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Abstract: This paper mainly researches the synchronization issue of discrete-time recurrent neural
networks (DTRNNs) with time-varying delay based on event-triggered control (ETC). ETC can
effectively decrease the quantity of controller updates performed and the utilization of communication
resources. By using Lyapunov–Krasovskii functional (LKF), Schur complement lemma, discrete time
free weight matrix method, linear matrix inequalities (LMIs) and other analytical methods, the
stability conditions of the error system are deduced. Accordingly, a class of event-triggered state
feedback controllers is designed. Finally, through two numerical examples with simulations, the
effectiveness of the controller is verified.
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1. Introduction

Neural networks (NNs) have the advantages of strong learning ability and function
approximation, so the research on NNs has never stopped. In the process of analyzing
and studying NNs, time-varying delay is ubiquitous [1], which will increase the com-
plexity of NNs research and even leading to poor system performance. For example,
R Vadivel et al. [2] studied the event-triggered H∞ synchronization problem of DTRNNs
with time-varying delay, G Chen, Y Gao, et al. [3] studied the finite-time dissipation control
problem of stochastic interval systems with time-varying delay. Hence, the stability analysis
of NNs with time-varying delay and other characteristics has also attracted the research
interest of a large number of scholars. In the past few decades, RNN has also been continu-
ously developed and successfully applied in the fields of image recognition [4], artificial
intelligence [5,6], control systems [7,8], etc. Such as, F. Wei et al. [9]. studied the related
problems of time-varying inertial neural network through the method of interval matrix,
and designed a related state feedback controller to ensure that the time-varying neural
network can achieve finite-time stability. This paper will focus on the issue of DTRNNs
with time-varying delay.

Synchronization is a common nonlinear dynamic behavior, which mainly refers to a
state in which multiple dynamic systems reach the same state through coupling or external
disturbance. It is this state of interaction and regulation between systems that makes
synchronization a ubiquitous phenomenon in the natural sciences, social sciences, and
engineering technologies [10,11]. For example, by studying the coupled memory neural
network model with time delay, G Wang et al. [12] obtained the sufficient conditions for
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the exponential synchronization of the system. Common synchronization types include
projection synchronization [13], H∞ synchronization [14], anti-synchronization [15] etc.
As an important feature of networks, synchronization is widely used in communication
security, image processing [16,17], biological systems [18,19] and other fields. In practical
application research, since the large-scale neural network itself cannot achieve synchro-
nization, it is usually necessary to design a suitable controller. Therefore, researchers have
successively proposed a variety of control methods and techniques, including adaptive
control [20], impulse control [21], etc., to achieve synchronization.

In the existing literature, most of the networked control systems use a time-triggered
manner to transmit information, that is, to periodically calculate, control and transmit
information to each individual in the network. This operation will cause a lot of unnec-
essary information to be transmitted in the network, which will cause communication
waste and increase the network load [22]. Based on this, this paper introduces an event-
triggered mechanism, which uses an event-triggered method to determine whether the
sampling information needs to be transmitted. If the defined event-triggered mechanism
is met, the information is not transmitted, otherwise, the information is transmitted [23].
More and more experiments and literature show that ETC can reduce the computation
amount of the controller, reduce the execution number of control tasks, and save network
resources [24].

Discrete systems have the advantages of flexibility, high efficiency, and high precision.
It is worth noting that in engineering applications, discrete system models with external
disturbances are more universal. Time delay is a universal phenomenon in life, so the
study of discrete systems with time delay has always been a field that scholars continue to
explore [25–27]. On this basis, this issue studies the synchronization problem of DTRNNs
with time-varying delay. In addition, the rest of this article is as follows: Notations,
preliminaries and model building will be introduced in Section 2. Section 3 demonstrates
the synchronization of DTRNNs with ETC. Section 4 proves the preciseness of the theory
by simulation. Section 5 draws conclusions.

The main contributions of this paper are as follows: 1. Based on the study of continuous
RNNs, further studies of the synchronization problem of a discrete-time RNNs and the
research results are more practical and universal. Event-triggered control can effectively
reduce the amount of calculation, reduce the network load and reduce the utilization of
communication resources. 3. Through inequality scaling, the sufficient conditions for the
stability of the error system are obtained, and then, the LMIs technique is used to solve the
problem, and a suitable event-triggered state feedback controller is constructed.

2. Notations and Preliminaries

For the convenience of the article, some symbols are explained as follows: The super-
scripts “T” snd “−1” represent the transpose of the matrix and the inverse of the matrix;
Rn represent the n-dimensional Euclidean space and the set of all real matrices, and Rq×q

represent the q× q-dimensional Euclidean space and the set of all real matrices; I is an
identity matrix of appropriate dimension; “*” is used to denote a term caused by symmetry.

Consider a series of DTRNNs with time-varying delay as the drive system, which can
be described as follows: 

xi(s + 1) = −cixi(s) +
n
∑

j=1
aij f j

(
xj(s)

)
+

n
∑

j=1
bijgj

(
xj(s− d(s))

)
+ Ii ,

z̀i(s) = βxi(s),
xi(s) = ψi(s), s = −dM ,−dM + 1, · · · , 0,

(1)

where i, j ∈ N = {1, 2, · · · , n}, xi(s) ∈ Rn is the voltage of capacitor Ci; ci,
n
∑

j=1
aij and

n
∑

j=1
bij

are self-feedback coefficient; f j(·) and gj(·) stand for bounded activation function; d(s) is
the time-varying delay of the signal transmission in the system and dM is the maximum
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upper bound of the delay satisfying 0 ≤ d(s) ≤ dM; Ii is the ith neuron external constant
input; z̀i(s) ∈ Rn is control output; β =

[
eij
]

n×n are known real constant matrices; ψi(s) is
the initial condition of the drive system.

Considering the drive system in (1), its response system is:
yi(s + 1) = −ciyi(s) +

n
∑

j=1
aij f j

(
yj(s)

)
+

n
∑

j=1
bijgj

(
yj(s− d(s))

)
+ Ii + ui(s),

źi(s) = βyi(s),
yi(s) = ϕi(s), k = −dM ,−dM + 1, · · · , 0,

(2)

where yi(s) ∈ Rn corresponds to the state variable connected to the ith neuron; ui(s) is the
appropriate bounded external control input; źi(s) is control output.

We denote

x(s) = (x1(s), x2(s), · · · , xn(s))
T , y(s) = (y1(s), y2(s), · · · , yn(s))

T , (3)

then, the error signal is defined as:

e(s) = y(s)− x(s), z̆(s) = ź(s)− z̀(s), (4)

The error system is as follows:
e(s + 1) = −C̆e(s) + Ăθ(e(s)) + B̆ω(e(s− d(s))) + u(s),

z̆(s) = βe(s),
e(s) = ϕ(s)− ψ(s), s = −dM ,−dM + 1, · · · , 0,

(5)

where

f (x(s)) = ( f1(x1(s)), f2(x2(s)), · · · , fn(xn(s)))
T ,

f (y(s)) = ( f1(y1(s)), f2(y2(s)), · · · , fn(yn(s)))
T ,

θ(e(s)) = f (y(s))− f (x(s)),

g(x(s− d(s))) = (g1(x1(s− d(s))), · · · , gn(xn(s− d(s))))T ,

g(y(s− d(s))) = (g1(y1(s− d(s))), · · · , gn(yn(s− d(s))))T ,

ω(e(s− d(s))) = g(y(s− d(s)))− g(x(s− d(s))),

u(s) = (u1(s), u2(s), · · · , un(s))
T ,

C̆ = diag{c1, c2, · · · , cn},

Ă =
(
aij
)

n×n, B̆ =
(
bij
)

n×n,

This article sets up an event-triggered mechanism between the sampler and the controller

[e(sα + ð)− e(sα)]
TΩ[e(sα + ð)− e(sα)] < δeT(sα + ð)Ωe(sα + ð) (6)

where e(sα + ð) is the error signal at the current moment; sα + ð represents the ðth
sampling time starting from time sα; e(sα) is the error signal of the last transmission;
δ ∈ [0, 1] is the event-triggered mechanism parameter; Ω > 0 is a positive definite weighted
symmetric matrix.

According to the above event-triggered mechanism, it can be seen that the error signal
that does not satisfy the inequality (6) will be transmitted to the controller, otherwise
it will not be transmitted. Obviously, compared with the traditional-triggered method,
the event-triggered method can productively reduce the amount of computation and the
pressure on the communication network.

Since the signal will cause delay in the network transmission process, and this delay is
unavoidable, we assume that τsα is the delay of the corresponding sα trigger moment, the
delay of the whole network is defined as τsα ∈ [0, τ̆], and τ̆ is the maximum delay.
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The controller design is as follows:

u(s) = K̂e(sα) s ∈
[
sα + τsα , sα+1 + τsα+1

)
(7)

where K̂ is the control gain matrix.
An event-triggered controller is added to the response system based on DTRNNs with

time-varying delay. Through the given event-triggered mechanism, the error signal passing
through each time is judged. If the event-triggered mechanism is satisfied, no information
is transmitted to the controller. At this time, no control is applied, and the controller is zero.
If the event-triggered mechanism is not satisfied, the controller is u(s) = K̂e(sα). In this
way, the drive-response RNNs are controlled to achieve synchronization.

According to the literature [28], in interval s ∈
[
sα + τsα , sα+1 + τsα+1

)
, we discuss the

following situation:
1. If sα + τ̆ + 1 ≥ sα+1 + τsα+1 , the function is τ(s) defined as:

τ(s) = s− sα s ∈
[
sα + τsα , sα+1 + τsα+1

)
(8)

τsα ≤ τ(s) ≤ (sα+1 − sα) + τsα+1 ≤ 1 + τ̆ (9)

2. If sα + τ̆ + 1 < sα+1 + τsα+1 , consider the following time interval,

[sα + τsα , sα + τ̆ + 1], [sα + τ̆ + ð, sα + τ̆ + ð+ 1] (10)

where ð = 1, 2, 3, . . . , p− 1. Obviously, p ∈ N+ exists, so that

sα + τ̄ + p ≤ sα+1 + τsα+1 ≤ sα + τ̄ + p + 1, (11)

thus,

[sα + τsα , sα+1 +τsα+1

)
=[sα + τsα , sα + τ̆ + 1)

∪


p−1⋃
ð=1

[sα + τ̆ + ð, sα + τ̆ + ð+ 1)


∪ [sα + τ̆ + p, sα+1 +τsα+1

]
. (12)

Define the function as follows:

τ(s) =


s− sα s ∈ [sα + τsα , sα + τ̆ + 1)

s− sα − ð s ∈ ⋃p−1
ð=1[sα + τ̆ + ð, sα + τ̆ + ð+ 1)

s− sα − p s ∈
[
sα + τ̆ + p, sα+1 + τsα+1

] (13)

that is: 
τsα 6 τ(s) 6 τM s ∈ [sα + τsα , sα + τ̆ + 1)
τsα 6 τ̆ 6 τ(s) 6 τM s ∈ ⋃p−1

ð=1[sα + τ̆ + ð, sα + τ̆ + ð+ 1)
τsα 6 τ̆ 6 τ(s) 6 τM s ∈

[
sα + τ̄ + p, sα+1 + τsα+1

] (14)

where τM = 1 + τ̆
The definition error is as follows:

eα(s) =


0 s ∈ [sα + τsα , sα + τ̆ + 1)
e(sα + ð)− e(sα) s ∈ ⋃p−1

ð=1[sα + τ̆ + ð, sα + τ̆ + ð+ 1)
e(sα + p)− e(sα) s ∈

[
sα + τ̆ + p, sα+1 + τsα+1

]
.

(15)
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From the above analysis, we can rewrite the event-triggered mechanism (6) as

eT
α (s)Ωeα(s) < δeT(s− τ(s))Ωe(s− τ(s)) (16)

The DTRNNs synchronization scheme is shown in Figure 1. For the convenience of
subsequent proof, we will use the following assumptions and lemmas:

Figure 1. Synchronization flow chart for DTRNNs.

Assumption 1 ([29]). In RNNs, for all s, t ∈ R, the activation functions of neurons f(·) and g(·),
satisfying f(·) = g(·) = 0 and the following boundary conditions:

[f(s)− f(t)− `1(s− t)]T [f(s)− f(t)− `2(s− t)] ≤ 0 (17)

[g(s)− g(t)−<1(s− t)]T [g(s)− g(t)−<2(s− t)] ≤ 0 (18)

where `1, `2,<1,<2, are constant matrices with appropriate dimensions and satisfy `1 ≤ `2,<1 ≤ <2.

Lemma 1 ([30]). For any positive definite matrix k ∈ Rn×n, scalars d1, d1 ∈ Z and d1 < d2,
function A(t) ∈ Rn, t ∈ [d1, d2], the following inequality holds:(

∑d2
t=d1

A(t)
)T

k
(

∑d2
t=d1

A(t)
)
≤ (d2 − d1 + 1)

(
∑d2

t=d1
AT(t)kA(t)

)
. (19)

Lemma 2 ([31]). For vectors Υ, Ψ ∈ R, and a positive definite matrix Q̆ > 0 ∈ Rn×n, the
following inequality holds:

2ΥTΨ ≤ ΥTQ̆Υ + ΨTQ̆−1Ψ. (20)

Lemma 3 ([32]). For matriceX > 0, Y and scalar ε, the following inequality holds:

−YTX−1Y ≤ ε2X− 2εY. (21)

Lemma 4 (Schur complement). For a given symmetric matrices Ξ =

(
Ξ11 Ξ12
Ξ21 Ξ22

)
, where

Ξ11 ∈ Rq×q, the following three conditions are equivalent:

(1)Ξ < 0;

(2)Ξ11 < 0, Ξ22 − Ξ12
TΞ11

−1Ξ12 < 0;

(3)Ξ22 < 0, Ξ11 − Ξ12Ξ22
−1Ξ12

T < 0. (22)
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Therefore, this article mainly discusses the synchronization problem of DTRNNs. By
setting a suitable ETC, it is proved that the error system is asymptotically stable, thus,
proving that the original system is synchronous.

3. Main Results

In this segment, the error system is analyzed by some mathematical methods, the
conditions for the asymptotic stability of the system are deduced and the corresponding
LMI is obtained. The error system is considered as follows:

e(s + 1) = −C̆e(s) + Ăθ(e(s)) + B̆ω(e(s− d(s))) + K̂e(s− τ(s))− K̂eα(s). (23)

3.1. Stability Analysis for DTRNNs with Time-Varying Delay

Theorem 1. For given parameters dM, δ, τM, the error system (23) is asymptotically stable. If the
matrix Ω > 0, P > 0, Sm > 0(m = 1, 2), Rm > 0(m = 1, 2), P̃ > 0 exists, and positive scalars
are ρ, ε, the following matrix inequality holds:

Γ̂1 =


Θ̂1 Θ2 Θ3 Θ4 Θ5
∗ −P 0 0 0
∗ ∗ −R1 0 0
∗ ∗ ∗ −R2 0
∗ ∗ ∗ ∗ −P̃

, (24)

where

Θ1 =



i11 i12 0 0 i15 i16 i17 0
∗ i22 0 0 0 0 0 0
∗ ∗ i33 i34 0 0 0 0
∗ ∗ ∗ i44 0 0 0 0
∗ ∗ ∗ ∗ i55 0 0 0
∗ ∗ ∗ ∗ ∗ i66 0 0
∗ ∗ ∗ ∗ ∗ ∗ i77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ i88


,

i11 = −P + S1 + S2 − R1 − R2 + P̃ + NT
1 + N1 − ρŪ1,

i12 = −ρŪ2,

i15 = R1,

i16 = NT
2 − N1 − P̃,

i17 = R2,

i22 = −ρI,

i33 = −εI,

i34 = −εV̄2,

i44 = −S1 − εV̄1,

i55 = −R1,

i66 = −S2 + δΩ− NT
2 − N2 + P̃,

i77 = −R2,

i88 = −Ω,

Θ2 =
[
−P C̆ P Ă P B̆ 0 0 P K̂ 0 −P K̂

]T ,

Θ3 =
[
−dMP C̆− dMP dMP Ă dMP B̆ 0 0 dMP K̂ 0 −dMP K̂

]T ,

Θ4 =
[
−τMP C̆− τMP τMP Ă τMP B̆ 0 0 τMP K̂ 0 −τMP K̂

]T ,

Θ5 =
[
NT

1 0 0 0 0 NT
2 0 0

]T ,

Proof of Theorem 1. To better handle the system time-varying delay d(s) and network
communication time-varying delay τ(s) in the System (23), we chose the following LKFs
for analysis:

V(s) =
3

∑
µ=1

Vµ(s), (25)
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where

V1(s) = eT(s)Pe(s), (26)

V2(s) =
s−1

∑
r=s−d(s)

eT(r)S1e(r) +
s−1

∑
r=s−τ(s)

eT(r)S2e(r), (27)

V3(s) = dM

s−1

∑
l=s−dM

k−1

∑
r=l

ηT(r)R1η(r) + τM

s−1

∑
l=s−τM

s−1

∑
r=l

ηT(r)R2η(r), (28)

set η(r) = e(r + 1)− e(r) and ∆Vµ(s) = Vµ(s + 1)−Vµ(s), then we have:

∆V1(s) = eT(s + 1)Pe(s + 1)− eT(s)Pe(s), (29)

∆V2(s) = eT(s)S1e(s)− eT(s− d(s))S1e(s− d(s))

+ eT(s)S2e(s)− eT(s− τ(s))S2e(s− τ(s)), (30)

∆V3(s) = d2
MηT(s)R1η(s)− dM

s−1

∑
r=s−dM

ηT(r)R1η(r)

+ τ2
MηT(s)R2η(s)− τM

s−1

∑
r=s−τM

ηT(r)R2η(r), (31)

define

ξ(s) =
[
eT(s) θT(e(s)) ωT(e(s− d(s))) eT(s− d(s)) eT(s− dM)

eT(s− τ(s)) eT(s− τM) eT
α (s)

]T
, (32)

M =
[
−C̆ Ă B̆ 0 0 K̂ 0 −K̂

]
, (33)

Λ =
[
−C̆− I Ă B̆ 0 0 K̂ 0 −K̂

]
, (34)

then,

e(s + 1) = Mξ(s), (35)

η(s) = e(s + 1)− e(s) = Λξ(k), (36)

therefore,

eT(s + 1)Pe(s + 1) = ξT(s)MTPMξ(s), (37)

d2
MηT(s)R1η(s) = d2

MξT(s)ΛT R1Λξ(s), (38)

τ2
MηT(s)R2η(s) = τ2

MξT(s)ΛT R2Λξ(s). (39)
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In the light of Lemma 1 , we can get:

− dM

s−1

∑
r=s−dM

ηT(r)R1η(r)

≤ −
[

s−1

∑
r=s−dM

η(r)

]T

R1

[
s−1

∑
r=s−dM

η(r)

]
≤ −[e(s)− e(s− dM)]T R1[e(s)− e(s− dM)]

= −eT(s)R1e(s) + 2eT(s)R1e(s− dM)− e(s− dM)T R1e(s− dM), (40)

− τM

s−1

∑
r=s−τM

ηT(r)R2η(r)

≤ −
[

s−1

∑
r=s−τM

η(r)

]T

R2

[
s−1

∑
r=s−τM

η(r)

]
≤ −[e(s)− e(s− τM)]T R2[e(s)− e(s− τM)]

= −eT(s)R2e(s) + 2eT(s)R2e(s− τM)− e(s− τM)T R2e(s− τM). (41)

Introducing the free weighting matrix method, we can clearly deduce that

2ξT(s)ℵ
[
e(s)− e(s− τ(s))−∑s−1

r=s−τ(s) η(r)
]
= 0, (42)

where

ℵ =
[
NT

1 0 0 0 0 NT
2 0 0

]T . (43)

From Lemma 2, we have

− 2ξT(s)ℵ∑s−1
r=s−τ(s) η(r)

≤ ξT(s)ℵP̃−1ℵTξ(s) +
(

∑s−1
r=s−τ(s) η(r)

)T
P̃
(

∑s−1
r=s−τ(s) η(r)

)
. (44)

By using Assumption 1, we have

−ρ

[
e(s)

θ(e(s))

]T[Ū1 Ū2
∗ I

][
e(s)

θ(e(s))

]
≥ 0, (45)

−ε

[
e(s− d(s))

ω(e(s− d(s)))

]T[V̄1 V̄2
∗ I

][
e(s− d(s))

ω(e(s− d(s)))

]
≥ 0, (46)

where scalars ρ > 0, ε > 0,

Ū1 =
1
2

(
UT

1 U2 + UT
2 U1

)
, Ū2 = −1

2

(
UT

1 + UT
2

)
, (47)

V̄1 =
1
2

(
VT

1 V2 + VT
2 V1

)
, V̄2 = −1

2

(
VT

1 + VT
2

)
. (48)
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Combining (26)–(48), we have

∆V(s) = V(s + 1)−V(s)
≤ eT(s + 1)Pe(s + 1)− eT(s)Pe(s)

+ eT(s)S1e(s)− eT(s− d(s))S1e(s− d(s)) + eT(s)S2e(s)

− eT(s− τ(s))S2e(s− τ(s)) + d2
MηT(s)R1η(s) + τ2

MηT(s)R2η(s)

− dM

s−1

∑
r=s−dM

ηT(r)R1η(r)− τM

s−1

∑
r=s−τM

ηT(r)R2η(r)

− ρ

[
e(s)

θ(e(s))

]T[Ū1 Ū2
∗ I

][
e(s)

θ(e(s))

]
− ε

[
e(s− d(s))

ω(e(s− d(s)))

]T[V̄1 V̄2
∗ I

][
e(s− d(s))

ω(e(s− d(s)))

]
+ 2ξT(s)ℵ

[
e(s)− e(s− τ(s))−∑s−1

r=s−τ(s) η(r)
]

+ δeT(s− τ(s))Ωe(s− τ(s))− eT
α (s)Ωeα(s)

≤ ξT(s)
(

Θ1 + MTPM + d2
MΛT R1Λ + τ2

MΛT R2Λ + ℵP̃−1ℵT
)

ξ(s). (49)

It is obvious from Lemma 4 that Φ = Θ1 + MTPM + d2
MΛT R1Λ + τ2

MΛT R2Λ +
ℵP̃−1ℵT < 0. Therefore, system (23) is asymptotically stable. This completes the proof of
the Theorem 1.

Remark 1. Two kinds of time-varying delays are considered in DTRNNs (23), which is complicated
to handle it. Jensen inequality and discrete-time free weight matrix are introduced to deal with it.
Also, the sector conditions are assumed, which relaxed the Lipschitz conditions.

3.2. State-Feedback Controller Design for DTRNNs with Time-Varying Delay

Theorem 2. For given parameters dM, δ, τM, the error system (23) is asymptotically stable
with an event-triggered mechanism (16). If the matrix Ω > 0, P > 0, Sm > 0(m = 1, 2),
Rm > 0(m = 1, 2), P̃ > 0 exists, and positive scalars are ρ, ε, the following LMIs hold:

Γ̂1 =


Θ1 Θ̂2 Θ̂3 Θ̂4 Θ5
∗ −P 0 0 0
∗ ∗ −2P + R1 0 0
∗ ∗ ∗ −2P + R2 0
∗ ∗ ∗ ∗ −P̃

, (50)

where

Θ̂2 =
[
−P C̆ P Ă P B̆ 0 0 Z 0 −Z

]T ,

Θ̂3 =
[
−dMP C̆− dMP dMP Ă dMP B̆ 0 0 dMZ 0 −dMZ

]T ,

Θ̂4 =
[
−τMP C̆− τMP τMP Ă τMP B̆ 0 0 τMZ 0 −τMZ

]T ,

other parameters are defined as Theorem 1, the controller gain matrix can be represented by
K̂ = P−1 × Z.
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Proof of Theorem 2. By Lemma 4, (24) can be written as the following inequality:

Γ̂1 =


Θ1 Θ̂2 Θ̀3 Θ̀4 Θ5
∗ −P 0 0 0
∗ ∗ −R−1

1 0 0
∗ ∗ ∗ −R−1

2 0
∗ ∗ ∗ ∗ −P̃

 < 0, (51)

where

Θ̀3 =
[
−dMC̆− dM I dM Ă dM B̆ 0 0 dMK̂ 0 −dMK̂

]T ,

Θ̀4 =
[
−τMC̆− τM I τM Ă τM B̆ 0 0 τMK̂ 0 −τMK̂

]T .

By congruential transformation, we can obtain

Γ̌1 =


Θ1 Θ̂2 Θ̂3 Θ̂4 Θ5
∗ −P 0 0 0
∗ ∗ −PR−1

1 P 0 0
∗ ∗ ∗ −PR−1

2 P 0
∗ ∗ ∗ ∗ −P̃

 < 0. (52)

By Lemma 3, consider the inequality

−PR−1
m P ≤ −2P + Rm,m = 1, 2 (53)

then, we obtain (50) from (52). This completes the proof of Theorem 2.

Remark 2. In Theorem 1, the sufficient conditions are nonlinear, which are unsolvable by matlab.
By Schur complement lemma, together with congruential transformation, the event-triggered state
feedback controller is designed via solving a LMI, which is provided in Theorem 2.

4. Numerical Example with Simulations

To illustrate the significance of the designed controller and the validity of the results,
this section provides some numerical examples with simulation.

Example 1. Considerthe drive DTRNNs (1) with n = 2 and the following parameters:

x1(s + 1) = −c1x1(s) + a11 f1(x1(s)) + a12 f2(x2(s))
+ b11g1(x1(s− d(s))) + b12g2(x2(s− d(s))) + I1

x2(s + 1) = −c2x2(s) + a21 f1(x1(s)) + a22 f2(x2(s))
+ b21g1(x1(s− d(s))) + b22g2(x2(s− d(s))) + I2 (54)

where c1 = 0.8, c2 = 0.3, a11 = 1.05, a12 = −0.5, a21 = 2.9, a22 = −2, b11 = −1.7,
b12 = 1.8, b21 = −0.3, b22 = −2.5, The activation function f j

(
xj
)

= gj
(

xj
)

= 10 ∗(
sin
(
0.03xj

)
− tanh

(
0.02xj

))
, j = 1, 2. Givn dM = 4, τM = 2, I1 = I2 = 0, U1 =

[
0.1 0
0 0.1

]
,

U2 =

[
0.5 0
0 0.5

]
. The response DTRNNs (2) are given as



Mathematics 2022, 10, 2816 11 of 17

y1(s + 1) = −c1y1(s) + a11 f1(y1(s)) + a12 f2(y2(s))
+ b11g1(y1(s− d(s))) + b12g2(y2(s− d(s))) + I1 + u1(s)

y2(s + 1) = −c2y2(s) + a21 f1(y1(s)) + a22 f2(y2(s))
+ b21g1(y1(s− d(s))) + b22g2(y2(s− d(s))) + I2 + u2(s). (55)

If the state feedback control is not considered, the state trajectory simulation of
the open-loop system is shown in Figure 2, and we find that the open drive-response
DTRNNs (54) and (55) are unstable and asynchronous in Figures 3 and 4. Therefore, we
designed a state feedback controller with ETC. By the event-triggered mechanism (6), we
assume δ = 0.2. According to (50), the corresponding feasible solutions are obtained as

P = 10−14
[

0.3146 0.0535
0.0535 0.1547

]
, P̃ =

[
113.0679 −0.5640
−0.5640 101.6117

]
,

S1 = 10−13
[

0.2767 −0.0051
−0.0051 0.3515

]
, S2 = 10−13

[
0.4432 0.0080
0.0080 0.4822

]
,

R1 = 10−13
[

0.3359 0.0030
0.0030 0.3207

]
, R2 = 10−13

[
0.3558 0.0061
0.0061 0.3289

]
,

N1 =

[
−113.0679 0.5640

0.5640 −101.6117

]
, N2 =

[
113.0679 −0.5640
−0.5640 101.6117

]
ρ = 1.3682× 10−12, ε = 9.5478× 10−13,

Ω = 10−12
[

0.2656 0.0054
0.0054 0.3413

]
, K̂ =

[
1.1169 −0.4546
0.3552 1.6840

]
.
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Figure 2. Trajectory curve of an error system e(s) without controller.
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Figure 3. Trajectory curves of x1(s) and y1(s) without controller.
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Figure 4. Trajectory curves of x2(s) and y2(s) without controller.

Figure 5 presents the simulation of the closed-loop system, and it is clear that the
system is asymptotically stable. It can be seen from Figures 6 and 7 that the drive-response
DTRNNs (54) and (55) are synchronous, and Figure 8 shows the event interval with control
gain K̂ and triggered matrix Ω.
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Figure 5. Trajectory curve of an error system e(s) with controller.



Mathematics 2022, 10, 2816 13 of 17

0 10 20 30 40 50 60

k

-3

-2

-1

0

1

2

3

4

x
1
(s

) 
a
n
d
 y

1
(s

)

x
1
(s)

y
1
(s)

Figure 6. Trajectory curves of x1(s) and y1(s) with controller.
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Figure 7. Trajectory curves of x2(s) and y2(s) with controller.
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Figure 8. Release intervals with K̂ and Ω.

Compared with the continuous case in the literature [25], the time required for the
error system to stabilize in the discrete case will be longer, but the number of event triggers
will be significantly less, so as to truly save network space, reduce network pressure, and
save resources.
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Example 2. For systems (54) and (55), take the same parameters and activation function as in
Example 1, consider the different frequency with 2 steps. From example 1, we know that the open
driven-response DTRNNs (54) and (55) are not synchronized. From Theorem 2, the event-triggered
weight matrix and controller gain can be designed as follows:

Ω = 10−12
[

0.2656 0.0054
0.0054 0.3413

]
, K̂ =

[
1.1169 −0.4546
0.3552 1.6840

]
.

From Figure 9, we find that the error system is convergent to zero. It means that the
driven DTRNNs and response DTRNNs are synchronized with 2 steps under controller (7),
which also can be shown by Figures 10 and 11. Figure 12 shows the event-triggered release
interval. That is to say the designed controller is effective.
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Figure 9. Trajectory curves of x1(s) and y1(s) with controller.
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Figure 10. Trajectory curves of x2(s) and y2(s) with controller.
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Figure 11. Trajectory curve of an error system e(s) with controller.
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Figure 12. Release intervals with K̂ and Ω.

5. Conclusions

This article mainly analyzes the synchronization issue of time-varying delay DTRNNs
based on ETC. By constructing a suitable LKF, a logical condition for the asymptotic
stability of the error system was obtained by analysis, which ensures that the DTRNNs are
synchronized. On this basis, an appropriate event-triggered state feedback controller was
designed, and two numerical examples were used to verify that the designed controller is
feasible. Based on recent research results, this paper provides a new criterion for the study
of RNNs of discrete systems with time-varying delay. The set controller is more suitable for
engineering applications and is more universal.
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