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Abstract: The Landweber iteration method is one of the most popular methods for the solution of
linear discrete ill-posed problems. The diversity of physical problems and the diversity of operators
that result from them leads us to think about updating the main methods and algorithms to achieve
the best results. We considered in this work the linear operator equation and the use of a new
version of the Landweber iterative method as an iterative solver. The main goal of updating the
Landweber iteration method is to make the iteration process fast and more accurate. We used a polar
decomposition to achieve a symmetric positive definite operator instead of an identity operator in the
classical Landweber method. We carried out the convergence and other necessary analyses to prove
the usability of the new iteration method. The residual method was used as an analysis method to
rate the convergence of the iteration. The modified iterative method was compared to the classical
Landweber method. A numerical experiment illustrates the effectiveness of this method by applying
it to solve the inverse boundary value problem of the heat equation (IBVP).

Keywords: Landweber iteration; ill-posed problem; inverse problem; linear operator equation
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1. Introduction

In the early twentieth century, Hadamard [1] labeled the situations for well-posed
problems for linear operator equations, stating that a problem is well-posed when it fulfilled
the following points:

1. Solution exists;
2. Uniqueness, this solution is unique;
3. Stability (the given data are continuously dependent on the solution).

If at least one of the above points or conditions is not fulfilled in the problem, the
problem is considered to be an ill-posed problem. The violations of 1 and 2 can often be
improved with a small re-formulation of the problem. Violations of stability are much
harder to remedy because they imply that a small disturbance in the data leads to a large
disturbance in the estimated solution [2–5]. The inverse problem under the study of the
heat equation can be solved by many methods; for example, the method of regularization
by Tikhonov A.N. [6], the method of Lavrentiev M.M. [7], the method of quasi-solutions by
Ivanova V.K. [8], and many others.

The Landweber iteration is a basic and initial method for solving inverse problems or
linear operator equations. Due to its ease of operation and relatively low complexity per
iteration, the Landweber method attracted a lot of attention for studying inverse problems.
The useful methods for solving inverse problems depend on the profound insight through
the problems related to the algorithms for solving these problems [9–14].
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Regarding Landweber iterations in Hilbert spaces, see [15,16]. In the last years, the
Landweber method has been extended to solve inverse problems in many spaces, such
as t Banach spaces [17–19]. Many works have modified the Landweber iteration method,
such as [20], which used a revision of the residual principle method for iteration of the
Landweber in order to solve the inverse problems (linear and non-linear) in Banach spaces
and the author proved the new convergence results. In [21], the author estimated the
convergence of the error between the exact and estimated solution by considering the
regularization level in the estimated solution by using the initial data for selecting the
parameter of regularization. In [22], the author presents the Landweber iterative method
and accelerates it by using a sparse Jacobian-based reconstruction method.

This article presents an update of the classical Landweber iteration. We use a new
reversible operator to increase iteration convergence. We also compared the proposed
iterative method with the classical Landweber iteration. A numerical experiment illustrates
the effectiveness of this method through an application solving the heat equation’s inverse
boundary value problem.

2. Problem Statement

In general, the generic form used to explain numerical solutions to ill-posed problems
is applied to the following linear operator equation for the first kind:

Au = f , (1)

where A is a linear positive compact operator and act from a Hilbert space H to the same
H. We also assume that u, f ∈ H and the operator compressed, self-adjoint, and affirmative
description A : H → H . In particular, the operator A is severely ill-conditioned and may
be rank-deficient. Operators of this kind arise from the discretization of linear ill-posed
problems, such as Fredholm or Volterra integral equations of the first kind.

Right-hand side data are given with some error or measurement noise, which is typical
of practical studies. Considering the following scenario to depict this general situation:
assume the right-hand side of the problem (1) given with some error level δ. Instead of f ,
we have fδ with the following norm equation:

‖ fδ − f ‖ ≤ δ, (2)

We pose a problem that requires finding the estimated solution for (1) and (2) with
some input data or information provided in the right-hand side fδ. We called uα an
estimated solution, and the parameter α presented the regularization parameter and this
parameter linked to the error level δ, i.e., α = α(δ), and we calculated the error estimate
‖uδ − u‖.

The definition of steady ways for addressing the ill-posed problems are dependent
on the usage of a priori data concerning the inexactness of the incoming data. Once the
right-hand side is given with some error, we now attempt to solve following problem:

Auα = fδ, (3)

Variational methods, as an alternative way of solving the problem (3), compute mini-
mizing the norm for the residual form r = Auα − fδ, or the functional discrepancy method
as the following form:

J0(uα) = ‖Auα − fδ‖2. (4)

There are varieties of possible solutions to the problem that satisfy Equation (3), which
are exact in the face of some discrepancy δ. Considering the well-posed problems required
the identification of the class of wanted solutions and clearly giving a priori restrictions on
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the solution. We are attentive to the bounded solutions for the given problem (1) and (2),
hence, the a priori is constrained with the following equation:

‖u‖ ≤ M, (5)

where M = const > 0.

3. Method of Iterative Regularization

In order to solve the problems with ill-posed definitions, the iteration methods have
been successfully used. By calling the problem (1), we will discuss the specific features
in of the updated iteration Landweber method below. The ill-posedness behaviors of the
inverse problems are connected to the fact that the eigenvalues of operator A, shown in
reducing order (λ1 ≥ λ2 ≥ . . . ≥ λk ≥ . . . ≥ 0), tend to zero for k→ ∞ .

The general form of the iteration method for solving Equation (3)with approximately
given input data, can be rewritten as following form:

uk+1 = uk + αk ATE( fδ − Auk) (6)

in this method, called the two-layer iteration method, the αk is defined as a relaxation
parameter and E is a positive definite operator. E is equivalent to the identity operator, the
(6) classical Landweber iteration method [23].

There are several well-known methods that can be driven in the form of (3) by se-
lecting the operator E. Cimmino’s method [24] is E = 1

m diag
(

1/‖ai‖2
)

, where ai rep-
resents the ith row of A. The CAV method [25] used the following form of operator E

E = diag

(
1/

n
∑

j=1
Nja2

ij

)
, where Nj is the number of non-zeroes in the jth column of A. We

define the new type of the Landweber iteration method by using E as follows:

E = Q = AP−1 (7)

Q is unitary operator and P =
√

AAT , by using the polar decomposition of the
operator A:

A = QP, (8)

Now the new version of the iteration method is shown in the following iterative
equation:

uk+1 = uk + αk AQT( fδ − Auk) (9)

Depending on the specific method, iteration method (9) can resolve the variational prob-
lem by the minimization action of the functional discrepancy method J0(uα) = ‖Auα − fδ‖2.
We defined the MLI algorithm (Algorithm 1), which represented the Modified-Landweber
iterative (MLI).

Algorithm 1 MLI (number iteration)

1. u0 = 0, zeros vector .
2. [U, ∑, V] = SVD(A)

3. Q = UVT

4. uk = u0

5. f or k = 1, 2, 3, . . . , iteration times

a. uk = uk + αAQT( fδ − Auk)

b. variational = ‖Auk − fδ‖
2

6. End loop
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The classical Landweber method can be defined by the following algorithm (Algorithm
2), and we called it the Classical-Landweber iterative (CLI) method.

Algorithm 2 CLI (number of iteration)

1. u0 = 0, zeros vector .
2. uk = u0

3. f or k = 1, 2, 3, . . . iteration times

a. uk = uk + αAT( fδ − Auk)

b. variational = ‖Auk − fδ‖
2

4. End loop

In order to make the iteration method in (9) effective, it is critical to invent faithful stop-
ping criteria. This method consists of reducing the given problem to the variational problem:

‖Aun(δ) − fδ‖2 ≤ δ2. (10)

The iterating process is much longer with the noise input data fδ, which leads to an
iterative solution with a loss of resolution uk. This phenomenon is called semi-convergence
and is presented by Natterer [26].

4. Analysis of Convergence of Iterations

In this section, we consider Theorem 1 in [27]. To understand the convergence behavior
of the iteration technique, we took a closer look at the errors between the estimated and
exact solutions by using the constant parameter αk = α.

We called u∗ as the unique solution for Equation (4).

Theorem 1. Let αk = α for k ≥ 0. Then, the iterates of (9) converge to a solution (called uα) of (4)
if and only if 0 < α < 2/σ2

1 with σ1 the largest singular value of
√

QT A.

Proof of Theorem 1. Assume u0 = 0. Let B = AQT A and c = AQT fδ.
Then using (9), we obtain:

uk = (I − αB)uk−1 + αc =

= α
k−1
∑

j=0
(I − αB)k−j−1c.

We assume that the singular value decomposition (SVD) for
√

QT A = U ∑ VT . We
represent B in the following form:

B =

(√
QT A

)T(√
QT A

)
= V

T

∑ ∑ VT , (11)

where ∑T ∑ = diag(σ2
1 , σ2

2 , . . . , σ2
p , 0 . . . , 0), σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, and p = rank(A).

Using (11), we have
k−1

∑
j=0

(I − αB)k−j−1 = VEkVT , (12)

where

Ek = diag

1− (1− ασ2
1 )

k

ασ2
1

, . . . ,
1− (1− ασ2

p)
k

ασ2
p

, k, . . . k

. (13)
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It follows that:

uk = V(αEk)VTc = V(αEk)
T

∑ UT
√

QT fδ =
p

∑
i

{
1− (1− ασ2

i )
k}uT

i

√
QT fδ

σi
vi. (14)

with SVD
u∗ = VEUT

√
QT fδ, (15)

where

E = diag
(

1
σ1

, . . . ,
1
σp

, 0, . . . , 0
)

. (16)

Note that if
∣∣1− ασ2

i

∣∣ < 1, if |1− ασi| < 1, for i = 1, 2, . . . , p, i.e., 0 < α < 2
σ2

1
, we find

lim
k→∞

(
αEk

T

∑
)

= E.

This completes the proof. �

5. Number of Iterations

We need to formulate the conditions under which MLI (9) provides the estimated
solution for problem (1) and (2) after the number of iterations n(δ).

Theorem 2. Let the number of iterations in MLI (9) n(δ)→ ∞ and n(δ)δ→ 0 as δ→ 0 .
Then,‖un(δ) − u‖ → 0 such that δ→ 0 .

Proof of Theorem 2. We represent the inexactness at the nth iteration as zn = un − u. By
(9), we obtain:

un =
(

I − αAQT
)n

u0 +
n−1

∑
k=0

(
I − αAQT

)k
α fδ. (17)

where u0 some initial estimate.
In order to find the exact solution, we can use the following representation:

u =
(

I − αAQT
)n

u +
n−1

∑
k=0

(
I − αAQT

)k
α f .

This illustration corresponds to the iteration solution for problem (1) in which the
initial approximation coincides with the exact solution.

With equality (17) taken into account, for the inexactness, we obtain the following:

zn = z(1)n + z(2)n (18)

where z(1)n =
(

I − αAQT)nz0, z(2)n =
n−1
∑

k=0

(
I − αAQT)k

α( fδ − f ), with z0 = u0 − u being

inexactness. The first term z(1)n in (18) is in the iteration method, and the term z(2)n is related
to the inexactness on the input data of (1).

Under 0 < α < 2
γ , where γ > 0, we take

‖I − αAQT‖ ≤ 1. (19)

In order to verify this variation, we have passed from difference (19) to the equivalent
inequality (

I − εQAT
)(

I − αAQT
)
≤ I
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where A self-adjoint and positive definition with the estimate AQT > γI taken into account,
we obtain: (

I − αQAT)(I − αAQT)− I =
= α

√
AQT

(
αAQT − 2I

)√
AQT ≤ α

√
AQT(αγ− 2)

√
AQT ≤ 0.

provided 0 < α < 2
γ is satisfied.

Taking inequality (19), we obtained:

z(2)n =
n−1

∑
k=0
‖I − αAQT‖k

α‖ fδ − f ‖ ≤ nαδ. (20)

The estimate z(1)n deserves a more detailed study. To begin with, assume that z0 ∈ H.
Such a situation is met, for instance, with the initial approximation u0 = 0 in the solution to
problems (1) and (2) in class (5). Let us show that s(n) = ‖z(1)n ‖ → 0 for n→ ∞ . We use
the representation:

s2(n) =
∞

∑
i=1

(1− ασi)
2n
(

z0, wi

)2
.

For any small ε > 0, can found N such that

∞

∑
i=N+1

(
z0, wi

)2
≤ ε

2
.

By |1− ασi| < 1, we obtain:

s2(n) ≤
N

∑
i=1

(1− ασi)
2n
(

z0, wi

)2
+

∞

∑
i=N+1

(
z0, wi

)2
.

In case of sufficiently large N, for the first term we obtain the following:

N

∑
i=1

(1− ασi)
2n
(

z0, wi

)2
≤ ε

2
.

The substitution of (20) into (18) yields the estimate

‖zn‖ ≤ nαδ + s(n). (21)

such that s(n)→ 0 for n→ ∞ . Estimating (21) completes the proof. �

In the updated iteration method (9), the number of iterations matched the inexactness
input data; also the input data or right-hand side serves the regularization parameter.

6. Estimating the Rate of Convergence

We know the convergence without needing the discovery the rate. By narrowing
the class of a priori limitations of the solution, we define the following theorem for the
estimated solution as an explicit function of the inexactness of the input data.

Consider the iterative method (9) under the more stringent constraints of the iterative
parameter,

0 < α < 2/σ2
1 , (22)

Theorem 3. Suppose that the exact solution of problem (3) belongs to the class

‖A−pu‖ ≤ M, 0 < p < ∞. (23)
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Then, for the inaccuracy of the iteration method (9) with u0 = 0 their holds the estimate

‖zn‖ ≤ nαδ + M1n−p, M1 = M1(α, p, M). (24)

Proof of Theorem 3. By condition (23), it is necessary to know the quantity of s(n) in (21).
The iterations number n determines the outcome.

With u0 = 0, we find z0 = u, by using the above, we find:

z(1)n =
∞

∑
i=1

σ
p
i (1− ασi)

n (u, wi)

σ
p
i

wi.

After that, in view of (23) we find:

s(n) ≤ max
σi

∞

∑
i=1

σ
p
i |1− ασi|n‖A−pu‖. (25)

Under constraint (22) on the iteration parameter, we have o < ασi ≤ 1 and, hence,

s(n) ≤ max
σi

σ
p
i |1− ασi|n ≤

1
αp max

0<η<1
χ(η),

where χ(η) = ηp(1− η)n. The function χ(η) attains its maximum at the point

η = η∗ =
p

p + n

and,

χ(η∗) =
( p

n

)p
(

1− p
p + n

)p+n
<

pp

np exp(−p).

Replace the (25) solutions in estimate (24), in which the constant

M1 =
pp

αp exp(−p)M

depends on p, α and M, and does not depend on n. Minimizing the input data of (24) lets
us formulate the stop criterion:

nopt =

(
pM1

α

)1/(p+1)
δ−1/(p+1), (26)

i.e., n(δ) = ϑ(δ−1/(p+1)). Here, for the inexactness of the estimated solution, we obtain the
following estimation

‖znopt‖ ≤ M2δp/(p+1) (27)

with

M2 = α

(
pM1

α

)1/(p+1)
+ M1

(
pM1

α

)−p/(p+1)
.

The approximation of (27) establishes the direct requirement of the rate at which the
approximated solution converges to the exact solution on inexactness δ and on the exact
solution’s smoothness (parameter p). �



Mathematics 2022, 10, 2798 8 of 13

7. Numerical Results

We considered the inverse boundary value problem found in [28]:

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2 ; 0 < x < 1, 0 < t ≤ T, (28)

u(x, 0) = 0; 0 ≤ x ≤ 1, (29)

∂u(0, t)
∂x

= 0; 0 < t ≤ T, (30)

u(1, t) = u(t); 0 < t ≤ T, (31)

supposing that the u(t) is a function such that

u(t) ∈ H4[0, T], u(0) = u′(0) = u′′ (0) = u′′ (T) = u′′ (T) = 0, (32)

and
T∫
0
|u′′′ (t)|2dt ≤ r2, r is the identified number. By applying the separation of variables

method, we achieve:

u(x0, t) =
∞

∑
n=0

an(t)cos((n + 0.5)πx0) + u(t), (33)

where x0 ∈ (0, 1), t ∈ [0, T] and

an(t) =
2e−(n+0.5)2π2t

(n + 0.5)π

t∫
0

h′(τ)e(n+0.5)2π2τdτ, (34)

Integrating by two parts for the right-hand side of (34), we obtain:

an(t) = 2
(n+0.5)π

t∫
0

u′′′ (τ)e−(n+0.5)2π2(t−τ)dτ + 2
(n+0.5)3π3 u′(t)

−
[

2
(n+0.5)3π3 u′(0) + 2

(n+0.5)5π5 u′′ (t) + 2
(n+0.5)5π5 u′′ (0)

] , (35)

an(t) = 2
(n+0.5)5π5

t∫
0

u′′′ (τ)e−(n+0.5)2π2(t−τ)dτ

−
[

2
(n+0.5)3π3 u′(0) + 2

(n+0.5)5π5 u′′ (0)
] , (36)

where u′(0) = u′′ (0) = 0, by (32) and

an(t) =
2

(n + 0.5)5π5

t∫
0

u′′′ (τ)e−(n+0.5)2π2(t−τ)dτ, (37)

From (33) and (37) we find the next integral equation for the first kind:

f (t) = u(x0, t) = u(t) +
t∫

0

∞

∑
n=0

2cos(n + 0.5)πx0

(n + 0.5)5π5
e−(n+0.5)2π2(t−τ)g(τ)dτ, (38)

where u′′′ (τ) = g(τ). We define the operator P : L2[a, b] → L2[a, b] by:

u(t) = Pg(τ) =
t∫

0

(t− τ)2

2
g(τ)dτ, g(τ), Pg(τ) ∈ L2[0, T], (39)
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We used the discretization algorithm in [29] and applied it in [30], by specifying the
derivative for the kernel we achieve the following:

Au(t) =
t∫

0

K(t, τ)g(τ)dτ = f (t), t ∈ [0, T], (40)

where K(t, τ) = (t−τ)2

2 +
∞
∑

n=0

2cos(n+0.5)πx0

(n+0.5)5π5 e−(n+0.5)2π2(t−τ).

The operator A is an infinite-dimensional operator. The next step applies the dis-
cretization algorithm to the integral Equation (40) and converts the operator A to the
finite-dimension operator An, where An → A for n→ ∞, and for operator P, there is an
operator Pn, where Pn → P for n→ ∞,

Ki(t) = K(τi, t), (41)

Ki(t); τi ≤ τ ≤ τi+1, t ∈ [0, T], i = 0, 1, . . . , n− 1, (42)

Ki
(
tj
)
; τi ≤ τ ≤ τi+1, tj ≤ t ≤ tj+1, i = 0, 1, . . . , n− 1, j = 0, 1 . . . , n− 1, (43)

Kn(t, τ) = Ki
(
tj
)
, (44)

An[u(t)] =
t∫

0

Kn(t, τ)g(τ)dτ = f (t), t ∈ [0, T], (45)

Ki
(
tj
)
=

{
K
(
τi, tj

)
i ≤ j

0 i > j
. (46)

From the above, we convert the system of differential Equations (28)–(32) to the linear
operator equation Anu = fn, where u = Png, by reformulating the differential equation to
an integral equation by using the separation of variables and applying the discretization
algorithm to convert the integral equation into a system of linear algebra equations or linear
operator equations.

An


g(τ0)
g(τ1)

...
g(τn−1)

 =


f (t0)
f (t2)

...
f (tn−1)

, (47)

where

An =
1
n


K(τ0, t0) 0
K(τ0, t1) K(τ1, t1)

. . . 0

. . . 0
...

...
K(τ0, tn−1) K(τ1, tn−1)

. . .
...

. . . K(τn−1, tn−1)

, (48)

where An = AnPn
The operator An in (43) is a non-injective operator, because it has the triangular

property [28].
Considering the above problem, we need to find the function u(t) ∈ H4[0, T]. The

real solution, and the u(x0, t) = f (t) represented the input function, where the x0 ∈
(0, 1), t ∈ [0, T], x0 = 0.5 and T = 1. In [31], we prepared a case study using MATLAB code.
First of all, the discretization algorithm was applied to obtain the operator, and by using
u(t) = sin(π/2 ∗ t), we obtained the vector f . We then add some noise, as explained in the
code for obtaining the vector fδ. Finally, we computed the SVD for operator A, and used it
in the MLI and CLI algorithms to obtain the approximation solutions uα.

Algorithm 1 MLI (number iteration): MLI the value of the regularization parameter
that was used with 1000 iterations (see Figure 1).



Mathematics 2022, 10, 2798 10 of 13

Mathematics 2022, 10, 2798 10 of 13 
 

 

Considering the above problem, we need to find the function ( )  4? ,u t H T . The 

real solution, and the ( ) ( )0? ?u x t f t=  represented the input function, where the 

( )  0 0,1 , 0,x t T  , 
0 0.5x =  and 1T = . In [31],, we prepared a case study using 

MATLAB code. First of all, the discretization algorithm was applied to obtain the opera-

tor, and by using ( )  sin( 2* )u t t= , we obtained the vector f . We then add some noise, 

as explained in the code for obtaining the vector f . Finally, we computed the SVD for 

operator A , and used it in the MLI and CLI algorithms to obtain the approximation solu-

tions u . 

Algorithm 1 MLI (number iteration): MLI the value of the regularization parameter 

that was used with 1000 iterations (see Figure 1).   

  

Figure 1. Approximation solution by MLI. 

Algorithm 2 CLI (number of iteration): the value of regularization parameter with 

1000 iterations (see Figure 2). 

 

Figure 2. Approximation solution by CLI. 

In Figure 3, the iterations increased to 10,000.  

Figure 1. Approximation solution by MLI.

Algorithm 2 CLI (number of iteration): the value of regularization parameter with
1000 iterations (see Figure 2).

Mathematics 2022, 10, 2798 10 of 13 
 

 

Considering the above problem, we need to find the function ( )  4? ,u t H T . The 

real solution, and the ( ) ( )0? ?u x t f t=  represented the input function, where the 

( )  0 0,1 , 0,x t T  , 
0 0.5x =  and 1T = . In [31],, we prepared a case study using 

MATLAB code. First of all, the discretization algorithm was applied to obtain the opera-

tor, and by using ( )  sin( 2* )u t t= , we obtained the vector f . We then add some noise, 

as explained in the code for obtaining the vector f . Finally, we computed the SVD for 

operator A , and used it in the MLI and CLI algorithms to obtain the approximation solu-

tions u . 

Algorithm 1 MLI (number iteration): MLI the value of the regularization parameter 

that was used with 1000 iterations (see Figure 1).   

  

Figure 1. Approximation solution by MLI. 

Algorithm 2 CLI (number of iteration): the value of regularization parameter with 

1000 iterations (see Figure 2). 

 

Figure 2. Approximation solution by CLI. 

In Figure 3, the iterations increased to 10,000.  

Figure 2. Approximation solution by CLI.

In Figure 3, the iterations increased to 10,000.



Mathematics 2022, 10, 2798 11 of 13

Mathematics 2022, 10, 2798 11 of 13 
 

 

  

(a) (b) 

Figure 3. Approximation solution with 10,000 iterations: (a) MLI algorithm; (b) CLI algorithm. 

In Figure 4, the iterations increased to 20,000.  

  

(a) (b) 

Figure 4. Approximation solution with 20,000 iterations: (a) MLI algorithm; (b) CLI algorithm. 

8. Conclusions Remarks and Observations 

This paper defined algorithms that solve ill-posed inverse problems by using an iter-

ative regularization method (Landweber iterative type). The regularization parameter 

was chosen by considering the iteration method that was most consistent with the real 

solution. The residual method was used as an analysis method to rate the last iteration’s 

convergence. We observed that the minimum of the discrepancy is extremely unstable 

with respect to data perturbations on the right-hand side of the linear operator equation. 

It is clear that the updated Landweber iteration algorithm obtained a good approximation 

solution compared with the classical Landweber method. That means that our updated 

Landweber method successfully fixed this instability in the discrepancy method. The sug-

gested algorithms successfully solve the inverse boundary value problem for the heat-

conducting problem. 

  

Figure 3. Approximation solution with 10,000 iterations: (a) MLI algorithm; (b) CLI algorithm.

In Figure 4, the iterations increased to 20,000.

Mathematics 2022, 10, 2798 11 of 13 
 

 

  

(a) (b) 

Figure 3. Approximation solution with 10,000 iterations: (a) MLI algorithm; (b) CLI algorithm. 

In Figure 4, the iterations increased to 20,000.  

  

(a) (b) 

Figure 4. Approximation solution with 20,000 iterations: (a) MLI algorithm; (b) CLI algorithm. 

8. Conclusions Remarks and Observations 

This paper defined algorithms that solve ill-posed inverse problems by using an iter-

ative regularization method (Landweber iterative type). The regularization parameter 

was chosen by considering the iteration method that was most consistent with the real 

solution. The residual method was used as an analysis method to rate the last iteration’s 

convergence. We observed that the minimum of the discrepancy is extremely unstable 

with respect to data perturbations on the right-hand side of the linear operator equation. 

It is clear that the updated Landweber iteration algorithm obtained a good approximation 

solution compared with the classical Landweber method. That means that our updated 

Landweber method successfully fixed this instability in the discrepancy method. The sug-

gested algorithms successfully solve the inverse boundary value problem for the heat-

conducting problem. 

  

Figure 4. Approximation solution with 20,000 iterations: (a) MLI algorithm; (b) CLI algorithm.

8. Conclusions Remarks and Observations

This paper defined algorithms that solve ill-posed inverse problems by using an
iterative regularization method (Landweber iterative type). The regularization parameter
was chosen by considering the iteration method that was most consistent with the real
solution. The residual method was used as an analysis method to rate the last iteration’s
convergence. We observed that the minimum of the discrepancy is extremely unstable
with respect to data perturbations on the right-hand side of the linear operator equation. It
is clear that the updated Landweber iteration algorithm obtained a good approximation
solution compared with the classical Landweber method. That means that our updated
Landweber method successfully fixed this instability in the discrepancy method. The
suggested algorithms successfully solve the inverse boundary value problem for the heat-
conducting problem.
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