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Abstract: The article formulates the Dictionary Recognition problem, which is relevant for a wide
range of applied problems: word recognition in a noisy audio signal for natural language processing
tasks or in a noisy electromagnetic signal, recognition of visual patterns in limited visibility, and
much more. A Dictionary Recognition problem is finding a set of words from a given set to maximize
the classification accuracy of the words in the dictionary without losing semantic representation.
The idea of solving the problem is to represent a set of objects (encoded as a sequence of symbols or
visual sequences) in the form of a k-partite graph, where each partite of the graph corresponds to a
group of objects with a certain common feature (equivalence class). The task is to find such a set of
representatives of the k equivalence classes on which the k-classification accuracy by the classifier
H meets certain criteria: (1) maximum classification accuracy; (2) maximin accuracy—the binary
classification accuracy of every two objects is not lower than a certain value. The proposed Maximin
Algorithm provides k-partite cliques with a maximin worst-case classification accuracy and belongs
to the P-class. The Maximal Algorithm provides k-partite cliques with the maximum total weight
(the problem belongs to the NP-hard class). The presented algorithms select a set of representatives
optimally in terms of classification accuracy for the certain classifier and runtime. The algorithms
increase classification accuracy when using classical classification methods without additional opti-
mization of the classifiers themselves. We tested the algorithms on simulated data and provide an
open-source project on GitHub. The results of the Maximin and Maximal Algorithms give 4-, 8- and
16-classification accuracy close to the best accuracy (obtained by brute-force enumeration) and better
than the median accuracy by more than 20% for the support vector machine classifiers. Furthermore,
the algorithms increase the selection speed of representatives by five orders of magnitude compared
to the brute-force algorithm with a slight loss of accuracy.

Keywords: graph algorithm; classification accuracy; brain–computer interface; robotics; clique;
k-partite clique; NP-complete problem; NP-hard; P-class; equivalence classes; language processing;
open-source
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1. Introduction

In many applied problems, we are tasked with maximizing the classification accuracy
of objects belonging to nonlinearly separable sets. Some of these tasks are of profound
practical importance, and their solution can significantly affect the quality of life and the
development of society.

Suppose we have a noisy streaming signal in which a human or device has to detect
certain sequences (words or visual patterns). For this task, we do not need to recognize
natural speech or a wide range of words or patterns, but we need to recognize a particular
set of words—a dictionary. It is required to recognize a certain limited set of words (for
example, movement commands) and not all possible words from the human vocabulary.
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Therefore, we can significantly limit the cardinality of the set of words (a dictionary) while
maintaining the necessary semantic diversity. It is essential to correctly recognize words
and not confuse them with others from the dictionary. For example, correct recognition
of a limited set of commands is used by a remotely controlled robotic device that receives
control commands through a noisy communication channel (electromagnetic or audio) via
any input device and even human–computer interfaces (HCIs) (Figure 1).

Figure 1. Remotely control robotic devices that receive control commands through a noisy communi-
cation channel.

Choosing a limited command dictionary is very relevant for the brain–computer in-
terface (BCI) that is used to remotely control a robotic arm by people with movement
disorders. This type of HCI perceives and recognizes the patterns of the brain’s electrical
activity during thinking and transfers these patterns into the commands, which remote
robotic devices or other devices can accept. However, the brain’s electrical activity pat-
terns are similar for words (commands) of similar articulation and semantics. Therefore,
classifying the commands from a specific dictionary for the design of input devices using
noisy audio or the electromagnetic signal is a serious problem. However, it turns out that
16–20 movement commands are enough for most robotic manipulators, with the greatest
recognition accuracy of the selected commands (dictionary) [1–6].

Communication with devices or people through recognizers in a noisy environment
also does not require an extensive vocabulary [1,6]. However, for the given tasks of
communication with remote recognizers in a noisy environment, it is essential to recognize
words correctly or correctly classify words (sequences, audio, or visual patterns) from a
very modest dictionary. Therefore, the idea came to choose a set of words (sequences) that
would be perfectly recognized by the remote recognizer, despite a noisy signal and a low
classification accuracy of some words, by choosing the most successful synonyms in terms
of classification accuracy. In this case, words should be grouped into semantic subsets
(equivalence classes). The recognizer is not required to detect subtle semantic relationships,
but to correctly classify these words as belonging to a particular semantic class. For example,
to create a device that recognizes the commands of a robotic manipulator, it is crucial to
minimize the classification error, while it is not so important which words will be selected
as command words for the dictionary. Therefore, the task is to choose a dictionary that
would be well classified by the recognizer and would be fully adapted to the required
communication.

At the same time, it should be taken into account that, despite the growing computing
power, the problem of choosing the optimal dictionary in terms of classification accuracy
is resource-intensive. Indeed, this task requires a complete enumeration to find such
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representatives of equivalence classes (synonyms) so that the classification accuracy of
all words in the dictionary is optimal (maximum or not lower than the best of the worst
classification accuracies on word representatives). Therefore, we spent the most resources
on the classifier training: for each such combination of k representatives, it is was required
to train the k-classifier on the existing sample and obtain the accuracy value, which will be
decisive when choosing a dictionary (Figure 2). The larger the sample, the more resources
are required to train this k-classifier on each combination of representatives.

Figure 2. k-Word dictionary selection in a classic way.

Most research groups do not follow the path of dictionary selection, but rather increase
the sample cardinality to improve the classification accuracy. At the same time, an increase
in the sample cardinality does not constantly significantly improve the classification accu-
racy: there are words (sequences in an audio or the electromagnet signal) that are poorly
separated by the classifier [1–5]. With an increase in the sample cardinality of such data
(audio recordings of words, a signal from the electrodes of the human–computer interface,
visual images), for example, by recruiting new people into the experiments, the signal
dispersion in the received distributions of audio or electromagnetic signals corresponding
to words increases. As a consequence, the separability problem for poorly chosen word
combinations persists. Those scientific groups trying to find a more successful combination
of words to solve their task of classifying a dictionary follow the path described above and
shown in Figure 2.

In our article, we propose a solution that allows avoiding enumeration and repeatedly
training the k-classifier. In our paper, we formulate the problem and also provide a solution
to the problem through the representation of the dictionary in the form of a k-partite graph,
where representatives of the same equivalence class (synonyms) lie in the same partite.
Furthermore, we propose a Maximin Algorithm for finding the close-to-the-optimal dictio-
nary in terms of classification accuracy on word representatives. The proposed Maximin
Algorithm provides k-partite cliques with maximin worst-case classification accuracy and
belongs to the P-class. We compared the accuracy and runtime of the Maximin Algorithm
with the exhaustive search algorithm on simulated data and showed the significant superi-
ority in the runtime of the proposed algorithm over the enumeration with a slight loss of
classification accuracy.

Indeed, k-classification is a classic problem in machine learning. However, we looked
at the problem not from the view of the classification algorithms, but from the view of
the previous step—the choice of the classes. Therefore, the algorithm presented in this
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paper works one step above the classical classification algorithms, such as naive Bayes
classifiers [7], support vector machine (SVM) [8], relevance vector machine (RVM) [9], the
k-nearest-neighbors algorithm (k-NN) [10], linear discriminant analysis (LDA) [11], etc.
Moreover, all these classification algorithms are applicable after choosing the suitable
classes, which is carried out by the presented algorithm. Thus, maximization of the k-
classification accuracy begins at the stage of selecting the classes.

The most significant contribution of this work is that the provided algorithm solves the
applied problem of maximizing the dictionary k-classification accuracy. Generally speaking,
dictionary selection using enumeration cannot be carried out on modern computing power
for any extensive dictionary.

The structure of the article has a peculiarity: first, we introduce readers to a formal
problem, then we introduce the idea of a solution and the proposed algorithm and draw
conclusions about the complexity of the algorithm; further, in the section “Materials and
Methods”, we describe the procedure of data simulation, then there are simulation results
and a comparison of the Maximin Algorithm with other algorithms on simulated data;
then, we finish the article with classic sections with the discussion and conclusion.

2. Theoretical Section
2.1. Formulation of the Problem and Proposed Idea

Suppose there are some sets {S0, . . . , Sn−1}. Each set is characterized by distribution
Di, cardinality Cardi, and feature Fsi . According to the some criteria of equivalency based
on features {Fs0 , . . . , Fsn−1}, these sets {S0, . . . , Sn−1} can be grouped into k equivalence
classes {C0, . . . , Ck−1}. The relation H is given on representatives from different classes:
H(Si, Sj), Si ∈ Cq, Sj ∈ Ct, Cq ∩ Ct = ∅ as the binary classification accuracy of the two
corresponding distributions. This classifier K may be applicable to classify more than
two classes. The main goal is to maximize the accuracy of the k-classification of a given
classifier K by selecting k representatives (distributions) from these k equivalence classes
{C0, . . . , Ck−1}. Let us formulate the problem.

The problem is to find such a set of representatives of the k equivalence classes {C0, . . . , Ck−1}
on which the k-classification accuracy by the classifier K meets certain criteria: (1) maximum classi-
fication accuracy; (2) maximin classification accuracy—the classification accuracy of each of two
words is not lower than a certain value.

The idea of solving this problem is in the representation of sets {S0, . . . , Sn−1} in the
form of a k-partite weighted graph G and finding (1) a k-partite clique with maximin
worst-case classification accuracy (the minimum weight edge in the clique would have
the maximum possible weight) and (2) a k-partite clique with the maximum total weight,
where the k-partite clique is a clique, each vertex of which is the only representative of
a separate partite of k-partite graph G. The k-partite weighted graph G is built so that
synonymous commands fall into the same partite of the graph, and the edges are weighted
according to the classification accuracy of the corresponding words (Figure 3).

In this paper, we present the Maximin Algorithm, the main idea of which is to solve
the maximin problem of the worst-case classification accuracy between every two sets. We
also compared the Maximin Algorithm and Maximal Algorithm, the main idea of which is
to find k-partite cliques in the k-partite graph with the maximum total weight. Finally, this
paper gives an example of how the algorithms work on simulated data.
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Figure 3. There are a 3-partite graph, 3-partite clique “abc” with the maximum total weight (2.2), and
3-partite clique “abd” with maximin worst-case classification accuracy (the minimum weight edge in
the clique would have the maximum possible weight—0.6).

2.2. The Proposed Graph Algorithms

In this paper, we propose two algorithms. Both algorithms solve the k-classification
optimization problem by selecting representatives of k equivalence classes.

The first algorithm (Maximin Algorithm) solves the maximin problem of the worst-
case classification accuracy of each of two representatives for a set of sets divided into k
equivalence classes, where the k-classification is performed on the set of representatives of
k equivalence classes.

The second algorithm (Maximal Algorithm) maximizes the k-classification accuracy for
representatives of k equivalence classes using binary classifications between representatives.

2.2.1. Maximin Algorithm

See the Maximin Algorithm 1.
Initial state. Suppose that we have n sets of some objects—{S0, . . . , Sn−1}. Accord-

ing to the samecriterion of equivalency, these sets are grouped into k equivalence classes
{C0, . . . , Ck−1}. These k equivalence classes of n sets can be represented as a k-partite
weighted graph G(V, P, E, W), where V—set of vertices, P = {p1, p2, . . . , pk}—set of par-
tites, where each partite corresponds to a single equivalence class, E—set of edges, and
W—set of edges’ weights. At the initial state, all weights from W are zeroed.

The first step. The binary classifier H is applied one-vs.-one to all possible pairs from
{S0, . . . , Sn−1}, lying in different equivalence classes. Then, to each edge from E of the
k-partite graph G, we assign weight wij, wij ∈ W, equal to the corresponding accuracy
obtained by binary classifier H.

The second step. We sort the E set of edges according to the corresponding weights
from W in descending order.

The third step. In this step, we find the weight of the edge in the ordered set Eord with
index k(k− 1)/2: Eord[k(k− 1)/2] = winitial , winitial—initial value. We take into account
the fact that the necessary number of edges in a graph for at least one k-clique is equal to
k(k− 1)/2.

The forth step. In this step, we remove the edges of the initial k-partite graph G,
obtaining graph G′ from G. We remove only edges with weights lower than winitial—the
(k(k− 1)/2− 1)-th of the sorted E set. The (k(k− 1)/2− 1) is the number of edges needed
for a complete graph with k vertices.

The fifth step. We iteratively copy edges from G to the graph G′ according to their
weight in descending order. First, we add edges with higher weight, meaning those edges
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correspond to a higher binary classification accuracy of two distributions compared to the
rest. At this stage, we consider that to have at least one k-partite clique, each partite of G′

must contain at least one vertex of k− 1 or higher power. Therefore, we add edges to the
new graph G′ iteratively until the described necessary condition is satisfied in each partite.

The sixth step with loop. We begin searching for the k-partite clique with the optimal
total weight in the graph G′.

If a k-partite clique is found, then we exit the algorithm.
If no k-partite clique is found, then we add a new edge from the sorted E set to G′ and

launch the search for the k-partite clique again. At this step, we can afford to modify the
step and iterate over more than one value. We can iterate according to the certain value of
the binary classification accuracy—accuracy α. According to this accuracy, we can form the
step size (D number)—the number of edges that need to be added to the graph G′ from the
ordered set Eord.

Algorithm 1 The Maximin Algorithm.
Initial state: There are n sets of some objects: {S0, . . . , Sn−1}; each set Si has an Fi feature,
where i ∈ 0, n− 1. These {S0, . . . , Sn−1} sets are combined into k equivalence classes
{C0, . . . , Ck−1}, according to the {F0, . . . , Fn−1} features.
Set k-partite graph G(V, P, E, W), where V = {v0, . . . , vn−1}—the set of vertices corre-
sponding to the {S0, . . . , Sn−1} set, P = {p1, p2, . . . , pk}—the set of k-partites corresponding
to the equivalence classes {C0, . . . , Ck−1}, E = {e0, . . . , el}—the set of edges between vertices
from different partites, and W = {w0, . . . , wl}—the set of weights, which is initially zeroed.

1: Apply the binary classifier H pairwise to all possible pairs from {S0, . . . , Sn−1}, lying
in different equivalence classes, and assign the resulting classification accuracy to the
corresponding weight from W:
{wij = H(Si, Sj)|Si ∈ pl , Sj ∈ ph, pl ∩ ph = ∅, wij ∈W}.

2: Organize all the edges E in descending order according to their weights to obtain
ordered set Eord.

3: Find the weight of the edge in the ordered set Eord with index k(k− 1)/2:
winitial = wk(k−1)/2, w—weight of the ek(k−1)/2 edge, ek(k−1)/2 ∈ Eord.

4: In the initial k-partite graph G, remove all the edges with weights equal to or less than
the value winitial , and denote the obtained graph as a k-partite graph G′(V′, P′, E′, W ′).

5: Moving iteratively along the ordered set Eord, add edges with the corresponding
weights from the G- to the G′-graph until each part of the G′ has at least one ver-
tex of k− 1 power.

6: Launch the k-partite clique search algorithm in the k-partite graph G′

7: if k-partite clique ∃ then
Exit with k-partite clique.

8: else
Add the next edge (or D number of edges according to the accuracy α from the

ordered set Eord) from the ordered set Eord with the corresponding weights from G to
G′.

Go to Step 6—launch the k-partite clique search algorithm.
9: end if

This Maximin Algorithm 1 allows finding a clique, each edge of which has a weight,
not below a certain value: min(w0, w1, . . . , wk−1) ≥ α. The presented Maximin Algorithm
solves the maximin problem: Qmaximin = {k-clique | wminq = max(min(w0, w1, . . . , wk−1))},
w0, . . . , wk−1—weights of the edge of the k-clique in the k-partite graph G, wminq —the best
of the possible worst weights over all k-cliques: wminq = max(wminQ0

, . . . , wminQn−1
), and

Q0, . . . , Qn−1—k-cliques in the k-partite graph G}. However, the resulting k-clique may not
be the k-clique with the maximum total weight (maximal k-clique) in graph G.

At the same time, for some problems, it may be critical to find a k-clique with the max-
imum total weight—maximal k-clique. Alternatively, it may be necessary to consider the
minimum acceptable edge weight (binary classification accuracy)—the accuracy threshold.
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2.2.2. Maximal Algorithm

The Maximal Algorithm maximizes the total accuracy of binary classifications for a
set of sets divided into k equivalence classes, where the k-classification is performed on the
set of representatives of the equivalence classes. See the Maximal Algorithm 2. The initial
state of this Maximal Algorithm is the same as that of the Maximin Algorithm. The essence
of the Maximal Algorithm is to enumerate all the maximum cliques, where a maximum
clique is a clique with the largest size, to find the clique with the maximum total weight
(maximal k-clique).

Algorithm 2 Maximal Algorithm.

1: Initial state: There are n sets of some objects: {S0, . . . , Sn−1}. Each set Si has a
feature—Fi, where i ∈ {0, . . . , n − 1}. These {S0, . . . , Sn−1} sets are combined into k
equivalence classes {C0, . . . , Ck−1}, according to the {F0, . . . , Fn−1} features. Set k-partite
graph G(V, P, E, W), where V = {v0, . . . , vn−1}—the set of vertices corresponding to
the {S0, . . . , Sn−1} set, P = {p1, p2, . . . , pk}—the set of k-partites corresponding to the
equivalence classes {C0, . . . , Ck−1}, E = {e0, . . . , el}—the set of edges between vertices
from different partites, W = {w0, . . . , wl}—the set of weights, which is initially zeroed.

2: Apply the binary classifier H pairwise to all possible pairs of sets from {S0, . . . , Sn−1},
lying in different equivalence classes, and assign the resulting classification accuracy to the
corresponding weight from W: {wij = H(Si, Sj)|Si ∈ pl , Sj ∈ ph, pl ∩ ph = ∅, wij ∈W}.

3: Launch all maximum k-partite cliques in the k-partite graph G search algorithm.
4: Sort all the maximum k-partite cliques according their total weight in descending order.
5: Exit with a certain maximal k-clique with the maximum total weight.

2.2.3. Complexity of the Proposed Maximin and Maximal Algorithms

Estimating the complexity of the proposed algorithms, we can relate the search for
k-partite cliques in the k-partite graph to the problem of finding a clique of a given size,
which is known as one of Karp’s original 21 NP-complete problems [12]. For a k-partite
graph, the size of a maximum clique (clique that has the largest size) is equal to k.

The first k-clique, which appears in graph G′ during the Maximin Algorithm’s launch,
will be the desired clique, which has the maximum of the minimum weights of the clique
edges over the possible cliques. From the graph G construction, the accuracy of the
binary classification of the two most weak separable sets in combination with a set of
representatives is better than in any other combination of representatives.

At the seventh step of the Maximin Algorithm, there is a search for a clique of a certain
size (k-clique). It has been published that determining whether the graph has a clique of
a given size is known to be NP-complete [12]. However, the Maximin Algorithm solves
a different problem. The search for whether or not there is a k-clique that goes over all
possible sets of k elements is a polynomial problem. Therefore, the Maximin Algorithm
solves a P-class problem.

During the operation of the Maximal Algorithm, several maximum cliques may appear
in the graph G′. In this Maximal Algorithm, we solve the problem of finding all maximum
cliques of size k in graph G′. It is shown that the tight upper bound on the number of
maximal k-partite cliques in a k-partite graph with n vertices stays the same as the number
of maximal cliques in an arbitrary graph and equals 3

n
3 [13]. Furthermore, what is most

important is the theoretical results of the paper, which include the proof of the fact that the
problem of enumerating all k-partite cliques in a k-partite graph is NP-hard [13]. Therefore,
the Maximal Algorithm that enumerates all k-partite cliques and searches among them for
the clique with the maximum total weight is NP-hard. Therefore, detecting all maximum
cliques is an NP-complete problem; moreover, finding a clique of a given size of problem is
known to be W-complete [13,14].

Therefore, the presented Maximin and Maximal Algorithms belong to the P-class and
NP-hard complexity, respectively. However, even NP-hard complexity is not critical in the



Mathematics 2022, 10, 2810 8 of 15

practical application of dictionary selection. In our work, we show that selecting a dictio-
nary for the task given in the Introduction takes seconds on modern computing devices.

The schema of the algorithms’ application to the dictionary selection task can be seen
in Figure 4.

Figure 4. The schema of the algorithm application to the dictionary selection task.

3. Materials and Methods

We provide the open-source project on GitHub (https://github.com/aibern/maximin_
k_classification_algorithm accessed on 25 June 2022).

3.1. Data Simulation

For data simulation, we used the NumPy Python library. We ran several experiments
on 16, 32, and 64 simulated sets. Each set was characterized by the same cardinality and
different normal distribution characteristics in 3D space. The mean and variance were
chosen randomly on intervals of [−2, 2] and [0, 2], respectively. The simulated distributions
were randomly assigned to different partites of the k-partite graph. To test the proposed
algorithms, we fixed the following parameters: cardinality of the sets (40 st) and the
number of vertices in one partite of the k-partite graph—that each partite had four vertices.
Therefore, we built 4-partite, 8-partite, and 16-partite graphs.

3.2. Data Classification

Support vector machine (SVM) was selected as a method for the binary and k-classification
using the scikit-learn 1.0.2 Python library [15]. The following kernel functions of the support
vector machine were tested:

1. Linear: (x, x′);
2. RBF: exp(−γ||x− x′||2), where γ must be greater than 0.

3.3. Proposed Algorithms’ Application and k-Classification Accuracy Comparison

The Maximin and Maximal Algorithms proposed in this article were used to obtain the
desired cliques. We obtained the output of the algorithms and compared the k-classification
accuracy on the obtained combinations of representatives of k equivalence classes with the
best k-classification accuracy on the simulated data—from the brute-force algorithm. The
outputs of the Maximin and Maximal Algorithms give sets of representatives on which the
k-classification is carried out.

Therefore, we compared three k-classification accuracy values:

https://github.com/aibern/maximin_k_classification_algorithm
https://github.com/aibern/maximin_k_classification_algorithm
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1. k-classification based on the result of the combination obtained by the Maximin
Algorithm (Algorithm 1)—corresponds to a k-clique with the highest lowest weight
of the clique edge (the highest worst accuracy of the binary classification);

2. k-classification based on the result of the combination obtained by the Maximal
Algorithm (Algorithm 2)—the obtained representatives’ combinations based on the
k-clique with a maximum total weight;

3. The best k-classification accuracy from all possible combinations of representatives for
a given simulation—the result of a complete enumeration (the brute-force algorithm).

There are 44, 48, 416 classifications for 4, 8, 16 classes performed, respectively, in the
3rd case (the brute-force algorithm).

3.4. Runtime of Maximin and Maximal Algorithms and Brute-Force Algorithm

The evaluation of the algorithms’ runtime was carried out on the CPU Intel i5.
The Maximal Algorithm performs a complete enumeration of all combinations of

representatives from 4, 8, and 16 equivalence classes (the cardinality of the class set was
4). It searches for the maximum total weight of the clique edges on 44, 48, 416 variants,
respectively. For the Maximal Algorithm, the k-classification was performed once on the
data corresponding to the best clique in terms of the maximum total weight (maximum
total binary classification).

To obtain the best k-classification accuracy by the brute-force algorithm, we launched
44, 48, 416 k-classifications using the SVM method (SVM with linear kernel and RBF kernel),
respectively.

4. Results

The results of the proposed algorithms on simulated data can be repeated using our
open-source projecton GitHub (https://github.com/aibern/maximin_k_classification_
algorithm accessed on 25 June 2022).

4.1. Data Simulation and Graph Representation

We performed a data simulation of 14 normal distributions with random mean and
variance grouped into five equivalence classes (Figure 5). This simulation is for visual
demonstration purposes only. The further simulation was carried out for the number of
classes, which is a power of two.

Figure 5. Data simulation of 15 normal distributions with random mean and variance grouped into
5 colored equivalence classes (left) and the 5-partite graph on simulated data (right). Pk—k-th partite,
where k ∈ 0, 4; nm—m-th vertice, where m ∈ 0, 2.

https://github.com/aibern/maximin_k_classification_algorithm
https://github.com/aibern/maximin_k_classification_algorithm
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4.2. k-Classification Accuracy on Simulated Data Using the Maximin and Maximal Algorithms
and the Best k-Classification Accuracy Obtained by the Brute-Force Algorithm

The measurement results of the experiments are shown in Table 1.

Table 1. k-Classification accuracy obtained on representatives from 16, 32, and 64 normal distributions
with random mean and variance grouped into 4, 8, and 16 equivalence classes (5 experiments each)
using the Maximin, Maximal, and brute-force algorithms.

Number of
Classes

A Set of
Distributions

Corresponds to
the k-Clique

from the
Maximin

Algorithm

A Set of
Distributions

Corresponds to
a Maximal

k-Clique from
the Maximal
Algorithm

The Best
k-Classification
Accuracy from
the Brute-Force

Algorithm

Median
k-Classification

Accuracy

Minimal
k-Classification

Accuracy

k-classification accuracy (SVM with linear kernel)

0.93 0.93 0.93 0.72 0.5
0.98 0.98 0.98 0.75 0.34

4 0.93 0.98 0.98 0.81 0.53
0.97 0.97 0.97 0.75 0.5
0.87 0.87 0.97 0.75 0.46

0.83 0.85 0.89 0.59 0.3
0.92 0.92 0.92 0.58 0.25

8 0.89 0.85 0.9 0.59 035
0.68 0.68 0.75 0.54 0.32
0.76 0.78 0.82 0.55 0.26

0.64 0.63 0.64 0.50 0.19
16 0.54 0.48 0.54 0.27 0.13

0.48 0.47 0.50 0.29 0.09
0.49 0.49 0.49 0.28 0.15
0.64 0.65 0.66 0.30 0.22

k-classification accuracy (SVM with RBF kernel)

0.98 0.98 0.98 0.73 0.33
0.87 0.89 0.92 0.75 0.48

4 0.87 0.87 0.87 0.67 0.42
0.95 0.95 0.95 0.78 0.48
0.87 0.87 0.94 0.68 0.41

0.81 0.78 0.88 0.59 0.33
0.82 0.88 0.88 0.58 0.33

8 0.9 0.9 0.9 0.6 03
0.68 0.79 0.8 0.55 0.28
0.69 0.7 0.75 0.53 0.25

0.63 0.65 0.66 0.51 0.23
16 0.48 0.48 0.48 0.29 0.14

0.53 0.47 0.53 0.28 0.12
0.48 0.47 0.50 0.29 0.09
0.62 0.64 0.65 0.31 0.23

The four-classification accuracy on four representatives obtained at the output of
the Maximin Algorithm differs from the best accuracy by 2.7% on average; the eight-
classification accuracy on eight representatives differs from the best accuracy (from the
brute-force algorithm) by 5.1% on average.

The presented Maximal Algorithm differs in accuracy by 1.1% and 3.6% from the best
4-classification and 8-classification accuracy on average, respectively.

The results of the Maximin and Maximal Algorithms give 4- and 8- classification
accuracy close to the best accuracy (obtained during enumeration from the brute-force
algorithm) and better than the median accuracy by 20 percent.

4.3. Runtime on Simulated Data Using the Maximin and Maximal Algorithms and Complete
Enumeration of the Brute-Force Algorithm

The Maximal Algorithm performs a complete enumeration of all combinations of
representatives from 4, 8, and 16 equivalence classes (the cardinality of the class set was
four). It searches for the maximum total weight of the clique edges on 44, 48, 416 variants,
respectively.

The measurement results of the experiments can be found in Table 2.
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Table 2. Runtime of the Maximin and Maximal Algorithms and the brute-force algorithm.

Runtime

Number of Classes Maximin Algorithm Maximal Algorithm Brute-Force Algorithm

4 3 ms 10 ms 700 ms
8 30 ms 300 ms 10 min
16 1200 ms 10 h 160 h

The difference in runtime between the Maximin and Maximal Algorithms and brute-
force algorithm increases with the number of classes.

5. Discussion

In this paper, we present algorithms that allow us to find a combination of the rep-
resentatives from a certain number of equivalence classes to improve the classification
accuracy. In the search for a better solution, we successfully represented the data in the
form of a k-partite graph, where distributions with common properties were defined in
one partite.

The ordering of edge weights, which is used in the Maximin Algorithm (Algorithm 1),
significantly reduced the load on the calculation, with a slight loss of classification accuracy.
Therefore, for four classes, the accuracy of the set obtained by the Maximin Algorithm was
less than the best accuracy by only 2.7% on average, while it was better than the median by
more than 20%. The eight-classification accuracy on eight representatives differs from the
best accuracy by 5.1% on average. The presented Maximal Algorithm differs in accuracy
by 1.1% and 3.6% from the best 4-classification and 8-classification accuracy on average,
respectively. This loss of accuracy was negligible, especially considering the algorithm’s
speed. We see that the classification accuracy on the set represented by the Maximal
Algorithm does not generally match the best accuracy from the brute-force algorithm.

The Maximin Algorithm (see Algorithm 1) is particularly important when we compare
its runtime with the brute-force algorithm (exhaustive search algorithm). In a small number
of classes (4 and 8 classes), the time taken by the algorithms differed slightly. As the number
of classes increased, the operation of the Maximin Algorithm gave a significant advantage
over the Maximal Algorithm and the brute-force algorithm. When working with 16 classes
on simulated data, the Maximin Algorithm completed in a little more than a second, while
the exhaustive search algorithm spent more than 5 days on enumeration. The runtime
advantage of the Maximin Algorithm was also demonstrated when compared with the
Maximal Algorithm. At the same time, the Maximin and Maximal Algorithms’ runtime
provides a significant advantage compared with the brute-force search algorithm. However,
using the Maximal Algorithm and the brute-force algorithm when working with more than
16 equivalence classes does not seem appropriate.

Brute-force search is a very general problem-solving technique and algorithmic paradigm,
which enumerates all possible candidates for the solution and checks whether each can-
didate satisfies the problem’s statement. If the exhaustive search is not possible, we are
looking for algorithms that could bring us closer to the best classification accuracy value.
Moreover, it is this possibility that the presented Maximin Algorithm gives us. We realize
that if we do not have an optimal algorithm to select an optimal or close to optimal set
of words for a dictionary, then the expected classification accuracy should be considered
when choosing a random set (random clique). The operation of the Maximin Algorithm
makes it possible to increase the accuracy of k-classification accuracy by 20% or more in
comparison with a random set, on average.

The algorithms we presented are directly related to the mathematical problem of
finding a clique in a graph. Currently, the most widely studied mathematical problems in
graph theory include detecting a maximum clique (clique in the graph that has the largest
size) or all maximal cliques (the maximal clique is a clique that is not properly contained
in another one) in a given graph. However, such algorithmic problems have proven to be
among the hardest ones. For example, even determining whether the graph has a clique of
a given size is known to be NP-complete [12]. Similarly, detecting a maximum clique and
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finding all maximal cliques is an NP-complete problem [13]. The NP-hardness of the above
problems is the main reason for the recent attempts to develop approximate algorithms. In
the case of our research, we need to propose an algorithm for finding a clique consisting of
k vertices in a k-partite graph, having exactly one vertex in each of the clusters of the graph.
This problem can be treated as a particular case of the above-listed clique problems in graph
theory. For instance, one can observe that the required clique is in fact both the maximal
and maximum clique in the k-partite graph we are investigating due to the fact that the
graph does not contain any intra-partite edges. This implies that any exact or approximate
algorithm for solving the above NP-complete problems may also be applied to our case.

Considering the fact that our graph problem is a very special case of the above-
mentioned clique detection problems, there does not exist any computationally efficient
algorithm for solving it to the best of our knowledge [16–18]. Therefore, we suggested
algorithms for finding cliques with required conditions and estimating their computational
complexity. However, we also noticed that currently known clique detection algorithms
may be adapted and applied to our case.

The presented Maximin Algorithm (Algorithm 1) solves the problem of optimizing
representatives in terms of finding the best of the worst options for a binary classifica-
tion through the problem of finding a clique, which is a problem from the P-class. The
presented Maximal Algorithm (Algorithm 2) solves the problem belonging to the class of
NP-hard complexity. However, the Maximal Algorithm allowed reducing the resources for
calculation by several orders of magnitude, which in practice makes it possible to solve the
problem computationally efficiently for some dimensions.

The use of this Maximin Algorithm is of great practical importance for developing
human–computer interfaces with a specific set of commands for recognition. In addition,
this algorithm can be applied to classical NLP tasks that require high recognition accuracy
for a particular set of words. We can apply this algorithm to computer vision if we need to
select a specific set of visual signs. In general, the algorithm is applicable in areas where we
can select some items and we need to optimize the classification accuracy of these items.
The presented algorithms were combined with classical classification algorithms (naive
Bayes classifiers [7], support vector machine [8], relevance vector machine [9], k-nearest
neighbors algorithm [10], linear discriminant analysis [11], etc.), as the algorithms give the
optimal set of classes (words) for the selected classifier.

Some researchers may be surprised by the findings on classification accuracy. Nev-
ertheless, the idea of the algorithm was born when solving the problem of choosing a
dictionary to control a robotic device using an EEG-based BCI [1,19,20]. Each word (com-
mand) was a set of entries from different people in different conditions. On the real data we
obtained, the distributions of different words were poorly statistically separated—the words
belonged to the same distribution according to the Kolmogorov–Smirnov criterion [1]. Thus,
our simulated data (close to real data) were very noisy, which always gives low accuracy
values on any classifiers. This is why our new algorithm selects such distributions that
classical classifiers, including neural networks, would better separate.

Indeed, there is an essential problem—the Dictionary Recognition problem for non-
invasive BCIs, because of the very similar brain signal of different words (commands).
Thus, non-invasive EEG-based BCIs recognize only a small number of words. The first
works on silent speech recognition were focused on statistical EEG features and the nature
of the distribution. In 2009, Charles DaSalla and colleagues proposed an algorithm for two
English phonemes’ (/a/ and /u/) recognition with a 78% accuracy [21]. In 2017, researchers
from the Birla Institute of Technology and Science (India) used a binary neural network
classifier for two English (“yes”, “no”) and two Hindi (“haan”, “na”) words’ recognition
with an accuracy of 75.4% [22]. In 2018, there was a publication of an SVM-based algorithm
for recognizing 11 phonemes and four English words with an accuracy of 33.33% [3]. In
2019, scientists from India published a method for seven syllables, /iy/, /piy/, /tiy/,
/diy/, /uw/, /m/, and /n/, with 57.15% classification accuracy on average [4]. How-
ever, the average accuracy for the binary classification of words approached 72% with a
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maximum accuracy of 85.57%; for the four words, the classification accuracy averaged
59% [3–5,21–29].

Classification accuracy requirements vary greatly depending on the task. For non-
invasive EEG-based BCIs, the claimed accuracy in this paper of the simulated data is
impressive given the current progress in classifying EEG-based BCIs [1–5].

Moreover, the Maximin Algorithm is of particular importance in tasks when we need
to be able to classify all objects with no worse than a certain accuracy. For such tasks, all
objects must be classified approximately equally, and the classification accuracy grows by
increasing the size of the training sample.

When collecting data for the BCI dictionary, we cannot afford to produce data for
all possible words since this is time- and resource-consuming. Before spending resources
on data collection, we must decide which specific words we are ready to spend these
resources on. In addition, the very training of the classifier at the time of selecting the
optimal dictionary is also very resource-consuming. The presented algorithms allow not
only reducing the cost of training and dictionary selection, but, in general, making this task
feasible within the limits of human life.

The Maximin Algorithm provides resource advantages over the parallel brute-force
enumeration using many CPU/GPU logical cores. The number of required logical cores
for the brute-force algorithm grows exponentially with the number of classes: nk, n—the
cardinality of the class (number of semantically close words), and k—the number of the
classes, whereas the Maximin Algorithm depends on the number of classes polynomially.

In our future work, we plan to generalize the problem of finding representatives.
In addition, we plan to apply other classification algorithms, including neural network
classification algorithms, and demonstrate the operation of the presented algorithms on the
EEG dataset we collected.

6. Conclusions

The presented algorithms (the Maximin and Maximal Algorithms) make it possible to
distinguish classes in the context of the Dictionary Recognition problem. The algorithms
increase in classification accuracy when using classical classification methods without
additional optimization of the classifiers themselves. At the same time, the complexity of
choosing a dictionary grows polynomially with the number of classes.

The presented algorithms (the Maximin and Maximal Algorithms) are combined with
classical classification algorithms and show practical importance since the algorithms allow
finding an approximate accuracy value for a certain classifier that differs from the best
accuracy within the error in a practically achievable time. The advantages of the algorithms
are the runtime of the practical work with a slight loss of accuracy.

The presented Maximin and Maximal Algorithms belong to the P-class and NP-hard
complexity, respectively. The Maximin Algorithm gives resource advantages over parallel
enumeration using many CPU/GPU logical cores.

The algorithms make it possible to select a set of representatives on equivalence classes
optimally to maximize the classification accuracy (support vector machine) and the runtime
of the algorithms. The results of the Maximin and Maximal Algorithms give 4-, 8- and 16-
classification accuracy close to the best accuracy (obtained by the brute-force enumeration)
and better than the median accuracy by more than 20 percent. The algorithms increase the
selection speed of representatives by five orders of magnitude compared to the brute-force
algorithm, with a slight loss of accuracy for the support vector machine classifier.
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