjyj ≤ P(x).

If we additionally assume that P is isotone, the assertions (a) and (b) are equivalent to the
following condition (c):
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(c) for any finite subset J0 ⊂ J and any
{

λj
}

j∈J0
⊂ R+, the following inequality holds

∑
j∈J0

λjyj ≤ P

(
∑
j∈J0

λjxj

)
.

The next results refer to the Markov moment problem on the space C(K) as the domain
space of the solution, where K is an arbitrary compact Hausdorff topological space.

A version of the abstract Markov moment problem has been already stated in Theorem
1 above. The classical moment problem and Markov moment problem have been reviewed
in the Introduction. In the next theorem, 1 ∈ C(K) denotes the constant function which
equals the number 1 at any point of K and the class of the same function, regarded as an
element of L∞

µ (K).

Theorem 5. Let K be a compact Hausdorff topological space, µ a positive regular Borel measure
on K, C(K) the Banach lattice of all real valued continuous functions on K,

{
ϕj
}

j∈J a family

of linearly independent elements in C(K),
{

yj
}

j∈J a given family of elements in L∞
µ (K). The

following two statements are equivalent

(a) there exists a linear (positive) bounded operator T : C(K)→ L∞
µ (K) such that

T
(

ϕj
)
= yj, j ∈ J, T(ϕ) ≤

(
sup
t∈K

ϕ(t)

)
1, ∀ϕ ∈ C(K)

In particular, the following equalities hold

T(1) = 1, ‖T‖ = 1;

(b) for any finite subset J0 ⊂ J and any
{

αj; j ∈ J0
}
⊂ R, the following relation holds true

∑
j∈J0

αjyj ≤ sup
t∈K

(
∑
j∈J0

αj ϕj(t)

)
1. (4)

Proof. The implication (a) ⇒ (b) is obvious, thanks to the properties of T. To prove
(b)⇒ (a), one applies Theorem 1, implying (c)⇒ (a), for

X = C(K), Y = L∞
µ (K), P(ψ) :=

(
sup
t∈K

ψ(t)

)
1, ψ ∈ X. (5)

Observe that P defined by (5) is a scalar-valued sublinear nondecreasing functional
multiplied by the class of the constant function 1 in L∞

µ (K) and therefore is an isotone
sublinear operator. The inequality (4) is equivalent to the fact that the condition written at
point (c) of Theorem 1 is accomplished. Since L∞

µ (K) is an order-complete vector lattice,
according to Theorem 1, there exists a positive linear operator T : X → L∞

µ (K) with the
properties mentioned at point (a) of the latter theorem. It results T

(
ϕj
)
= T0

(
ϕj
)

:= yj,
j ∈ J. Moreover, the following implications hold:

ϕ ∈ X ⇒ T(ϕ) ≤
(

sup
t∈K

ϕ(t)

)
1,−T(ϕ) ≤

(
sup
t∈K
− ϕ(t)

)
1

= −
(

in f
t∈K

ϕ(t)

)
1⇒

(
in f
t∈K

ϕ(t)

)
1 ≤ T(ϕ) ≤

(
sup
t∈K

ϕ(t)

)
1.
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For ϕ = 1, it results in T(1) = 1; we say that T is unital. Since any ϕ ∈ X
with ‖ϕ‖X ≤ 1 is situated in the order interval [−1, 1], the positivity of T leads to
T(ϕ) ∈ [T(−1), T(1)] = [−1, 1]⇒ ‖T(ϕ)‖Y ≤ 1⇒ ‖T‖ ≤ 1. However, we have already
seen that ‖T(1)‖Y = ‖1‖Y = 1. Hence, ‖T‖ = 1 and the proof is complete. �

In the next theorem, K will be a compact subset of Rn (n ≥ 1 is a natural number),
X := C(K), and Y is an order-complete Banach lattice with a strong order unit uY such that
the order interval [−uY, uY] is equal to the closed unit ball of Y. As usual, we denote:

j = (j1, . . . , jn) ∈ Nn. t = (t1, . . . , tn) ∈ K, |j| = ∑n
k=1 jk, ϕj(t) = tj = tj1

1 · · · t
jn
n .

Theorem 6. Let
{

yj; |j| ≤ m
}
⊂ Y , for some fixed m ∈ N, m ≥ 1. The following statements

are equivalent:

(a) there exists a positive linear operator T : C(K)→ Y such that

T
(

ϕj
)
= yj, |j| ≤ m, T(ϕ) ≤

(
sup
t∈K

ϕ(t)

)
uY, ∀ϕ ∈ C(K), ‖T‖ = 1,

T(1) = uY;

(6)

(b) for any
{

β j; |j| ≤ m
}
⊂ R, the following relation holds

∑
j∈Nn

|j|≤m

β jyj ≤

sup
t∈K

 ∑
|j|≤m

β jtj

uY. (7)

Proof. One repeats the proof of Theorem 5, in which we replace L∞
µ (K) with Y to obtain

ϕj(t) = tj, t ∈ K, j ∈ J = Nn, |j| ≤ m, P(ψ) =

(
sup
t∈K

ψ(t)

)
uY, ψ ∈ X := C(K).

Some of the notations have been defined before the statement. Clearly, from (6) with
positive and unital T, relation (7) follows. For the converse, repeating the arguments from
the proof of Theorem 5, the existence of a positive linear operator verifying (6) follows
(via Theorem 1, (c)⇒(a)). Here, the subspace M = Sp

{
ϕj; j ∈ Nn, |j| ≤ m

}
is the linear

subspace of all polynomial functions on K of degree≤ m. From (6), in particular, T(1) = uY
follows as well, and the proof is complete.�

When applying the Mazur–Orlicz theorem (Theorem 4), one can work with the sub-
space of all polynomial functions on K ⊂ Rn, without any restriction on the degree
(one proves a full Mazur–Orlicz theorem). Such a result is not a direct consequence
of the density of polynomials in C(K), unlike the case of the full moment problem for
C(K), K ⊂ Rn. In Theorem 6, a solution for a truncated moment problem was proposed.
A linear operator T mapping C(K) into Y is called a Markov operator if T is positive
and T(1) = uY (the definition is valid for any Hausdorff compact topological space K).
It is easy to observe that a linear operator T ∈ L(C(K), Y) is a Markov operator if and

only if T(ϕ) ≤
(

sup
t∈K

ϕ(t)

)
uY ∀ϕ ∈ C(K). In particular, solutions T from Theorems 5,

6, and 7 (the last one being proven below) are Markov operators. Let Y be and order
complete Banach lattice with a strong order unit uY,

(
yj
)

j∈Nn a sequence in Y. We prove
the following theorem.
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Theorem 7. Let K = K1 × · · · × Kn ⊂ Rn
+ be such that: Kl ⊂ R+ is compact and denote

rl = supKl , l = 1, . . . , n, rj = rj1
1 · · · r

jn
n , j = (j1, . . . , jn) ∈ Nn. The following statements

are equivalent:

(a) there exists a (positive) linear operator T : C(K)→ Y such that

T
(

ϕj
)
≥ yj, j ∈ Nn, T(ϕ) ≤

(
sup
t∈K

ϕ(t)

)
uY ∀ϕ ∈ C(K), ‖T‖ = 1;

(b) yj ≤ rjuY ∀j ∈ Nn.

Proof. The implication (a)⇒(b) is obvious thanks to the properties of T. Namely, the
following relations hold true:

yj ≤ T
(

ϕj
)
≤
(

sup
t∈K

ϕj(t)

)
uY =

(
sup
t∈K

(tj1
1 · · · t

jn
n )

)
uY = rjuY, j ∈ Nn

To prove (b)⇒(a), we use the implication (c)⇒(a) of Theorem 4. The conditions
mentioned at (c) of Theorem 4 are satisfied, since for any finite subset J0 ⊂ Nn, the following
inequalities hold:

yj ≤ rjuY, λj ≥ 0, ∀j ∈ J0 ⇒

∑
j∈J0

λjyj ≤
(

∑
j∈J0

λjrj

)
uY =

(
(∑

j∈J0

λjtj)|t=(r1,...,rn)

)
uY = sup

t∈K

(
∑
j∈J0

λjtj

)
uY = P

(
∑
j∈J0

λj ϕj

)
,

P(ψ) :=

(
sup
t∈K

ψ(t)

)
uY, ψ ∈ C(K).

According to Theorem 4, (c)⇒(a), there exists a positive linear operator T : C(K)→ Y
with the properties mentioned at point (a) of the present theorem. This ends the proof. �

We next recall an example of an order complete Banach lattice of self-adjoint operators
acting on an arbitrary Hilbert space, which is also a commutative real algebra [7]. This
example works for symmetric n× n matrices with real entries.

Example 1. Let H be a Hilbert space andA ∈ A(H) be a self-adjoint operator acting on H.
We define:

Y1 = Y1(A) := {V ∈ A(H); AV = VA}, Y = Y(A) := {U ∈ A(H); UV = VU ∀V ∈ Y1(A)}.

Then, Y(A) is an order complete Banach lattice with strong order unit for identity
operator I. By its definition, it is also a commutative real algebra.

3.2. On Some Applications of the Krein–Milman Theorem

The next results follow via Krein–Milman Theorem. If B is a compact convex subset of
a locally convex space, we denote with Extr(B) the set of all extreme points of B.

Theorem 8. Let X be a reflexive Banach space endowed with a linear order relation defined by a
closed positive cone X+, and B ⊂ X+ a convex bounded closed subset such that any x ∈ X+\{0X}
can be represented uniquely as x = ρb for some ρ ∈ (0, ∞) and b ∈ B (B is a base for X+). Assume
that Y is a topological vector space endowed with an order relation defined by a closed positive cone
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Y+, Φ : X → Y is a bounded sublinear operator, and T ∈ B(X, Y) is a bounded linear operator
such that

Φ(e) ≤ T(e) ∀e ∈ Extr(B)

Then Φ(x) ≤ T(x) ∀x ∈ X+.

Proof. Clearly, B is weakly compact and convex, so B = cl(co(Extr(B))). The topological
closure of the convex set co(Extr(B)) in the weak topology equals its topological closure in
the topology defined by the norm of X. Let

xn = ∑n
j=1 αjej ∈ co(Extr(B)), αj ∈ [0, ∞), ∑n

j=1 αj = 1, ej ∈ Extr(B), j = 1, . . . , n

Then, from the assumptions of the statement, we derive

Φ(xn) ≤
n

∑
j=1

αjΦ
(
ej
)
≤

n

∑
j=1

αjT
(
ej
)
= T

(
n

∑
j=1

αjej

)
= T(xn), n ∈ N, n ≥ 1.

For b ∈ cl(co(Extr(B))) = B, b = lim
n

xn, xn ∈ co(Extr(B)). For all n ≥ 1, the

continuity of Φ, T, as well as the hypothesis that the positive cone of Y is closed, leads to

Φ(b) = lim
n

Φ(xn) ≤ lim
n

T(xn) = T(b).

Now let x ∈ X+\{0X}, x = ρb, ρ > 0, b ∈ B. Then,

Φ(x) = Φ(ρb) = ρΦ(b) ≤ ρT(b) = T(ρb) = T(x).

This ends the proof. �

Corollary 1. Under the hypothesis of Theorem 8, additionally assume that X, Y are normed vector
lattices (their norms are solid), and Φ is isotone. Then ‖Φ‖ ≤ ‖T‖.

Proof. According to Theorem 8, we have already seen that Φ(w) ≤ T(w) for all w ∈ X+.
Using this and the monotonicity of Φ, we derive

(Φ(x) ≤ Φ(|x|) ≤ T(|x|),−Φ(x) ≤ Φ(−x) ≤ Φ(|x|) ≤ T(|x|))⇒

|Φ(x)| ≤ T(|x|)⇒ ‖Φ(x)‖ ≤ ‖T‖‖x‖ ∀x ∈ X ⇒ ‖Φ‖ ≤ ‖T‖.

This concludes the proof. �

The next results extend an inequality occurring on a small set to a much larger subset.

Theorem 9. Let X be a reflexive Banach lattice, Y an order complete Banach lattice in which
every topological bounded subset is order-bounded and yn ↑ y implies yn → y , Φ : X+ → Y a
quasiconvex continuous positively homogeneous operator, and T ∈ B+(X, Y) a positive linear
operator such that Φ(e) ≤ T(e) for all extreme points e of the set K := X+ ∩ B1,X . Then

Φ(x) ≤ ‖x‖· sup
e∈Ex(K)

Φ(e) ∈ Y+ ∀x ∈ X+.

Proof. Recall that operator Φ from a convex subset C of vector space X to vector lattice Y is
called quasiconvex if

Φ((1− t)x1 + tx2) ≤ sup{ϕ(x1), ϕ(x2)}, ∀t ∈ [0, 1], ∀x1, x2 ∈ C.
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Following the proof (by induction) of Jensen’s inequality for real convex functions, for
any convex combination ∑n

j=1 αjxj, xj ∈ C, j = 1, . . . , n, quasiconvex operator Φ verifies

Φ
(
∑n

j=1 αjxj

)
≤ sup{Φ(x1), . . . , Φ(xn)}

See [8] for details, examples, and exercises related to this important notion. The set
K := X+ ∩ B1,X is convex, weakly compact, and

K = cl(co(Extr(K))) (8)

holds due to the Krein–Milman theorem. Let

xn = ∑n
j=1 αjej ∈ co(Extr(K)), ej ∈ Ex(K), αj ∈ [0, ∞), j = 1, . . . , n,

n

∑
j=1

αj = 1.

From the above remarks, and using the hypothesis, we infer that

Φ(xn) ≤ sup{Φ(e1), . . . , Φ(en)} ≤ sup{T(e1), . . . , T(en)} (9)

On the other side, any positive linear operator from X to Y is continuous, so that the
image of the bounded set K ⊂ X+ through the positive (bounded) linear operator T is
topologically bounded. Therefore, it is o− bounded in Y+. Thus it results

T(K) ⊂ [0Y, y0] for some y0 ∈ Y+.

From this and using (9), we find that

Φ(xn) ≤ y0, xn ∈ co(Extr(K)), n ∈ N, n ≥ 1.

If x = lim
n→∞

xn ∈ cl(co(Extr(K))) = K where xn ∈ co(Extr(K)) for all n ≥ 1, thanks to

the continuity of Φ, we are leaded to

Φ(x) = lim
n→∞

Φ(xn) ≤ lim
n→∞

(
sup
{

Φ
(
ej
)
; j = 1, . . . , n

})
=

sup
n≥1

Φ(en) ≤ sup
e∈Extr(K)

Φ(e) ≤ sup
e∈Extr(K)

T(e) ≤ y0, x ∈ K.

Since Φ is positively homogeneous, application of this evaluation to x/‖x‖ ∈ K, for
all x ∈ X+, x 6= 0X , yields

Φ(x) ≤ ‖x‖· sup
e∈Ex(K)

Φ(e) ≤ ‖x‖y0 , x ∈ X+.

This ends the proof. �

Theorem 10. Let X be an order complete normed vector lattice, K ⊂ X a finite dimensional compact
subset, and (Φn)n≥0 a sequence of continuous sublinear operators from X into X such that for each
x ∈ X, there exists Φ̃(x) := lim

n→∞
Φn(x) ∈ X. Assume that for each n ∈ N, there exists an affine

operator Tn from X to X, such that Tn(x) ≤ Φn(x) ∀x ∈ X and there exists

T̃(e) := lim
n→∞

Tn(e) = e ∀e ∈ Extr(K).

Then, x ≤ Φ̃(x)∀x ∈ Cone(K), where Cone(K) is the convex cone generated by (co(K))
⋃
{0X}.

Proof. It is known that for any finite dimensional compact K, its convex hull co(K) is
compact as well (the proof of this assertion is based on Carathéodory’s theorem, which leads
to a way of expressing co(K) as the image of a compact (finite dimensional) subset through
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a continuous mapping). Let m be the dimension of the linear variety generated by K (and
by co(K)) and x ∈ co(K). Assume that m ≥ 2. Due to Carathéodory’s theorem, there exist at
most m + 1 extreme points in the compact (convex) subset co(K)—for example, e1, . . . , em+1
and {α1, . . . , αm+1} ⊂ [0, ∞), ∑m+1

j=1 αj = 1, such that x = ∑m+1
j=1 αjej. Additionally, it is

known that any extreme point of co(K) is an extreme point of K. From this hypothesis,
we derive

Tn(x) =
m+1

∑
j=1

αjTn
(
ej
)
→

m+1

∑
j=1

αjT̃
(
ej
)
=

m+1

∑
j=1

αjej = x, n→ ∞.

Thus, there exists T̃(x) = x ∀x ∈ co(K). On the other side, the positive cone X+ of the
space X is closed, and we have assumed that Φn(x)− Tn(x) ∈ X+ for all x ∈ X and all
n ∈ N. Passing to the limit, one obtains

Φ̃(x)− T̃(x) = Φ̃(x)− x ∈ X+ ∀x ∈ co(K)⇔ Φ̃(x) ≥ x ∀x ∈ co(K). (10)

Since T̃ is the pointwise limit of affine operators, it is affine on co(K); a Hahn–Banach
argument shows that it has an affine extension defined on the whole space X into X. We
denote this extension with T̃ as well. Recall that if 0X is not an element of co(K), then
we denote

C := Cone(K) = {αx; α ∈ [0, ∞), x ∈ co(K)}. (11)

It is easy to see that in this case, C ∩ (−C) = {0X}. Now (10) and (11) yield

Φ̃(αx) = αΦ̃(x) ≥ αx ∀α ∈ [0, ∞), ∀x ∈ co(K)⇔ Φ̃(w) ≥ w ∀w ∈ C.

If 0X ∈ ∂(co(K))\ri(co(K)), then C could satisfy the condition C ∩ (−C) = {0X}, or
C ∩ (−C) might be a nonzero vector subspace (here ri(co(K)) is the relative interior of
co(K)). We denote with co(K) the convex hull of the set K. When 0X ∈ ri(co(K)), C− C is
an m-dimensional vector subspace of X. In both of these last two cases, the conclusion of
the theorem still holds true, following the same proof as in the first case. This concludes
the proof. �

In the sequel, we recall a consequence of the Carathéodory’s theorem [8,21] and
give a possible formulation for the infinite dimensional convex compact subsets. Namely,
the following useful maximum principle for convex continuous real functions on finite
dimensional convex compact subsets holds. If f is a continuous convex real function on a
convex compact subset, K ⊂ Rn (n ∈ {1, 2, . . .}), then f attains a global maximum at an
extreme point of K. For infinite dimensional convex compact subsets we derive from the
Krein-Milman theorem the next result.

Theorem 11. Let K be a compact convex subset in the locally convex space X, and f : K → R a
convex continuous function. Then sup

x∈K
f (x) = sup

eeExtr(K)
f (e).

Proof. Let x ∈ K. The continuity of f implies the compactness of f (K), so sup
x∈K

f (x) < ∞.

On the other hand, from Krein–Milman theorem, we know there exists a net (xδ)δ∈∆
with terms in the convex hull co(Extr(K)) of the set Extr(K) of all extreme points of K
such that

x = lim
δ

xδ.
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If xδ = ∑k
i=1 αiei, αi ∈ [0, ∞), i = 1, . . . , k, ∑k

i=1 αi = 1, ei ∈ Extr(K), i = 1, . . . , k, then
the convexity and the continuity of the function f yields

f (xδ) ≤∑k
i=1 αi f (ei) ≤ max

1≤i≤k
f (ei) ≤ sup

e∈Extr(K)
f (e) ≤ sup

x∈K
f (x) < ∞, δ ∈ ∆,

f (x) = lim
δ

f (xδ) ≤ sup
e∈Extr(K)

f (e),

for all x ∈ K. This results in sup
x∈K

f (x) ≤ sup
eeExtr(K)

f (e). The inequality in the reversed sense is

obvious. This ends the proof. �

Here follows a vector valued version of Theorem 11.

Corollary. 2 Let K be a compact convex subset in the locally convex space X, and let Y be an order
complete Banach lattice endowed with a strong order unit uY such that the closed unit ball in Y
equals the order interval [−uY, uY]. Let P : K → Y be a continuous convex operator. Then,

sup
x∈K

P(x) = sup
eeExtr(K)

P(e) ∈ Y.

Proof. The subset P(K) is compact in Y thanks to the continuity of the operator P. In
particular, P(K) is bounded, so there exists R > 0 great enough such that the closed ball
BR(0Y) centered in 0Y of radius R contains P(K). We infer that:

x ∈ K ⇒ P(x) ∈ R[−uY, uY] = [−RuY, RuY]⇒ P(x) ≤ RuY.

A first conclusion is that there exists sup
x∈K

P(x) ≤ RuY because of the order completeness

of Y. The rest of the proof follows the method and the inequalities from the proof of
Theorem 11. This ends the proof. �

In what follows, we add related remarks. To do this, we require the following
lemma [11].

Lemma 1. Let X be a real normed linear space, L ∈ X∗ a continuous linear functional on X, and
M := {x ∈ X; L(x) = α} a closed hyperplane defined by L, x0 ∈ X. Then, the distance d(x0, M)
from x0 to M is provided by the formula:

d(x0, M) =
|L(x0)− α|
‖L‖ .

Remark 1. Assume now that 0X is not an element of co(K).Then, there exists a strictly positive
linear continuous form T on X endowed with the order relation defined by C such that ‖T‖ = 1
and that there is a constant β > 0 with

inf
x∈co(K)

T(x) = β = T(e) for some e ∈ Extr(co(K)).

Indeed, denote by d0 := d(0X , co(K)) > 0, V := Bd0(0X) = {x ∈ X; ‖x‖ < d0}. Then,
V is a convex open neighborhood of the origin which does not intersect co(K). Using the
geometric form of the Hahn–Banach theorem (namely a separation theorem), there exists a
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closed hyperplane separating V and co(K) and not intersecting V, i.e., there exists a linear
continuous functional T on X such that 0 < supT(V) ≤ β ≤ in f T(co(K)). In particular,

T(x) ≥ β > 0 ∀x ∈ co(K)⇒ T(w) > 0 ∀w ∈ C\{0X}.

Hence T is strictly positive and for any γ > 0, the set B = {x ∈ C; T(x) = γ} is a
compact base for C. Now, scaling T by a positive scalar, we obtain a new strictly continuous
positive form (which we also denote by T) with the special property

0 < supT(V) = d0 = in f T(co(K)), T(x) < d0 ∀x ∈ V.

This results in

T
(

d0
x

‖x‖+ ε

)
〈d0 ∀ε〉0, ∀x ∈ X ⇒ |T(x)| ≤ ‖x‖, ∀x ∈ X ⇒ ‖T‖ ≤ 1.

Let x? ∈ co(K) ∩ (∂V) be such that T(x?) = d0. Then, ‖x?‖ = d0 and T
(

x?
‖x?‖

)
= 1.

Thus, ‖T‖ = 1. Consider the hyperplane H := {x; T(x) = d0} and the base B = H ∩ C.
Then, the distance

d(0X , H) =
|T(0)− d0|
‖T‖ = d0 = d(0X , co(K)),

as expected, (H and B are separating cl(V) and co(K), but they are “tangent” to both these
closed convex subsets). If X is a real Hilbert space and T possesses the properties from
above, then x? is the orthogonal (or metric) projection of 0X to co(K). Consequently,

‖x?‖ = d(0X , co(K)) = d0, x?⊥H

Having in mind the idea of the proof of the Riesz representation theorem for linear
continuous forms on a Hilbert space, this results in T being represented by a vector which
is collinear to x?. Since ‖T‖ = 1, we must normalize x?. This gives

T(x) =
〈

x?
‖x?‖

, x
〉

=

〈
x?
d0

, x
〉
∀x ∈ X.

3.3. Applying Polynomial Approximation on Unbounded Subsets

Applying polynomial approximation [21,36] on R+ := [0, ∞) of any nonnegative con-
tinuous compactly supported function by dominating polynomials on the entire semiaxes
R+, as well as the explicit form of such a polynomial, namely

p ∈ P = R[t], p(t) ≥ 0∀t ∈ R+ ⇐⇒ p(t) = q2 + tr2(t)∀t ∈ R+

for some q, r ∈ P , one can prove the following result. As is well known, any nonnega-
tive polynomial p on the entire real axes is the sum of two squares [1]: p = q2 + r2, q,
r ∈ P = R[t].

Theorem 12. Let X = L1
ν(R+), where ν is a moment-determinate measure on R+. Assume that Y

is an arbitrary order complete Banach lattice and that (yn)n≥0 is a given sequence with its terms in
Y. Let T1, T2 be two linear operators from X to Y , such that 0 ≤ T1 ≤ T2 on X+. As usual, we
denote ϕj(t) = tj, j ∈ N, t ∈ R+. The following statements are equivalent:

(a) There exists a unique bounded linear operator T from X into Y, T1 ≤ T ≤ T2 on X+,
‖T1‖ ≤ ‖T‖ ≤ ‖T2‖, such that T(ϕn) = yn for all n ∈ N;

(b) If J0 ⊂ N is a finite subset, and
{

λj; j ∈ J0
}
⊂ R, then
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∑
i,j∈J0

λiλjT1

(
ϕi+j+k

)
≤ ∑

i,j∈J0

λiλjyi+j+k ≤ ∑
i,j∈J0

λiλjT2

(
ϕi+j+k

)
, k ∈ {0, 1}.

Corollary 3. Let ν be a moment-determinate measure on R+. Assume that h1, h2 are two functions
in L∞

ν (R+) such that 0 ≤ h1 ≤ h2 almost everywhere. Let (yn)n≥0 be a given sequence of real
numbers. The following statements are equivalent:

(a) there exists h ∈ L∞
ν (R+) such that h1 ≤ h ≤ h2 ν− almost everywhere;

∫
R+

tjh(t)dν = yj
for all j ∈ N;

(b) if J0 ⊂ N is a finite subset and
{

λj; j ∈ J0
}
⊂ R, then:

∑
i,j∈J0

λiλj

∫
R+

ti+j+kh1(t)dν ≤ ∑
i,j∈J0

λiλjyi+j+k ≤ ∑
i,j∈J0

λiλj

∫
R+

ti+j+kh2(t)dν, k ∈ {0, 1}.

4. Discussion

First, results reviewed in this paper refer to the Hahn–Banach- and Mazur–Orlicz-type
theorems involving linear operators as extensions, and convex or sublinear operators as
dominating constraint on the extension. The positivity of the solutions is also a result of
these general theorems. Next, applications to concrete spaces are discussed. Here, Markov
operators appear as linear solutions. Second, approximation via the Krein–Milman theorem
is applied to extending properties from a small set to the entire positive cone of the domain
space. Elements of optimization are deduced as well. Third, polynomial approximation on
closed unbounded subsets is applied to the characterization of existence and uniqueness
of the solution for a Markov moment problem in terms of quadratic forms. Here, the
Hahn–Banach theorem does not appear explicitly, but it is essentially used in proving
previous results on which Section 3.3 is based. The common point of these three subjects is
the notion of convexity (especially related to the Hahn–Banach theorem) completed by poly-
nomial approximation in L1

ν(F) spaces, where F ⊆ Rn, n ≥ 1, n ∈ N is a closed unbounded
subset and ν is a moment determinate positive regular Borel measure on F. The reader could
find other aspects of the subjects discussed here in the references below. As a direction for
continuing this work, one can study more deeply the multidimensional case for results
as those of Section 3.3. In the Introduction, a few applications of Hahn–Banach theorem
are briefly discussed by means of the reference citations. Connections or applications of
the moment problem and of the Hahn–Banach theorem to optimization theory, polyno-
mial approximation on unbounded subsets, characterizing positivity of some bounded
linear operators, nonstandard sandwich type results, and elements of representation the-
ory, are pointed out. A common point of all subsections of Section 3 is the fact that all
these results are directly or indirectly related to Hahn–Banach-type theorems and/or the
moment problem.
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