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Abstract: Vibration signals collected in real industrial environments are usually limited and unlabeled.
In this case, fault diagnosis methods based on deep learning tend to perform poorly. Previous work
mainly used the unlabeled data of the same diagnostic object to improve the diagnostic accuracy,
but it did not make full use of the easily available unlabeled signals from different sources. In this
study, a signal momentum contrast for unsupervised representation learning (SMoCo) based on the
contrastive learning algorithm—momentum contrast for unsupervised visual representation Learning
(MoCo)—is proposed. It can learn how to automatically extract fault features from unlabeled data
collected from different diagnostic objects and then transfer this ability to target diagnostic tasks.
On the structure, SMoCo increases the stability by adding batch normalization to the multilayer
perceptron (MLP) layer of MoCo and increases the flexibility by adding a predictor to the query
network. Using the data augmentation method, SMoCo performs feature extraction on vibration
signals from both time and frequency domains, which is called signal multimodal learning (SML). It
has been proved by experiments that after pre-training with artificially injected fault bearing data,
SMoCo can learn a powerful and robust feature extractor, which can greatly improve the accuracy no
matter the target diagnostic data with different working conditions, different failure modes, or even
different types of equipment from the pre-training dataset. When faced with the target diagnosis
task, SMoCo can achieve accuracy far better than other representative methods in only a very short
time, and its excellent robustness regarding the amount of data in both the unlabeled pre-training
dataset and the target diagnosis dataset as well as the strong noise demonstrates its great potential
and superiority in fault diagnosis.

Keywords: self-supervised learning; data augmentation; limited data; fault diagnosis; aero-engine;
rolling bearing

MSC: 90B25

1. Introduction

As the key component of the aero-engine rotor system, rolling bearings often work in
the environment of large load and high-speed rotation, which will inevitably cause huge
economic losses or safety accidents [1–3]. Therefore, it is of great significance to improve the
diagnostic accuracy and efficiency of rolling bearings for the healthy and stable operation
of aero-engines.

With the continuous development of artificial intelligence technology, deep learning
has been widely used in rolling bearing fault diagnosis to ensure the high reliability of
aero-engines [4]. However, in practical industrial situations, it is very difficult to obtain a
sufficient amount of labeled data, which greatly affects the performance of fault diagnosis
methods based on deep learning [5].

In this case, researchers mainly use semi-supervised learning and transfer learning to
solve this problem. Semi-supervised learning uses both a large amount of unlabeled data
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and a small amount of labeled data for training, thereby improving the performance of the
model. A three-stage semi-supervised method using data augmentation was proposed by
Yu et al. [6] for bearing fault diagnosis. Zhang et al. [7] proposed a deep generative model
based on a variational autoencoder (VAE) for semi-supervised learning of bearing fault
diagnosis, which can effectively utilize the dataset when only a limited part of the data has
labels. Transfer learning transfers the knowledge obtained from the source domain to the
target domain to improve the diagnostic performance of the target domain. Wen et al. [8]
adopted a three-layer sparse autoencoder to extract the features of the original data and
forced the autoencoder to create a latent feature space containing the representations
of the source and target domain data by adding a maximum mean difference (MMD),
thereby predicting the failure of the target domain data. Wang et al. [9] proposed a deep
adversarial domain adaptation network to transfer fault diagnosis knowledge, which learns
domain-invariant features from raw signals using domain adversarial training based on
Wasserstein distance.

Although the above methods have achieved good results, they are still only for limited
application scenarios. Specifically, for semi-supervised learning, previous work mainly uses
unlabeled data of the same object, which is often difficult to obtain in practical situations.
For transfer learning, it requires that the distribution difference between the source and
target domain data is limited, and it requires the source domain data to be labeled [10]. In
addition, when faced with different diagnostic tasks, these two methods need to use all the
additional data and target diagnostic data for training, which is computationally expensive
and cannot be quickly and efficiently used for various diagnostic tasks.

Unlike the above algorithms, self-supervised learning provides a new solution [11].
From the perspective of data, self-supervised learning can automatically extract meaningful
features from unlabeled data for fault classification, thus making full use of the easily
available unlabeled data from different sources [12–15]. From the perspective of computa-
tional efficiency, self-supervised learning can be applied to various downstream diagnostic
tasks with only fine-tuning after the training is completed [16]. There is no need to reuse
unlabeled data for training on various downstream tasks, so that different downstream
diagnostic tasks can be quickly solved.

Contrastive learning has been successfully applied to the field of computer vision
as a state-of-the-art method for self-supervised learning [17–20] by reducing the distance
between different augmented views of the same image (positive pairs) and increasing the
distance between augmented views of different images (negative pairs) for representation
learning [21]. However, there are few studies on self-supervised learning in the field
of fault diagnosis. Wang et al. [16] performed self-supervised learning by having the
model identify the categories that augment the signal and convert it into a classification
model. The methods based on contrastive learning include: Wei et al. [22] used the data
augmentation method in the image field to perform representation learning by transforming
the signal through a simple reshape based on SimCLR [18]. Ding et al. [23] used momentum
contrastive learning for instance-level discrimination based on MoCo [24] for representation
learning. Peng et al. [25] proposed an automatic fault feature extractor based on BYOL [21]
to explore some transformations of signal time-domain features.

The above methods have made attempts to apply self-supervised learning in fault
diagnosis, but the problems they address are still limited to self-supervised learning using
unlabeled data from the same diagnostic object and do not take full advantage of unlabeled
data that are easier to obtain in other operating conditions or even other devices. In addition,
their data augmentation method is still limited to morphological changes in time-domain
signals and does not take advantage of the natural multi-modal characteristics of signals,
such as time-domain information and frequency-domain information.

In response to the above problems, this paper proposes a new self-supervised learn-
ing method called signal momentum contrast for unsupervised representation learning
(SMoCo). It improves the original MoCo in structure and designs a sufficiently difficult
task by adopting the time-domain and frequency-domain cross-learning in the data aug-
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mentation stage, which helps the model to learn the essential characteristics of the signal.
For more details on SMoCo, please refer to Section 3.

This paper focuses on the problem of fault diagnosis of aero-engine bearing under
limited data. Based on this background, a fault diagnosis method based on SMoCo is
proposed. It first performs self-supervised learning on easily accessible unlabeled data to
obtain a powerful and robust feature extractor. It is worth noting that the unlabeled data
can be obtained from a wide range of sources, such as laboratory data of the same model
under different operating conditions, or even from completely different types of products,
which greatly improves the feasibility of the method. Subsequently, the feature extractor
can obtain the easily classifiable features of the target diagnostic object, thus solving the
difficult problem that it is difficult to diagnose aero-engine bearing faults with little data in
the actual industry. Despite its good performance, SMoCo requires a relatively long training
time to learn how to extract the essential features of the signal during the self-supervised
learning phase. The main contributions of this paper are summarized as follows:

1. In terms of structure, based on MoCo, this paper increases the performance of the
model and the stability of training by introducing a predictor to the query network
and adding batch normalization (BN) [26] to the multilayer perceptron (MLP) layer.

2. In terms of data augmentation method, this paper proposes signal multimodal learn-
ing (SML), which enables the model to learn the signal representation from both
the time domain and the frequency domain, thereby characterizing the signal from
two dimensions.

3. The unlabeled pre-training data used by SMoCo comes from a wide range of sources
and is no longer limited to the same diagnostic object, which makes it more feasible in
the real task.

4. Experiments show that SMoCo can be used as a feature extractor with fixed weights to
extract robust features after pre-training on artificially injected fault bearings, whether
it is a bearing with different failure modes under different working conditions or a
completely different type of rolling bearing. Aero-engine high-speed rolling bearings
can achieve extremely high diagnostic accuracy with very few samples, providing
timelier and more robust fault diagnosis than other state-of-the-art techniques.

5. Further studies have shown that SMoCo can still achieve excellent performance with
a much-reduced data volume and in the presence of strong noise, further broadening
its applicability.

The paper is structured as follows. In Section 2, the structure and idea of the origi-
nal MoCo are introduced. In Section 3, the SMoCo algorithm proposed in this paper is
introduced in detail, including the entire fault diagnosis process and its improvements
in structure and data augmentation methods. In Section 4, the performance of SMoCo
is verified via experiments on two datasets. In Section 5, this paper further explores the
sensitivity of SMoCo to the size of the unlabeled pre-training dataset and its robustness to
target diagnostic objects under different noise conditions. Section 6 summarizes the paper
and looks at future work.

2. MoCo Network

MoCo [24] is a contrastive learning method with good training stability; the structure
is shown in Figure 1. It performs representation learning in the latent space by minimizing
the distance between different augmented views of the same data and rejecting augmented
views of other samples.

MoCo uses two neural networks, query network fq and key network fk, with the
same structure for training, and its goal is to learn the convolutional layers in the query
network to serve as feature extractors for downstream tasks. Since negative pair-based
contrastive learning relies on the number of negative samples for representation learning,
MoCo maintains a queue, which contains a single positive sample and multiple negative
samples, the model learns representations by finding the corresponding positive samples.
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Figure 1. The framework of the MoCo network.

Specifically, for a given sample x and the distribution T of its data augmentation
methods, the data augmentation methods t ∼ T and t′ ∼ T are adopted respectively to
generate two different augmented views of the same instance, denoted as v and v′, and
treat these two as a positive pair. Input v to the fq produces a query batch q, and input v′ to
the fk produces the features in the queue. It uses a dynamically updated queue to store the
representations of multiple batches recently used for training. After a new batch enters the
queue, the oldest training batch is out of the queue, thereby maintaining a large number of
negative samples to help model training. For a given set of queues, K = {k0, k1, · · · , kN}
contains N + 1 encoding keys, where the encoder fk produces a positive sample k+ for
the current v′, and the others are negative samples, thus transforming the contrastive
learning task into positive and negative samples corresponding to a given query q. Finally,
InfoNCE [27] is used as the loss function:

L = − log
exp(q · k+/τ)

∑N
i=0 exp(q · ki/τ)

(1)

where τ is the temperature parameter.
During the training process, only the parameters of the fq are updated via gradi-

ent back-propagation, while the parameters of the fk are updated via a momentum up-
date. Specifically, denoting the parameters of fk as θk and the parameters of fq as θq, it
updates θk by:

θk ← αθk + (1− α)θq (2)

where α ∈ [0, 1) is the momentum update parameter.
MoCo builds a dynamic dictionary by using queues and momentum updates, which

enables it to learn in a wider range of negative samples, making the network learn better
and train more stably.

3. SMoCo

The framework of fault diagnosis based on SMoCo is shown in Figure 2, which is
mainly composed of three key steps: (1) data acquisition, (2) self-supervised on unlabeled
data, (3) fault diagnosis on labeled data. Given the difficulty of fault diagnosis of aero-
engines in the case of limited data, we use unlabeled vibration signals that are easily
obtained from different working conditions or even different equipment. Self-supervised
learning is first employed with unlabeled signals, using our proposed signal multimodal
learning (SML) as the data augmentation method. After the training is completed, the
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convolutional layers of the query network are selected as the feature extractor for the
downstream task, and it is worth noting that its weights remain unchanged. Finally, for the
downstream labeled aero-engine bearing dataset, the feature extractor is used to extract
features, and then support vector machines (SVMs) are used to classify the extracted
features, and finally, the diagnostic model is obtained. The SVM is a classifier that classifies
data in a supervised learning manner, where the decision boundary is the maximum-margin
hyperplane solved for the learned samples.
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In this section, we first describe our unique data augmentation approach, signal
multimodal learning (SML). Then, the network structure of SMoCo is proposed through
several improvements based on MoCo. Finally, we specify an implementation detail based
on SMoCo for fault diagnosis.

3.1. Signal Multimodal Learning (SML)

The representation learning ability of contrastive learning depends greatly on the
design and optimization of data augmentation methods [18]. Aero-engine rolling bearings
diagnosis has difficult problems such as variable working conditions, strong noise, and
weak faults in a real task. If a model can be unaffected by these factors, then the essential
characteristics of the signal can be well characterized. The previous work was only limited
to making some morphological changes to the time-domain signal when designing data
augmentation methods. This paper proposes SML from the perspective of the time domain
and the frequency domain according to the characteristics of vibration signals, including
six basic data augmentation transformations as shown in Figure 3. The following describes
in detail how these methods transform a given vibration signal x = [x1, x2, · · · , xN ].
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1. Normalization: There are differences in the measurement range of different sensors.
This strategy normalizes the signal to a uniform range, which is also beneficial for
model training. The formula is as follows:

x̃ = −1 + 2 ∗ x− xmin
xmax − xmin

(3)

2. Gaussian noise: There is an inevitable environmental noise problem during the
operation of the device. This strategy adds Gaussian noise to the original signal to
mimic this phenomenon. The formula is as follows:

x̃ = x + n, n ∼ N(0, σn) (4)

where n is generated by the Gaussian distribution N(0, σn).
3. Scaling: This strategy increases the sensitivity of the model to signals of different

amplitudes by directly amplifying or reducing the amplitude of the signal without
losing the semantics contained in the original data. The formula is as follows:

x̃ = x ∗ s, s ∼ N(1, σs) (5)

where s is generated from a Gaussian distribution N(1, σs).
4. Resampling: This strategy improves the robustness of the model to variable speed

scenarios by resampling and transforming the signal length to s ∼ N(1, σs) times the
original length.

5. Truncation: This strategy randomly covers part of the signal, and its formula is
as follows:

x̃ = x ∗mask (6)

where mask is a binary sequence with subsequence zeros at random positions.
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6. Flip: The vibration signal usually vibrates up and down with 0 as the mean value.
This strategy randomly flips the signal to increase the diversity of the signal. The
formula is as follows:

x̃ = −x (7)

Since the signal naturally has multi-modal characteristics, our proposed SML treats
the time-domain signal and the frequency-domain signal using fast Fourier transform
(FFT) as a positive pair, as shown in Figure 4. If the model can correspond the augmented
time-domain signal to the augmented frequency-domain signal, it can characterize the
signal more comprehensively from both the time-domain and frequency-domain dimen-
sions. Specifically, according to the characteristics of the time-domain signal, the order
of normalization, Gaussian noise, scaling, resampling, truncation, and flip is used as the
data augmentation method, which is called time-domain augmentation (TDA). For the
frequency-domain signal, the order of normalization and Gaussian noise is used as the data
augmentation method, which is called frequency-domain augmentation (FDA).
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Figure 4. Signal multimodal learning (SML).

3.2. Fault Diagnosis Based on SMoCo

The network structure of SMoCo is shown in Figure 5, which includes query network
fq, predictor fp, key network fk, and queue. The query network and the key network have
the same structure. To increase the stability of model training, we add BN to the MLP
projection layer based on MoCo. In addition, we add a predictor to the query network,
which greatly increases the flexibility, so that the characteristics of the query network do
not need to be the same as those of the key network, but only need to be matched by
another predictor, which greatly improves the effect of representation learning. Like MoCo,
SMoCo maintains a dynamically updated queue, using only the gradient to update fq,
and using the parameter of fq to momentum update the parameters of fk. Specifically,
denoting the parameters of fk as θk and the parameters of fq as θq, it updates θk according
to the Equation (2).

Given a vibration signal x, the data augmentation distribution of the time-domain
signal is TDA, and the data augmentation distribution of the frequency-domain signal is
FDA. By adopting the data augmentation strategies t ∼ FDA and t′ ∼ TDA for x, two
augmented time series v = t(FFT(x)) and v′ = t′(x) are generated. For v, use the query
network to output the feature q = fq(v), and then use the predictor to predict q to get fp(q).
For v′, the key network outputs k+ = fk(v′). Therefore, for a given queue, for fp(q), except
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for k+, which is a positive pair, all other features in the queue are negative pairs. Its loss
function is formulated as:

L = −log
exp
(

fp(q) · k+/τ
)

∑N
i=0 exp

(
fp(q) · ki/τ

) (8)

where τ is the temperature parameter.
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Figure 5. The structure of SMoCo.

It gets the symmetric loss function L̃ by feeding v′ to the query network and v to the
key network. Finally, the network updates the query network fq by minimizing the loss
LSMoCo:

LSMoCo = 0.5×
(
L+ L̃

)
(9)

The detailed SMoCo is shown in Algorithm 1.

Algorithm 1. The detailed SMoCo.

Input:
Structure of fq, fp, fk, temperature τ, momentum update α, queue size N
batch size nb, learning rate η, total number of optimization steps K,
distributions of transformations TDA, FDA, set of signals D
Initialize parameters, θk ← θq , and queue
for k = 1 to K do

Batch← {xi ∼ D}nb
i=1

for xi ∈ Batch do
t ∈ FDA and t′ ∈ TDA
q1 ← fq(t(xi)) and k1

+ ← fk(t′(xi))
q2 ← fq(t′(xi)) and k2

+ ← fk(t(xi))

li ← 0.5× (− log
exp( fp(q1)·k1

+/τ)
∑N

i=0 exp( fp(q1)·ki/τ)
− log

exp( fp(q2)·k2
+/τ)

∑N
i=0 exp( fp(q2)·ki/τ)

)

end
// Back-propagation

θq ← θq − η ·
∂ 1

nb
∑

nb
i=1 li

θq

// Momentum update without back-propagation
θk ← αθk + (1− α)θq

// Update dictionary
Enqueue and dequeue with

{
k1
+

}nb
i=1 and

{
k2
+

}nb
i=1

end
Output: query network parameters θq
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After training, the convolutional layers in the query network are extracted to perform
feature extraction on downstream tasks. When performing downstream tasks, the weights
of the convolutional layers remain fixed and only serve as a function of feature extraction.
Since the SVM is the classifier with the largest interval in the feature space, the SVM is
adopted to classify the extracted features, which is more robust in the problem under
limited data.

4. Performance Verification of SMoCo

To verify the effectiveness and superiority of SMoCo, as proposed in this paper,
the bearing dataset of Paderborn University and the aero-engine bearing dataset of the
Polytechnic University of Turin are used for experimental verification. SMoCo is first
pre-trained on the unlabeled laboratory data of artificially injected faults from Paderborn
University. The learned feature extractors are then transferred to products of the same type
but with failures generated in natural operation from Paderborn University, and these two
datasets are characterized using different working conditions, different failure levels, and
different failure modes. It is further transferred to the aero-engine bearing dataset from
the Polytechnic University of Turin, which is a completely different model compared to
the pre-training dataset, and the data distributions of these two datasets differ significantly
and thus can effectively verify the validity of aero-engine bearing fault diagnosis under
limited data. The purpose of using two cases is to verify the effect of the proposed method
on different diagnostic subjects.

4.1. Self-Supervised on Artificially Damaged Bearing Data

The Paderborn University dataset [28] is a public dataset collected by the Paderborn
University Bearing Data Center in 2016 with high diagnostic difficulty [29]. In this dataset,
bearing damages are rich and can be divided into three categories: 6 healthy bearings,
12 artificially damaged bearings, and 14 real damaged bearings. Among them, the real
damaged data were obtained through the accelerated life test. The vibration signal was
obtained at a sampling rate of 64 khz, including 4 working conditions, as shown in Table 1,
and the test rig is shown in Figure 6.

Table 1. Operating parameters.

Name of Setting Rotational Speed [rpm] Load Torque [Nm] Radial Force [N]

N09_M07_F10 900 0.7 1000
N15_M07_F10 1500 0.7 1000
N15_M01_F10 1500 0.1 1000
N15_M07_F04 1500 0.7 400
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To better represent the easy-to-obtain unlabeled data, the artificially injected fault
bearing data in the Paderborn University dataset is used as the unlabeled pre-training
dataset, as shown in Table 2. There are 13 types of bearings including one type of health
status; 4096 is selected as the sample length to contain enough information, and the working
condition is N15_M01_F10. The number of samples in each category is 2000, and all data
are kept as raw time-domain data without any signal pre-processing.
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Table 2. Dataset 1: Unlabeled artificially damaged bearing dataset under N15_M01_F10.

Bearing Code Damaged Element Damaged Extent Damage Method

K001 Health state / Run-in 50 h before test
KA01 Outer ring Level 1 Made by EDM
KA03 Outer ring Level 2 Made by electric engraver
KA05 Outer ring Level 1 Made by electric engraver
KA06 Outer ring Level 2 Made by electric engraver
KA07 Outer ring Level 1 Made by drilling
KA08 Outer ring Level 2 Made by drilling
KA09 Outer ring Level 2 Made by drilling
KI01 Inner ring Level 1 Made by EDM
KI03 Inner ring Level 1 Made by electric engraver
KI05 Inner ring Level 1 Made by electric engraver
KI07 Inner ring Level 2 Made by electric engraver
KI08 Inner ring Level 2 Made by electric engraver

The original MoCo used ResNet50 [30] as the backbone network and achieved excellent
results. However, as the number of network layers increases, the computational complexity
of the network gradually increases and it is difficult to converge. The original MoCo uses a
deep ResNet network because it is used to solve computer vision tasks, while the feature
learning task of bearings is less difficult than the feature learning task of images, so the
backbone network of SMoCo adopts the ResNet18 [30].

The output dimension of the query network and the key network is 128 in line with
MoCo, thus ensuring that there is enough space to represent the extracted features. Since
the convolutional layer output of ResNet18 has a dimension of 512, the MLP layers in the
query network, key network, and predictor have the same structure with a hidden layer
dimension of 512 and an output layer dimension of 128, and this structure has also been
shown to be very effective for representation learning [21,24].

The initial learning rate η is set to 0.1 because using a larger learning rate can [24,25]
accelerate the convergence and allows the model to try multiple directions at the early
stage of optimization to prevent the model from getting stuck at the saddle point or the
local minimum due to the small learning rate. In addition, since this paper uses both
time-domain and frequency-domain data for learning, the data distribution between the
two differs greatly and the learning task is more complex, therefore, 0.1 is chosen as the
initial learning rate. The learning rate is updated via the cosine learning rate scheduler
with the following equation.

ηt =
1
2

(
1 + cos

(
tπ
T

))
η (10)

where η is the initial learning rate, ηt is the current learning rate, T is the maximum number
of epochs, and t is the current epoch.

It has been shown in MoCo that the model performs better when the value of momen-
tum α is in the range 0.99~0.9999, showing that a slowly progressing (i.e., relatively large
momentum) key encoder is beneficial, while when α is too small (e.g., 0.9), the accuracy
drops considerably [24]. This is because MoCo relies on a consistent dictionary for training,
which is the data in the queue generated by the key encoder [24]. Therefore, SMoCo chooses
to keep the same parameter selection as MoCo, i.e., 0.999. See Table 3 for other hyperpa-
rameters. In addition, the data augmentation methods in Table 3 are all implemented with
a probability of 50%, thereby increasing the variety of the transformation. The variation of
the loss values during the training process is shown in Figure 7; it can be found that the loss
value becomes smooth in the late training period, indicating that the training has reached
the fitting state. The experiment was conducted under Windows 11 and PyTorch1.11,
running on a computer with the following configurations: i5-12400F, NVIDIA RTX 3060,
and 16GB RAM. The training time for self-supervised learning is about 6.5 h.
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Table 3. Hyperparameter setting.

Hyperparameter Value Data Augmentation Value

Batch size 64 Normalization /
Optimizer SGD Gaussian noise Noise coefficient σn = 0.05

Learning rate 0.1 Scaling Scale coefficient σs = 0.05
Momentum 0.9 Resampling Stretch coefficient σs = 0.3

Weight decay 0.0001 Truncation Truncation length = 100
Epochs 350 Flip /

Learning rate schedule Cosine
Queue size 65536

Momentum update 0.999
Temperature 0.07
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Other self-supervised learning methods, Wang, SimCLR, BYOL, and MoCo, are carried
out for comparison. To exclude the influence of other factors, the backbone network of all
methods is ResNet18, which is trained using time-domain signals. In addition, to prove the
great superiority of SMoCo, as a comparison, the labeled dataset 1 is used for supervised
learning, and the network structure is also ResNet18, which is called labeled pretraining.
The feature extractors of all methods, that is, the convolutional layers of ResNet18, are used
to perform feature extraction on part of the data in dataset 1 and T-SNE is used to reduce it
to 2D for visualization. The results are shown in Figure 8. SMoCo can achieve an excellent
feature extraction performance without using labels and achieves the aggregation of each
category and the separation of different categories from each other, which greatly exceeds
all other self-supervised learning methods, even reaching the level of labeled pretraining.
Other self-supervised methods perform poorly, specifically for Wang, which only identifies
the corresponding data augmentation categories without instance-level self-supervised
learning and therefore does not perform feature extraction well. For SimCLR, its reliance on
learning in large batches, via comparing data within a batch without other techniques such
as momentum updates, makes its training less stable and less performant. For BYOL and
MoCo, although they achieve relatively good results without labels, they lack the unique
SML proposed in this paper, so the results are not as good as SMoCo.
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4.2. Fault Diagnosis on Same Products under Different Fault Characteristic Distributions

To verify the diagnostic performance of SMoCo for the same products under different
failure levels, different failure models, and different working conditions, 10 types of real
damaged bearings in the Paderborn University dataset, including a healthy state bearing
and 2 mixed fault bearings with the working condition of N15_M07_F04, are selected as the
target diagnosis dataset. The specific information is shown in Table 4. To reflect the limited
data problem faced in the actual diagnosis task, the training set uses 5 samples per class,
and the testing set uses 50 samples per class.

To demonstrate the performance of the feature extractor obtained in the self-supervised
learning stage, the feature extractors trained in Section 4.1 are used to perform feature
extraction on the testing set without any training, and T-SNE is used for visualization.
The results are shown in Figure 9. The SMoCo proposed in this paper can achieve an
excellent feature extraction performance on target diagnostic data without using training
data. It not only greatly outperforms other self-supervised learning methods, but also
outperforms labeled pretraining. Compared to the result of extracting from dataset 1, other
methods are less capable of extracting features from the target diagnostic data at this time
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due to the difference between the distribution of the pre-training dataset and the target
diagnostic dataset.

Table 4. Dataset 2: Real damaged bearing dataset under N15_M07_F04.

Bearing
Code Damaged Element Fault Mode Damage Form Arrangement Damaged Extent

K001 Health state / / / /
KA04 Outer ring Fatigue: pitting Single damage No repetition Level 1

KA15 Outer ring Plastic deform:
Indentations Single damage No repetition Level 1

KA16 Outer ring Fatigue: pitting Repetitive damage Random Level 2
KB23 Outer ring and inner ring Fatigue: pitting Multiple damage Random Level 2
KB24 Outer ring and inner ring Fatigue: pitting Multiple damage No repetition Level 3
KI14 Outer ring Fatigue: pitting Multiple damage No repetition Level 1
KI16 Outer ring Fatigue: pitting Single damage No repetition Level 3
KI17 Inner ring Fatigue: pitting Repetitive damage Random Level 1
KI18 Inner ring Fatigue: pitting Single damage No repetition Level 2
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To more fully demonstrate the superiority of our method, in addition to the methods
in Section 4.1, we also use MixMatch [31], ResNet18, and FFT + SVM as a comparison for
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the diagnosis task. Among them, MixMatch is one of the best-performing semi-supervised
methods, which uses the unlabeled dataset 1 and the training set of dataset 2 for training.
ResNet18 is trained using only the training set of dataset 2. The diagnostic accuracy of
each method is shown in Table 5 and Figure 10. FFT + SVM is a classical and effective fault
diagnosis method for small sample cases, which first performs FFT transformation on the
original signal and then uses SVM to classify the FFT transformed features.

Table 5. Comparison of diagnostic results on dataset 2 under 5 samples per class.

Method Accuracy (%) Time (s)

SMoCo 99.68 ± 0.26 1.47
MixMatch 89.96 ± 4.84 411.24

Labeled Pretraining 97.16 ± 1.80 25.11
Wang 73.88 ± 3.40 29.93

SimCLR 73.76 ± 1.35 30.44
BYOL 89.48 ± 3.29 30.72
MoCo 89.68 ± 2.16 30.75

ResNet18 71.96 ± 3.13 26.26
FFT + SVM 79.14 ± 7.86 0.16
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It can be seen from Table 5 and Figure 10 that SMoCo benefits from its unique SML
and structural improvements to MoCo; its accuracy reaches an astonishing 99.68%, while
the time it takes is only 1.47 s, which even significantly exceeds the results of labeled
pretraining. This is also consistent with the visualization results in Figure 9. SMoCo can
distinguish each class well before training, so it only needs to use very few samples to
build an excellent classification surface. Labeled pretraining uses labels for pre-training,
but the obtained feature extractor is only adapted to the pre-training dataset. When faced
with new diagnostic tasks, although its diagnostic accuracy is improved, the effect is still
limited. Other self-supervised learning methods lack our unique SML and gaps in the
structure, so their performance falls far short of SMoCo. For FFT + SVM, it performs better
than ResNet18 using only time-domain features in the case of small samples; however, its
diagnostic accuracy is not high in the face of complex diagnostic problems under real faults.

The confusion matrix for SMoCo and labeled pretraining with the best diagnostic
performance is plotted as shown in Figure 11. SMoCo only misclassified one sample of KI17
as KI16, which is consistent with the results visualized in Figure 9. The interval between
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KI17 and KI16 is relatively close, which may cause errors in the classification plane due to
the special training samples. Nonetheless, our SMoCo outperforms labeled pretraining in
every category.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 25 
 

 

  
(a) (b) 

Figure 11. Confusion matrix of the two best-performing methods on dataset 2. (a) SMoCo; (b) la-
beled pretraining. 

The diagnostic accuracy of SMoCo in the case of fewer samples is also further ex-
plored by selecting the best performing SMoCo and labeled pretraining as a comparison. 
For the training set, a total of 5 groups of samples from 1 to 5 per class were used to explore 
the results, as shown in Figure 12. It can be seen from Figure 12 that SMoCo is far better 
than labeled pretraining in all cases. SMoCo can achieve 99.16% accuracy with only 3 sam-
ples per class and its accuracy only drops more in the case of one sample per class. It is 
demonstrated that our method has strong performance and robustness for diagnosis in 
limited data. 

 
Figure 12. Comparison of results under different training set sizes on dataset 2. 

4.3. Fault Diagnosis on Different Products of Aero-Engine Bearing 
To verify the diagnostic effectiveness of SMoCo on aero-engine rolling bearings, this 

paper uses the dataset of aero-engine high-speed bearings from the Department of Me-
chanical and Aeronautical Engineering of the Polytechnic University of Turin [32]. The 

Figure 11. Confusion matrix of the two best-performing methods on dataset 2. (a) SMoCo;
(b) labeled pretraining.

The diagnostic accuracy of SMoCo in the case of fewer samples is also further explored
by selecting the best performing SMoCo and labeled pretraining as a comparison. For the
training set, a total of 5 groups of samples from 1 to 5 per class were used to explore the
results, as shown in Figure 12. It can be seen from Figure 12 that SMoCo is far better than
labeled pretraining in all cases. SMoCo can achieve 99.16% accuracy with only 3 samples
per class and its accuracy only drops more in the case of one sample per class. It is
demonstrated that our method has strong performance and robustness for diagnosis in
limited data.
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4.3. Fault Diagnosis on Different Products of Aero-Engine Bearing

To verify the diagnostic effectiveness of SMoCo on aero-engine rolling bearings, this
paper uses the dataset of aero-engine high-speed bearings from the Department of Me-
chanical and Aeronautical Engineering of the Polytechnic University of Turin [32]. The
test rig is shown in Figure 13. For the dataset, we use the vibration acceleration data of
aero-engine bearings at different rotational speeds and different degrees of damage. The
length of a single sample is still 4096, and the y-direction channel data at A1 is used. To
reflect the extremely limited data situation in the actual diagnosis process, only 3 samples
per class are used in the training set, and 50 samples per class are used in the testing
set. The specific dataset information is shown in Table 6. At this point, the unlabeled
pre-training dataset 1 and the target diagnostic dataset 3 have completely different device
types, working conditions, and failure modes.
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Table 6. Dataset 3: Aero-engine bearing dataset from Polytechnic University of Turin.

Damaged
Element

Diameter
(µm)

Fault Mode Rotation Speed
(r/min)

Load
(N)

Training
Samples

Testing
Samples Label

Healthy / 24,000 1400 3 50 0
Inner ring 450 24,000 1400 3 50 1
Inner ring 250 24,000 1400 3 50 2
Inner ring 150 24,000 1400 3 50 3

Roller 450 24,000 1400 3 50 4
Roller 250 24,000 1400 3 50 5
Roller 150 24,000 1400 3 50 6

Inner ring 450 18,000 1400 3 50 7
Inner ring 250 18,000 1400 3 50 8
Inner ring 150 18,000 1400 3 50 9

Roller 450 18,000 1400 3 50 10
Roller 250 18,000 1400 3 50 11
Roller 150 18,000 1400 3 50 12
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As in Section 4.2, the feature extractors trained in Section 4.1 are used to perform
feature extraction on the testing set data and visualize it using T-SNE. It’s worth noting
that this was done without any training on dataset 3. The results are shown in Figure 14.
The SMoCo proposed in this paper still achieves amazing feature extraction results in the
face of completely different devices without using any training data, greatly surpassing
other methods.
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The methods trained in Section 4.1, MixMatch, ResNet18, and FFT + SVM are used for
comparison on dataset 3, and the results are shown in Table 7 and Figure 15.

It can be seen from Table 7 and Figure 15 that SMoCo achieves 100% diagnostic
accuracy when faced with diagnostic problems of different devices, and its training and
inference time is only 1.6 s. Both the accuracy and efficiency achieved the best results,
greatly surpassing other methods. Although labeled pretraining can still improve the
accuracy at this time, in the case of different devices, due to the large difference between
the distribution of the pre-training data and the data to be diagnosed, namely dataset 1 and
dataset 3, its effect is greatly reduced at this time. Since MixMatch uses both dataset 1 and
dataset 3 for training, it can adapt the target diagnostic data with unlabeled data and thus
obtain better diagnostic accuracy, but even so it is not as good as SMoCo. In addition, it
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needs to be trained from scratch for each diagnostic task, so its training time is far inferior
to SMoCo. The performance of other self-supervised methods is still far from that of ours.
FFT + SVM has achieved good results in the face of relatively simple diagnostic tasks, but
there is still a big gap compared with SMoCo.

Table 7. Comparison of diagnostic results on dataset 3 under 3 samples per class.

Method Accuracy (%) Time (s)

SMoCo 100.00 ± 0.00 1.60
MixMatch 98.55 ± 0.65 469.06

Labeled Pretraining 90.92 ± 2.11 30.62
Wang 74.65 ± 4.56 36.04

SimCLR 81.85 ± 4.06 37.32
BYOL 85.66 ± 2.82 35.12
MoCo 84.00 ± 4.10 40.42

ResNet18 82.83 ± 2.88 29.78
FFT + SVM 94.94 ± 4.19 0.15
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To further explore the effectiveness of SMoCo, MixMatch is also used as a comparison,
which is the best performing method among the other methods. For the training set of
dataset 3, one sample per class to three samples per class are used for training, and the
results are shown in Figure 16. SMoCo can achieve a diagnostic accuracy of 99.15% with
only one sample per class, which is also consistent with the results of feature visualization.
It is proven that SMoCo is efficient and robust in the face of diagnostic tasks of different
devices, which greatly reflects its superiority. In the case of extremely limited data, Mix-
Match’s diagnostic accuracy drops sharply. This is due to the lack of a stable and efficient
feature extractor, and it will encounter the common problem of deep learning, that is, the
performance will be greatly reduced when the amount of data is extremely limited.
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5. Robustness Verification of SMoCo
5.1. Sensitivity to the Size of the Pre-Training Dataset

To further explore the sensitivity of SMoCo to the size of the unlabeled pre-training
dataset, in this section, five different data volumes of 2000, 1500, 1000, 500, and 100 for
each class are used for self-supervised learning on unlabeled dataset 1. After the self-
supervised training is completed, all feature extractors are used to perform fault diagnosis
on the labeled dataset 2 and dataset 3, respectively. In addition, to further explore their
performance with different numbers of labeled training sets, this paper varies the number
of samples per class from 1 to 5 for the training set of dataset 2 and from 1 to 3 for
dataset 3. For each dataset, an additional method that performs the best except SMoCo in
Sections 4.2 and 4.3 is performed as a comparison. Finally, to better evaluate their diagnostic
performance, the F1 score is used as the evaluation criterion [33], and the results are shown
in Table 8, Figure 17, Table 9, and Figure 18. Where SMoCo + 2000 means self-supervised
learning using 2000 unlabeled samples per class in dataset 1, the meaning of SMoCo + 1500,
etc. can be deduced accordingly. Labeled pretraining + 2000 means pre-training with
labels using 2000 samples per class in dataset 1. MixMatch + 2000 means semi-supervised
learning using both the 2000 unlabeled samples per class in dataset 1 and the labeled target
diagnostic dataset.

Table 8. Experimental results of the sensitivity to the size of the data set on dataset 2.

Method
Number of Samples Per Class on Dataset 2

1 (F1/%) 2 (F1/%) 3 (F1/%) 4 (F1/%) 5 (F1/%)

SMoCo + 2000 94.39 97.86 98.92 99.60 99.64
SMoCo + 1500 92.35 95.43 97.79 98.52 98.76
SMoCo + 1000 91.80 94.90 96.76 98.07 98.51
SMoCo + 500 89.85 94.26 96.46 97.00 97.95
SMoCo + 100 89.33 94.19 96.26 96.65 97.61

Labeled Pretraining + 2000 88.33 94.24 96.20 96.84 97.20
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Table 9. Experimental results of the sensitivity to the size of the data set on dataset 3.

Method
Number of Samples Per Class on Dataset 3

1 (F1/%) 2 (F1/%) 3 (F1/%)

SMoCo + 2000 99.46 99.84 99.94
SMoCo + 1500 98.31 99.11 99.54
SMoCo + 1000 98.01 99.04 99.38
SMoCo + 500 97.74 98.86 99.20
SMoCo + 100 97.04 98.21 98.89

MixMatch + 2000 88.51 94.27 97.43
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From Table 8 and Figure 17, it can be seen that for dataset 2 when using 5 labeled
training samples per class, all SMoCo with different unlabeled data sizes achieved excellent
results. When using 1 labeled training sample per class, even SMoCo + 100 achieved a
score of nearly 90%. SMoCo + 100 achieved a similar level of performance as with labeled
pretraining and even reached the leading performance in the case of 1 sample per class and
5 samples per class, demonstrating the superior performance and robustness of SMoCo
regarding the size of the unlabeled dataset. With the increase in data volume, SMoCo can
achieve feature extractors with better performance via self-supervised learning.

As can be seen from Table 9 and Figure 18, SMoCo + 100 achieves excellent diagnostic
performance even in the face of diagnostic problems across different devices and surpris-
ingly greatly outperforms MixMatch + 2000. The progressive improvement in diagnostic
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performance from SMoCo + 100 to SMoCo + 2000 proves that the performance of SMoCo
can be increased gradually with the increase of the amount of data.

5.2. Sensitivity to Aero-Engine Bearing Dataset under Different Noise Levels

In this section, noise stress tests are carried out to demonstrate the robustness and
effectiveness of SMoCo with different signal-to-noise ratio (SNR) values on dataset 3. As a
comparison, MixMatch and FFT + SVM are also used to perform diagnosis on dataset 3
with 3 samples per class at different noise levels, which are the best performing methods
except SMoCo. SMoCo and MixMatch both use the full unlabeled dataset 1, i.e., 2000
samples per class. In this paper, we also further increase the difficulty of the experiment by
training SMoCo from 1 sample per class to 3 samples per class of the labeled datasets, to
verify the robustness of SMoCo under severe conditions, which are denoted as SMoCo + 1,
SMoCo + 2, and SMoCo + 3. The evaluation criterion is the F1 score, and the results are
shown in Table 10 and Figure 19.

Table 10. Experimental results of the sensitivity to the SNR on the aero-engine bearing dataset.

Method
SNR

0 dB 1 dB 2 dB 3 dB 4 dB 5 dB 6 dB 7 dB 8 dB 9 dB 10 dB

SMoCo + 3 96.61 97.60 97.90 98.03 98.65 98.74 99.23 99.53 99.56 99.69 99.75
SMoCo + 2 95.50 95.61 96.64 97.63 98.00 98.15 98.43 98.98 99.10 99.29 99.35
SMoCo + 1 91.54 92.03 92.74 93.75 94.92 96.06 96.68 97.08 97.32 97.93 98.58
MixMatch 54.84 67.54 72.41 79.27 85.79 90.95 92.94 93.56 93.72 94.99 95.58
FFT + SVM 83.28 85.46 87.15 88.55 89.98 90.85 91.41 91.95 92.89 93.11 94.09
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From Table 10 and Figure 19, it can be seen that SMoCo achieves the best result
compared to the other two methods, even SMoCo + 1 can achieve a score of 91.54 at
0 dB, showing its strong robustness against noise. Although SMoCo + 1 achieves good
diagnostic accuracy, the gap between it and SMoCo + 2 is large compared to the gap
between SMoCo + 2 and SMoCo + 3, which is especially obvious in the case of strong
noise. This is because, in the case of extremely small samples, there is a deviation in the
decision boundary between the training and testing data sets due to interference of noise. In
addition, MixMatch performs worse than FFT + SVM in the case of higher noise due to the
fact that the gap between its data distribution and that of the unlabeled dataset gradually
widens when the noise of the target diagnostic data increases, resulting in MixMatch not
being able to make good use of the unlabeled data to improve the diagnostic accuracy of
the target labeled data.
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6. Conclusions

Under complex and harsh actual working conditions, there is a limited data problem in
the fault diagnosis of aero-engine rolling bearings, which seriously affects the performance
of intelligent diagnosis methods. Based on MoCo, this paper proposes a new intelligent
diagnosis method based on SMoCo through improvement of the structure and innovation
of the data augmentation method. SMoCo first performs self-supervised learning on easily
available unlabeled data and then utilizes the trained feature extractor for downstream
diagnostic tasks under limited data. Experimental results show that SMoCo not only has
high diagnostic accuracy and training efficiency, but also has good generalization ability.
The experimental results show that SMoCo can have high diagnostic accuracy and training
efficiency under limited data, whether the target data are from the same model but with
different failure modes and different working conditions or from a completely different
type from the pre-training data, which proves its good generalization ability. The main
conclusions are as follows:

1. In this paper, BN and a predictor are introduced to solve the deficiency of the MoCo
structure, and SML is innovatively proposed according to the time domain and
frequency domain of the signal, which regards the time-domain signal and frequency-
domain signal as a positive pair. Therefore, a fault diagnosis method based on SMoCo
is proposed.

2. SMoCo uses easily available unlabeled data for self-supervised learning, the sources
of which can be diverse and are not limited to objects that need to be diagnosed.
Therefore, its acquisition range is wider, and its feasibility in practical diagnostic tasks
is much greater than that of previous work.

3. This paper uses two independent bearing datasets from Paderborn University and
the Polytechnic University of Turin for experimental verification. In the experiment,
three important problems of aero-engine bearing fault diagnosis under the condition
of limited data are studied, which are different working conditions, different failure
modes, and different equipment. After SMoCo performs self-supervised learning
on artificially injected faulted bearings, the trained feature extractor can be used to
solve the above problems. The results show that the proposed SMoCo method can
effectively solve the diagnosis problem in the case of limited data, it greatly exceeds
the existing state-of-the-art methods both in accuracy and speed and is very little
affected by limited data, even requiring only one sample per class to achieve high
diagnostic accuracy for aero-engine bearing.

4. Compared with representative methods, SMoCo still achieves good performance
in the case of limited unlabeled pre-training data and less labeled training data
with strong noise, demonstrating the robustness of SMoCo regarding data volume
and noise.

Although the SMoCo proposed in this paper has achieved good results, there is still
some work that deserves further exploration, especially in relation to the time and efficiency
of self-supervised learning. SMoCo takes a relatively long time to learn the essential features
of the signal in the self-supervised learning phase, and future research could be conducted
to improve the training efficiency. In addition, in this paper, only Gaussian noise is explored
as the data augmentation method, while there are often other non-Gaussian noises and
mixed noises in the actual industry [34,35], which could be further investigated in the
future to be more robust regarding the complex conditions in actual industry. Future work
could also try to change the structure of the encoder to use a convolutional network with
better performance or a transformer network, which is currently performing extremely well
in the field of deep learning [36]. A larger pre-trained dataset with different data sources,
not just from one bearing dataset, could be used to try to build a unified feature extractor
for all rotating machinery problems.
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