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Abstract: To achieve a good trade-off between the data-embedding payload and the data-embedding
distortion, mainstream reversible data hiding (RDH) algorithms perform data embedding on a
well-built prediction error histogram. This requires us to design a good predictor to determine the
prediction errors of cover elements and find a good strategy to construct an ordered prediction error
sequence to be embedded. However, many existing RDH algorithms use a fixed predictor throughout
the prediction process, which does not take into account the statistical characteristics of local context.
Moreover, during the construction of the prediction error sequence, these algorithms ignore the
fact that adjacent cover elements may have the identical priority of data embedding. As a result,
there is still room for improving the payload-distortion performance. Motivated by this insight, in
this article, we propose a new content prediction and selection strategy for efficient RDH in digital
images to provide better payload-distortion performance. The core idea is to construct multiple
connected components for a given cover image so that the prediction errors of the cover pixels within
a connected component are close to each other. Accordingly, the most suitable connected components
can be preferentially used for data embedding. Moreover, the prediction errors of the cover pixels
are adaptively adjusted according to their local context, allowing a relatively sharp prediction error
histogram to be constructed. Experimental results validate that the proposed method is significantly
superior to some advanced works regarding payload-distortion performance, demonstrating the
practicality of our method.

Keywords: reversible watermarking; reversible data hiding; graph optimization; prediction error

MSC: 94A08

1. Introduction

As an interdisciplinary research field, information hiding (IH) is generally modeled as
a covert communication problem involving three participants: Alice, Bob and Eve [1]. Alice
plays the role of the data sender. Bob plays the role of the data receiver. However, Eve serves
as the attacker. Given a digital media object such as digital video and image, Alice first
embeds a secret message into the digital media object (also called cover) by modifying the
content of the cover without introducing noticeable artifacts. The resulting object concealing
the secret message will be sent to Bob via an insecure channel that will be monitored by Eve.
Eve will attempt to detect the existence of the secret message within the conveyed object or
alter the conveyed object to remove the possibly embedded information. Once Bob receives
the probably altered object containing hidden information, he will try to extract the secret
message from the received object. Thus, IH is successfully realized if the secret message can
be extracted without error. Otherwise, it is deemed failed. Compared with cryptography
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that may leave noticeable marks on the encrypted data, IH even conceals the existence
of the present communication activity, which has good potential in applications and will
become increasingly important in modern information security [2,3].

For IH, one of the most important requirements is that the difference between the
cover media and the media containing secret information caused by the data embedding
operation should be low so that any adversary will not notice the existence of the secret
message within the embedded object [4]. Along this line, many IH algorithms have been
introduced in the past two decades [5–8]. Given a secret payload to be embedded, most
IH algorithms either embed the secret payload by minimizing a well-designed distortion
function or embed the secret payload by preserving the selective model of the cover
source [9]. On the other hand, for a pre-specified distortion, we expect to embed as many
secret bits as possible. This is typically referred to as the payload-distortion problem.
Nevertheless, these algorithms inevitably distort the original cover content. In other words,
though the secret message can be successfully extracted without any error, the original
cover media cannot be perfectly rebuilt from the object containing the secret message,
which is not applicable to sensitive application scenarios that require no degradation of the
original cover object [10]. This has motivated researchers to study reversible information
hiding (RIH) [11] or say reversible data hiding (RDH) [12], reversible watermarking [13] to
ensure that both the secret message and the original cover media can be reconstructed at
the receiver side. Many RDH algorithms can be found in the literature such as [13–20].

RDH can be applied to various cover sources. For example, due to the popularity over
social networks and the ease of handling, digital imagery is still one of the most popular
sources for RDH. Other cover sources such as video sequences [21], speech signals [22] and
texts [23] are also of increasing interest to researchers recently due to the fast development
of multimedia technologies and social networking services. From the viewpoint of the
data embedding mechanism, most advanced RDH algorithms use the so-called prediction
errors (PEs) of the elements in the cover to be embedded to realize RDH. There are two
main reasons [14]. First, the PEs are noise-like, meaning that modifying them will not
produce obvious artifacts of the cover since the prediction process significantly reduces the
impact caused by the cover content. Second, the PEs are collected to construct a prediction
error histogram (PEH), which is a pooled vector that can be easily handled for RDH based
on histogram shifting (HS) [12] or its variants [13,24–27]. In terms of data embedding
positions, mainstream RDH works could be roughly divided into spatial domain and
transform domain. The former uses the values of spatial pixels to carry secret bits, whereas
the latter often uses the transformed values as the cover elements such as discrete cosine
transform (DCT) coefficients to carry secret bits. In brief summary, regardless of the data
embedding domain, exploiting PEs for RDH is efficient.

From the viewpoint of system design, many existing PE-based works mainly consist
of five steps, i.e., content prediction, content selection, data embedding, data extraction and cover
reconstruction [14]. Taking a gray-scale image as the cover for example, content prediction
aims to predict the pixels and obtain the PEs. For content selection, its target is to sort
the collected PEs by a local complexity function so that smooth pixels are embedded
preferentially since smooth pixels have a small PE that can result in superior payload-
distortion performance. Thereafter, the aforementioned HS or its variants can be applied to
the sorted PE sequence to embed secret bits. Once the secret bits are embedded, the resulting
new image (or marked image) will be sent to the receiver, who will perform secret data
extraction and cover image reconstruction. Extracting the embedded secret data and
recovering the original image can be roughly viewed as an inverse process of the data hider.
Therefore, it is straightforward to draw out that, in order to provide superior payload-
distortion performance, the content prediction, content selection and data embedding
procedures can be optimized. For content prediction, it is required for us to design a
predictor that can accurately estimate the pixels to be embedded. Since it is hard to model
all natural images, even a well-designed predictor cannot predict all pixels accurately,
e.g., many existing RDH algorithms use a fixed predictor for content prediction, which does
not take into account the statistical characteristics of local context. Therefore, a trade-off
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strategy is to further select the pixels with a small PE out for data embedding preferentially,
which is referred to as content selection. However, during the process of constructing an
ordered sequence of PEs, many existing algorithms ignore the fact that adjacent PEs may
have the identical priority of data embedding. As a result, there is still room for improving
the payload-distortion performance. In addition, for data embedding, once the operation
is pre-specified, we should further optimize the data embedding parameters so that the
distortion will be low for a given payload.

Motivated by the above analysis, in this article, we are to study the optimization of
content prediction and content selection so that the payload-distortion performance can
be further improved. Meanwhile, since we use the PEs of image pixels to carry secret
data, the optimized HS operation is used. In the proposed work, the pixels are adaptively
predicted according to their local context, leading to a sharp prediction error histogram
to be embedded. Furthermore, the main idea of content selection is to construct a graph
containing multiple connected components for the cover image so that the PEs of the pixels
within a connected component are close to each other. Accordingly, the sorted connected
components can be used for carrying additional information. Experimental results have
demonstrated that the proposed method outperforms a part of advanced works, displaying
superiority and applicability of the proposed method.

The remainder of this article is organized as follows. First, we detail the proposed
method in Section 2. Experiments and analysis are then provided in Section 3. Finally, we
conclude this work and provide discussion in Section 4.

2. Proposed Method

In this section, we first describe the general framework of the proposed method. Then,
we will introduce each important part in detail. Before a detailed introduction, we list all
the important symbols used in this section and their meaning in Table 1.

Table 1. Important symbols and their meaning.

Symbol Meaning

x cover image (gray-scale)
m secret message
k secret key
y marked image
h the height of the cover image
w the width of the cover image

xi,j ∈ x the pixel at position (i, j) whose value is xi,j
D the adjacent set
x̂i,j the prediction value of xi,j ∈ x
ei,j the prediction error of xi,j ∈ x

G(V, E) a non-directed graph whose node-set is V and edge-set is
E

Td an integer threshold

2.1. General Framework

Throughout this paper, gray-scale images are used to act as the cover image. Figure 1
shows the general technical framework for the proposed algorithm. We describe it as
follows. We first pre-process the given cover image adjusting all pixel values into the usable
range to avoid the pixel overflow and pixel underflow problem during pixel modification.
The modified pixels should be recorded to construct a so-called location map which will be
self-embedded into the cover image together with the secret data. Moreover, we self-embed
some embedding parameters into the cover image so that the receiver has the ability to
extract secret data and recover the original image.
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Figure 1. General framework for the proposed method.

After pre-processing, we predict the cover pixels to be embedded based on the local
context, by which we can generate a set of PEs that will be used for carrying secret bits.
In order to provide good payload-distortion performance, we construct a graph, whose
nodes correspond to the pixels to be embedded and edges represent the adjacent relation-
ship between pixels. We sort the PEs by determining the connected components of the
graph and a local complexity function. Therefore, by applying optimized HS, we embed
the secret data into the sorted PEs. For the data receiver, they first extract the embedding
parameters from the marked image and then perform an inverse process of the data hider
to reconstruct the embedded information and the original cover content without error.
In this way, efficient RDH can be realized. Below, we provide the details.

2.2. Pre-Processing and Pixel Prediction

Let x denote a gray-scale image whose size is denoted by h× w, where each pixel
xi,j ∈ I = {0, 1, . . . , 255}. Our mission is to embed a secret binary stream m ∈ {0, 1}l into
x to generate a marked image y ∈ Ih×w such that the distortion between y and x is low.
In addition, both m and x can be reconstructed from y without any error. Mathematically,
we have

y = Embed(x, m, k) (1)

and
m, x = Extract(y, k), (2)

where k represents the secret key shared between the hider and the receiver.
The proposed method modifies the spatial pixels to embed secret data. In order to

avoid the above-mentioned pixel underflow and pixel overflow problem, the values of
boundary pixels to be embedded should be adjusted into the usable range. Since each
pixel is modified by {−1, 0,+1} during data embedding, a boundary pixel always has a
value of 0 or 255. Therefore, we need to modify each pixel with a value of 0 or 255 as a
pixel with a value of 1 or 254 to avoid the pixel underflow and pixel overflow problem.
To ensure reversibility, the positions and original values of these boundary pixels are
recorded to construct a location map which will be compressed by an efficient lossless
compression technique as a binary stream to act as the side information that will be self-
embedded into the cover image. This strategy has been applied by many RDH algorithms
such as [13,16,17]. The losslessly compressed location map can be considered as a part of
the secret message. Since the number of boundary pixels in a natural image is very small,
the size of the losslessly compressed location map is also very small. This indicates that the
impact of the losslessly compressed location map on the pure embedding payload can be
ignored. In addition, the data embedding parameters should be self-embedded into the
cover image in advance so that the data receiver is capable of extracting the secret data and
reconstructing the original image. This can be achieved by using the least significant bits
(LSBs) of some specified pixels to store the parameters. These specified pixels should be
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unchanged in the subsequent process. The original LSBs of these pixels should be recorded
and embedded to ensure reversibility [14].

Given the cover image x, we divide the pixels to be embedded in x into two disjoint
sets S0 and S1. The pixels in S0 will be used to predict the pixels in S1. The pixels in S1
will be used for embedding secret data. Since the data embedding operation is reversible,
once S1 has been embedded, we can further use the (modified) pixels in S1 to predict the
pixels in S0. Thus, the pixels in S0 can be used thereafter for data embedding. Without the
loss of generalization, in the following, we will use S0 for pixel prediction and S1 for data
embedding unless otherwise specified. It is noted that when we use S0 to predict S1, S0
should be unchanged during the process of embedding secret data into S1, and vice versa.
We are free to determine S0 and S1. In this paper, S0 and S1 are determined as:

Sb = {xi,j ∈ x | (i + j) mod 2 = b}. (3)

Many existing RDH algorithms use a fixed predictor for pixel prediction, which does
not take into account the difference between different local contexts and therefore may not
accurately predict the pixels. In this paper, we propose a content-adaptive strategy for pixel
prediction. Suppose that the pixels in S0 are used to predict the pixels in S1, for each pixel
xi,j ∈ S1, as shown in Figure 2, we determine three candidate prediction values by:

x̂i,j,0 =

⌊ xi,j−1 + xi,j+1

2
+ 0.5

⌋
, (4)

x̂i,j,1 =

⌊ xi−1,j + xi+1,j

2
+ 0.5

⌋
, (5)

x̂i,j,2 =

⌊ xi,j−1 + xi−1,j + xi,j+1 + xi+1,j

4
+ 0.5

⌋
, (6)

where bxc returns the largest integer that is no more than x. The operation of “+0.5” is
to adjust the prediction value to the corresponding nearest integer. Taking Equation (4)
for example, if (xi,j−1 + xi,j+1)/2 = 10.7, then x̂i,j,0 will be equal to 11, rather than 10.
The final prediction value of xi,j, denoted by x̂i,j, is selected from the candidate-set Pi,j =
{x̂i,j,0, x̂i,j,1, x̂i,j,2} according to the local context of xi,j which is shown in Figure 3. To this
end, we determine a priority for each element in Pi,j. In detail, let α(x̂i,j,k) denote the priority
of x̂i,j,k. We determine α(x̂i,j,k) by the following equation:

α(x̂i,j,k) = ∑
(dx,dy)∈D

δ(|x̂i,j,k − x̂i+dx,j+dy,k|, minr∈{0,1,2} |x̂i,j,r − x̂i+dx,j+dy,r|), (7)

where D = {(−1,−1), (−1, 1), (1,−1), (1, 1)}, δ(x, y) = 1 if x = y, and 0 otherwise.
The feasibility of Equation (7) relies on the fact that adjacent pixels in natural images
tend to have similar statistical characteristics, which inspires us to use the difference
between the prediction values of adjacent pixels to determine which pixels can be embedded
preferentially. In this way, x̂i,j can be finally determined by:

x̂i,j = arg maxx̂i,j,k
α(x̂i,j,k), (8)

where k ∈ {0, 1, 2}. Thus, the PE of xi,j is determined by:

ei,j = xi,j − x̂i,j, (9)

which will be used for carrying secret data in the subsequent process. It can be concluded
that the final prediction value of a pixel is actually selected from multiple candidate values,
resulting in that the final PE value of the pixel is essentially selected from multiple candidate
PE values as well. It can be said that, as an effective PE adjustment strategy, the proposed
method for determining PE is more applicable in practice compared with many existing
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methods that use a fixed predictor. This is why we term the proposed pixel prediction
method as prediction error adjustment.

(a)

i-1

i

i+1

j-1 j j+1

i-1

i

i+1

j-1 j j+1

i-1

i

i+1

j-1 j j+1

(b) (c)

Figure 2. Three prediction modes for the pixel xi,j ∈ x to be embedded: (a) Horizontal prediction,
(b) Vertical prediction, (c) Four-direction prediction. For example, in (a), xi,j will be predicted with
xi,j−1 and xi,j+1, and the prediction equation can be found in Equation (4).

(a)

i-1

i

i+1

j-1 j j+1

i-1

i

i+1

j-1 j j+1

(b)

i-1

i

i+1

j-1 j j+1

(c)

i-1

i

i+1

j-1 j j+1

(d)

Figure 3. The local context for the pixel xi,j ∈ x to be embedded: (a) (dx, dy) = (−1,−1),
(b) (dx, dy) = (−1, 1), (c) (dx, dy) = (1, 1), (d) (dx, dy) = (1,−1). Namely, four pixels xi−1,j−1,
xi−1,j+1, xi+1,j+1 and xi+1,j−1 constitute the local context of xi,j.

2.3. Connected Component Construction

After pre-processing and pixel prediction, we need to generate an ordered PE sequence
that will be used for data embedding. We propose a novel method to construct the PE
sequence. Suppose that S0 is used for pixel prediction and S1 is used for data embedding,
our goal is to sort the pixels in S1 so that a pixel sequence and the corresponding PE
sequence can be determined. We achieve this goal by applying connected component
construction. Clearly, for any two different pixels xi,j ∈ S1 and xi′ ,j′ ∈ S1, they are adjacent
to each other if we have

(i′ − i, j′ − j) ∈ D and |x̂i,j − x̂i′ ,j′ | ≤ Td, (10)

where Td is a small integer threshold that needs to be pre-determined. If we model
every pixel in S1 as a graph node and the adjacent relationship between two pixels as
a graph edge connecting the corresponding two graph nodes, we are able to construct
a graph. Without loss of generality, let G(V, E) be the constructed graph, where V =
{v1, v2, . . . , v|V|} denotes the node set and E = {(ui, vi)|ui ∈ V, vi ∈ V, ui 6= vi, 1 ≤
i ≤ |E|} represents the edge set. Clearly, G is a non-directed graph, which means that
two edges (u, v) ∈ E and (v, u) ∈ E are equivalent to each other. Figure 4 provides an
example for constructing G(V, E), from which it is easily inferred that G may contain
multiple connected components. A connected component of G is defined as such a sub-
graph G′(V′, E′), V′ ⊂ V, E′ ⊂ E that for any two different nodes u′ ∈ V′ and v′ ∈ V′,
there is at least one path between u′ and v′. The detailed pseudo-code to collect all the
connected components of G is shown in Algorithm 1, which is based on the classical
graph search technique called depth-first search (DFS). It can be inferred from Algorithm 1
that the computational complexity of collecting all the connected components given G is
O(|V|+ |E|), which is very efficient. Clearly, the number of connected components and the
number of nodes of a connected component are both affected by Td. Specifically, a larger Td
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allows more pixels to be adjacent to each other in the graph, resulting in that the number of
nodes in a connected component becomes larger, but the number of connected components
becomes smaller. A smaller Td makes the adjacent condition become more strict. As a
result, the number of nodes in a connected component becomes smaller, but the number of
connected components becomes larger.

10 17

10 12

9 20

9 12

19

18

1

2

3

4

1 2 3 4 5

10 195

x5,3

x1,2 x1,4

x2,1 x2,3 x2,5

x3,2 x3,4

x4,1 x4,3 x4,5

x5,2 x5,4

(a) (b)

Figure 4. An example for constructing the graph: (a) Cover image, (b) Constructed graph. The pixels
in the gray region are used for data embedding. The displayed values in the gray grids are the
prediction values of the corresponding pixels. By setting Td = 2, the corresponding graph is
constructed as shown in (b).

Algorithm 1 The pseudo-code to collect all the connected components

Input: G(V, E): a non-directed graph.
Output: t: the number of connected components, G1(V1, E1), G2(V2, E2), . . . , Gt(Vt, Et): all

the connected components.
1: Initialize t = 0
2: for each node v ∈ V do
3: if v has been previously processed then
4: Continue
5: end if
6: Set t = t + 1
7: Initialize Gt(Vt, Et) by Vt = {v} and Et = ∅
8: Call DFS(v, G(V, E), Gt(Vt, Et))
9: end for

10: Sub-procedure DFS(v, G(V, E), Gt(Vt, Et))
11: Mark v as processed
12: for each (v, v′) ∈ E do
13: if v′ has been previously processed then
14: Continue
15: end if
16: Update Vt = Vt ∪ {v′} and Et = Et ∪ {(v, v′)}
17: DFS(v′, G(V, E), Gt(Vt, Et))
18: end for
19: End sub-procedure
20: return t, G1(V1, E1), G2(V2, E2), . . . , Gt(Vt, Et)

By setting a small Td, the prediction values of most pixels in the same connected
component will be close to each other. Based on this, it is reasonable to further assume
that the original values of most pixels in the same connected component are close to each
other. This indicates that the PEs of most pixels within a connected component are close to
each other. Therefore, in order to generate an order PE sequence, it is natural to treat the
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pixels in the same connected component as equally important. For two different connected
components, the one containing more nodes (i.e., pixels) has a higher priority for data
embedding since the connected component containing more nodes is likely to have more
smooth pixels which is more helpful for data embedding [13,14].

Based on the above analysis, we determine all the connected components of G(V, E),
denoted by {G1(V1, E1), G2(V2, E2), . . . , Gt(Vt, Et)}, where t is the total number of con-
nected components. It is required that

V = ∪t
i=1Vi and E = ∪t

i=1Ei (11)

and
Vi ∩Vj = ∅ and Ei ∩ Ej = ∅, ∀1 ≤ i < j ≤ t. (12)

We sort the connected components according to the number of nodes of a graph.
To this end, we determine a permutation of {1, 2, . . . , t} as {r1, r2, . . . , rt} so that

|Vr1 | ≥ |Vr2 | ≥ · · · ≥ |Vrt |, (13)

where the r1-th connected component has the maximum number of nodes, whereas the rt-th
connected component has the minimum number of nodes. It is noted that {r1, r2, . . . , rt}
can be easily determined by sorting {|V1|, |V2|, . . . , |Vt|}, whose computational complexity
is O(t · log2t). In order to generate the ordered PE sequence, we process each of the sorted
connected components in an orderly manner. First of all, we initialize the PE sequence
as an empty sequence. Then, for each 1 ≤ i ≤ t, we sort all the pixels corresponding to
Gri (Vri , Eri ) according to the local complexity function defined in [13]. After sorting the
pixels, we orderly append the corresponding PEs to the end of the above PE sequence.
By processing all connected components, we can finally generate an ordered PE sequence.
Clearly, during the construction of the PE sequence, for each PE in the sequence, we can
easily identify the position of the corresponding pixel, which enables us to modify the corre-
sponding pixel value in the subsequent data embedding procedure. It is worth mentioning
that one may not use the local complexity function defined in [13] for sorting the PEs of a
connected component. It is free to define other local complexity functions to order the PEs.
In summary, sorting the PE sequence in this paper requires us to build a graph and find all
connected components. Therefore, we term this process as connected component construction.

2.4. Data Embedding

We are now able to embed secret data into the sorted PE sequence by applying HS.
Mathematically, we express the sorted PE sequence to be embedded as e = {ei}ne

i=1. Two
pairs of peak-zero bins, denoted by (lp, lz) and (rp, rz), where lz < lp < rp < rz, are used to
embed the secret data m into e by applying HS as mentioned above. Here, the peak bins
lp and rp are used to carry secret bits. The bins in range (lz, lp) ∪ (rp, rz) will be shifted to
ensure reversibility. The remaining bins will be unchanged. For a given bit b ∈ {0, 1} to be
embedded and a PE ei ∈ e, the PE carrying secret information êi (also called marked PE) is
determined by [28]:

êi =



ei + b, if ei = rp,
ei − b, if ei = lp,
ei + 1, if rp < ei < rz,
ei − 1, if lz < ei < lp,
ei, otherwise.

(14)

The sum of êi and the prediction value of the corresponding pixel will be used as the
final value of the marked pixel. We terminate the procedure of embedding secret bits when
the secret data m is entirely embedded. In other words, there must be a PE position ts ≤ ne
where all the PEs {ei | i > ts} are unchanged. It is necessary to optimize the two pairs
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of peak-zero bins so that the distortion introduced by embedding m into {ei}ts
i=1 can be

kept low. To this end, we apply the optimized method introduced in [16] for determining
the near-optimal (lp, lz) and (rp, rz). It is highlighted that one may exhaust all possible
(lp, lz) and (rp, rz) and find the optimal solution, given sufficient computational resources.
Nevertheless, suppose that we have found (lp, lz) and (rp, rz), as mentioned previously, we
should self-embed (lp, lz) and (rp, rz), as the data embedding parameters, into the cover
image so that the data receiver can extract them before extracting secret data and recovering
the cover image. In addition, the parameter Td in Equation (10) should be self-embedded
as well.

2.5. Data Extraction and Image Recovery

By extracting the data embedding parameters from the marked image, the data receiver
can successfully extract secret data from the marked image and meanwhile recover the
original cover image. First of all, the receiver performs pixel prediction and connected
component construction in the same way as the data hider, by which a sorted PE sequence
carrying the secret information can be obtained. Then, with the data embedding parameters,
the secret data can be fully extracted by processing the marked PEs in an orderly manner.
In this way, the original secret information and the side information can be retrieved.
With the side information, the cover image can be reconstructed without error since the
embedding operation is reversible.

2.6. Effectiveness and Complexity Analysis

The technical motivation behind many existing RDH algorithms is that embedding
secret bits into smoother pixels will result in better payload-distortion performance. This is
based on the fact that smoother pixels are likely to be predicted with a higher prediction
accuracy based on their local context. As a result, the prediction error histogram follows
a Gaussian-like distribution centered at zero, which is very helpful for data embedding.
In this paper, instead of directly exploiting smoother pixels for data embedding, we propose
a connected-component-based method to collect the pixels with close PEs for data embed-
ding preferentially. Though the PE values of the pixels in a connected component may
not be closer to zero compared with many existing works, the resultant prediction error
histogram is still Gaussian-like distributed, meaning that by optimizing the embedding
parameters, superior payload-distortion performance can be achieved. In other words,
the proposed method has better applicability and generalization ability.

The main contributions of the proposed method include two aspects. One is optimiza-
tion of the pixel predictor. Unlike many existing methods which use a fixed pixel predictor,
the proposed method predicts a pixel in such a way that the final prediction value of a
pixel is adaptively adjusted to the most suitable value according to the local context. As a
result, the prediction can be more accurate. Since only three prediction modes are used
in the proposed method and the local context of a pixel only consists of four neighboring
pixels, the complexity to determine the final prediction value for a single pixel is very low.
In other words, the overall complexity to determine all the prediction values is linearly
proportional to the number of pixels to be predicted, which is very suitable for practice.
On the other hand, as mentioned previously, given the graph G(V, E), the procedure of
constructing all the connected components requires a complexity of O(|V|+ |E|), which is
linearly proportional to the size of the node set and the size of the edge set. By using a small
Td, O(|V|+ |E|) can be reduced to O(k · |V|), where k is a small coefficient. In other words,
the complexity to determine all the connected components is also linearly proportional
to the number of pixels to be predicted. Therefore, based on the above analysis, it can be
concluded that the time complexity of the proposed method is low.

3. Performance Evaluation and Analysis

In this section, we conduct experiments for evaluating the performance of the proposed
method. To this end, we take six standard test images Airplane, Lena, Tiffany, Peppers, Baboon,
and Sailboat shown in Figure 5 varying from smooth to complex for simulation. The test
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images are all sized at 512× 512. Furthermore, all values of the pixels are in the range
[0, 255]. As described in the previous section, the proposed method divides the cover pixels
into two disjoint subsets S0 and S1. Both subsets can be used for data embedding. That is,
after data embedding with S1, S0 can be used for data embedding as well. Therefore, given
the secret data m (in the form of binary stream), we can use S1 to carry |m|/2 secret bits.
The remaining secret bits can be embedded into S0. This type of payload partition strategy
has been used in existing methods [13,16].

(a) (b) (c)

(d) (e) (f)

Figure 5. Six standard test images with a size of 512× 512: (a) Airplane, (b) Lena, (c) Tiffany, (d) Peppers,
(e) Baboon, and (f) Sailboat.

In order to demonstrate the superiority of the proposed method, we first show some
visual examples for the proposed method. Figure 6 shows the marked images of the test
images with an embedding rate of 10,000 bits and 20,000 bits. It can be seen that the
proposed method does not introduce noticeable visual artifacts. The reason lies in that the
proposed method either keeps the pixels unchanged or modifies the pixels by ±1, which
will not introduce significant distortion to the cover image and therefore provides very
good visual quality of the marked images. To quantitatively evaluate the payload-distortion
performance of the proposed method, we use peak signal-to-noise ratio (PSNR, in dB) to
measure the visual quality of the marked image, i.e.,

PSNR = 10× log10(
2552

MSE
), (15)

MSE =
1

h× w

h

∑
i=1

w

∑
j=1
|xi,j − yi,j|2, (16)

where xi,j and yi,j represent the original value and the marked value of the pixel at position
(i, j). It can be seen that PSNR evaluates the difference between the original cover image and
the corresponding marked image. A higher PSNR indicates that the difference between the
original cover image and the corresponding marked image is lower, accordingly indicating
that the marked image is visually better. When the size of the payload is specified, we
expect to achieve as high a PSNR value as possible.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 6. Examples for the marked images: (a) Airplane with 10,000 bits, (b) Lena with 10,000 bits,
(c) Tiffany with 10,000 bits, (d) Peppers with 10,000 bits, (e) Baboon with 10,000 bits, (f) Sailboat with
10,000 bits, (g) Airplane with 20,000 bits, (h) Lena with 20,000 bits, (i) Tiffany with 20,000 bits, (j) Peppers
with 20,000 bits, (k) Baboon with 20,000 bits, and (l) Sailboat with 20,000 bits.

We use a threshold Td to control the number of connected components. Since the con-
struction of the sorted PE sequence is dependent on the constructed connected components,
we need to analyze the impact of the threshold Td on the payload-distortion performance.
To this end, we take two representative test images Lena (smooth image) and Baboon (com-
plex image) for necessary analysis. Figure 7 shows the payload-distortion performance
for the image Lena and the image Baboon due to different Td. The abscissa represents the
embedding rate, i.e., the size of the embedded payload, in bits. The ordinate represents
the PSNR value. It can be inferred from Figure 7 that different images have different
payload-distortion performance and different Td also result in different payload-distortion
performance. For the smooth image Lena, a smaller Td is superior to a larger Td at a low
embedding rate, which is due to the reason that a smoother image enables us to collect more
smooth pixels for data embedding by setting a small Td. In contrast, for the complex image
Baboon, a relatively smaller Td is not a good choice for data embedding since the difference
between adjacent pixels in Baboon is significantly larger than that in Lena. As a result, using
a relatively larger Td is a better strategy at a low embedding rate so that the number of
relatively smooth pixels in a connected component can be increased, thereby benefiting
data embedding. From the overall trend, as the embedding rate increases, the performance
difference due to different Td can be controlled within a small range. This indicates that,
from the viewpoint of payload-distortion optimization, we can optimize Td in a small range
so that the payload-distortion performance is superior and the computational complexity
is acceptable for practice. To this end, in the following experiments, for all test images, we
limit Td to the range [0, 8) and use the integer resulting in the highest PSNR (for a fixed em-
bedding rate) as the final value of Td. It is worth mentioning that one may use a very large
Td for RDH. However, this will reduce the performance, as shown in Figure 8. The reason is
that, a larger Td will relax the constraint on the adjacent relationship between pixels, which
can be easily inferred from Equation (10). For example, in the extreme case that Td = 256,
all the pixels to be embedded will be in the same connected component. In other words,
there is only one connected component for G(V, E) and the only one connected component
is the graph itself. In this case, the proposed method degenerates to the traditional method.
Figure 8 further shows the payload-distortion performance for a large Td, from which we
can infer that it is desirable to use a small Td. This is why we optimize Td in range [0, 8) in
this paper, which not only provides good payload-distortion performance but also keeps
the computational complexity low.
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Figure 7. The payload-distortion performance due to small Td for the images Lena and Baboon:
(a) Lena, (b) Baboon.
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Figure 8. The payload-distortion performance due to large Td for the images Lena and Baboon: (a) Lena,
(b) Baboon.

The above analysis shows that the proposed method has the potential to provide
superior payload-distortion performance. To evaluate the payload-distortion performance
of the proposed method, we compare the proposed method with some advanced PE-based
RDH methods, i.e., DSP [14], PPE [14], GP [29], SP [13], MPE [15] and BFS [28]. Both DSP
and PPE are introduced in [14]. It is fair to compare the proposed method with these
related works since they all focus on either improving the prediction accuracy or improving
the pixel sorting procedure. For comparison, in our experiments, we use a randomly
generated binary stream to represent the secret data to be embedded. Figure 9 shows
the payload-distortion performance for the proposed method and the related works. It
can be seen that different images have different payload-distortion performance, which
is reasonable because different images have different statistical characteristics. As the
embedding rate increases, the PSNR will decline, which is also reasonable since a larger
embedding rate means that more modifications to the pixels will be performed, thereby
resulting in a larger distortion between the marked image and the original image. It can
be inferred from Figure 9 that the proposed method significantly outperforms the related
works in terms of payload-distortion performance for all test images. We explain the
reason as follows. DSP [14] uses a dynamic predictor for pixel prediction, which is efficient
for smooth images but not suitable for complex images. Moreover, since the prediction
mode of one pixel is affected by the prediction mode of the adjacent pixels, the prediction
procedure for DSP is time-consuming. PPE [14] exploits the PE of a PE for data embedding,
which is efficient for complex images. However, since the predictor is fixed for all pixels to
be embedded, there is large room for further performance improvement. GP [29] uses a
gradient-based prediction strategy for pixel prediction, which is efficient for RDH. However,
processing the pixels from top to bottom and from left to right may result in many pixels not
carrying secret bits being modified, accordingly introducing a high distortion of the marked
image. Though SP [13] sorts the pixels to be embedded according to a well-designed
local complexity function, the used data embedding parameters are not optimal for low
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embedding rates. Thus, it will introduce large distortion at low embedding rates. Similarly,
for MPE [15], the data embedding parameters need to be optimized so as to provide better
payload-distortion performance. In BFS [28], the prediction value of a pixel is determined
as that of the adjacent pixel, which is not suitable for complex images. Moreover, the BFS
method is time-consuming since it needs to optimize many parameters. Therefore, based on
our experiments and analysis, it is true that the proposed method achieves better trade-off
between embedding payload and embedding distortion compared with related works.
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Figure 9. Performance comparison between the proposed method and the methods introduced
by DSP [14], PPE [14], GP [29], SP [13], MPE [15] and BFS [28]: (a) Airplane, (b) Lena, (c) Tiffany,
(d) Peppers, (e) Baboon, (f) Sailboat.

4. Conclusions

Improving the prediction accuracy of pixels and the embedding order of PEs represents
a core problem in prediction-based RDH. This has motivated the authors in this paper
to propose a novel strategy based on connected component construction and prediction
error adjustment to further improve the prediction accuracy and optimize the embedding
order of PEs. On the one hand, compared with previous works, a significantly different
insight is that we model the cover pixels on a graph, where the nodes correspond to pixels
and the edges represent the adjacent relationship between pixels. Since adjacent pixels
have a strong correlation, the PEs of two pixels are close to each other when there is a path
between the two pixels. Therefore, it is quite desirable to preferentially use pixels belonging
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to the same connected component (whose size is large enough) for data embedding. To this
end, by determining the connected components of the graph, we propose to sort both
the connected components of the graph and the pixels within a connected component
for constructing the PE sequence. On the other hand, unlike mainstream methods that
use a fixed predictor, we propose to adaptively determine the prediction value of a pixel
based on its local context. As a result, the predictors for different pixels can be distinct
from each other, which is more helpful for real-world scenarios. Experimental results
demonstrate that the payload-distortion performance is significantly improved compared
with some advanced methods that use PEs for data embedding. In the future, we will
further optimize the proposed method through investigation on the prediction accuracy
and the embedding order.
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