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Abstract: This work considers a multifactor linear mixed model under heteroscedasticity in random-
effect factors and the skew-normal errors for modeling the correlated datasets. We implement
an expectation–maximization (EM) algorithm to achieve the maximum likelihood estimates using
conditional distributions of the skew-normal distribution. The EM algorithm is also implemented
to extend the local influence approach under three model perturbation schemes in this model.
Furthermore, a Monte Carlo simulation is conducted to evaluate the efficiency of the estimators.
Finally, a real data set is used to make an illustrative comparison among the following four scenarios:
normal/skew-normal errors and heteroscedasticity/homoscedasticity in random-effect factors. The
empirical studies show our methodology can improve the estimates when the model errors follow
from a skew-normal distribution. In addition, the local influence analysis indicates that our model
can decrease the effects of anomalous observations in comparison to normal ones.

Keywords: EM algorithm; expectation–maximization algorithm; heteroscedasticity; Monte Carlo
simulation; random effects; skew-normal; variance components; applied mathematics; Linear
mixed models

MSC: 62F10; 62J05

1. Introduction

Linear mixed models (LMMs) are useful for the statistical analysis of correlated
datasets such as longitudinal data. For simplicity, it is usually assumed that both random
effects and random errors follow a normal distribution. Under these restrictions, there are
several proposals for estimating LMM parameters in the literature; among these, one can
refer to Harvill [1], Fellner [2], Khuri et al. [3] and Wu et al. [4]. For example, Harvill [1] and
Fellner [2] obtained the maximum likelihood (ML) estimates of parameters in a multifactor
normal LMM under heteroscedasticity of random-effect factors. They showed the estimates,
in addition to being consistent, were asymptotically normally distributed. However, as
pointed out by Zhong and Davidian [5], using these estimation methods may cause invalid
statistical inferences when the data are asymmetric. Therefore, many authors have criticized
the common use of the normality assumption (see, e.g., [6–10]).

From a practical perspective, the most frequently used method to achieve normal-
ity is to apply a transformation on the variables. Although such methods may provide
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suitable empirical results, they should not be used if a more reasonable theoretical model
is available [11]. Thus, it is of great interest to develop estimation methods in statistical
models with flexible distribution assumptions. In this sense, one of the simplest and ap-
plicable distributions that provides skewness and contains a normal distribution is the
skew-normal distribution introduced by Azzalini [12]. Although it is old, it is still used in
statistical models due to its flexibility and simplicity, especially in complex models where it
is difficult to use new generalized skewed distributions. Some new works in this research
area are [13,14]. In the literature, many authors have studied inferences on parameters
in LMMs (with only one random-effect factor) where the random effects or the model
random errors follow asymmetric and non-normal distributions (see, e.g., [5,7–9,15–22]).
Verbeke and Lesaffre [15], through an extended simulation when the random-effect dis-
tribution was misspecified, showed that the standard errors of the parameters needed to
be corrected. Arellano-Valle et al. [18] considered an LMM when both the random-effect
factor and the random errors follow the SN distribution. Due to complexity, they derived
marginal distributions and implemented an EM algorithm to obtain the ML estimates. They
indicated that the estimates had more efficiency than normal estimates when the normality
assumption was violated. Lachos et al. [19] presented an LMM when the random effects
followed a multivariate SN independent distribution. They derived the ML estimates of
the parameters based on an efficient EM algorithm. They also investigated a technique to
predict the response variable. Kheradmandi and Rasekh [20] followed [18] and obtained
the ML estimates in the LMM when the fixed effects were measured with non-negligible
errors. In this work, a multifactor SN–LMM was considered with different variances for
the random-effect factors to show how heteroscedasticity, as a freer assumption in random-
effect factors, can improve our statistical results. Here, a SN–LMM is an LMM with SN
distribution in the model random errors.

A diagnostic analysis is a necessary step in statistical analysis after parameter esti-
mation. The local influence approach, a pioneering work of Cook [23], is one of the most
important diagnostic tools for assessing the stability of the estimation parameters. Due
to the complicated calculations of Cook’s local influence approach in statistical models
with incomplete data, Zhu and Lee [24] developed Cook’s approach to these models based
on the conditional expectation of a complete-data log likelihood at the E-step of the EM
algorithm. To see some applications of Zhu and Lee’s approach, one can refer to [25–28].
Local influence analysis for LMMs based on SN distribution had been studied by Bol-
farine [29], Montenegro et al. [30], and Zeller et al. [31]. All these works considered local
influence diagnostics for an LMM based on SN distribution in the random-effect factor.
Furthermore, all perturbation schemes were considered the same. In this work, besides
parameter estimation, we developed Zhu and Lee’s local influence diagnostic measures
for the LMM under different assumptions on random effects and random errors that were
mentioned before. A different perturbation scheme was also considered concerning the
previous works. The rest of the paper is structured as follows. In Section 2, we present
the model and obtain distributional facts about the variables that will help us use the EM
algorithm. In Section 3, parameter estimation and random effects prediction are derived
via the EM algorithm. In Section 4, the local influence diagnostic measures for the LMM
are extended based on the methodology proposed by Zhu and Lee [24]. The basic building
blocks of three perturbation schemes are also derived. In Section 5, a simulation study
is performed to compare the normal LMM and the SN-LMM, and then a real dataset is
analyzed to perform an illustrative comparison. Discussion and conclusions of this paper
are given in Section 6.

2. The Model Definition

Consider the following LMM:

Y = Xβ + Ub + ε = Xβ + ∑m
i=1 Uibi + ε, (1)
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where β is a p× 1 vector of parameters, which are fixed effects; X and U = [U1|U2| . . .|Um]
are n × p and n × q known design matrices, respectively, where Ui is an n × qi design

matrix of the random-effect factor i; b =
(

b>1 , b>2 , . . . , b>m
)>

, where bi is a qi × 1 vector

of unobservable random effects from Nq
(
0, σ2

i Iqi

)
, i = 1, . . . ,m; ε is an n × 1 vector of

unobservable random errors from SNn
(
0, σ2In, λε

)
, that is n-dimensional SN distribution

with skewness vector λε ∈ Rn. The variances σ2and σ2
i , i = 1, . . . ,m are named variance

components. We assume that bi, i = 1, . . . ,m, and ε are mutually independent. One may
also write b ∼ Nq

(
0, σ2Σ

)
, where Σ is a block diagonal matrix with the ith block being γiIqi ,

for γi = σ2
i /σ2, that are called the ratio of variance components.

The above assumptions conclude that Y
∣∣b ∼ SNn

(
Xβ + Ub, σ2In, λε

)
and so the joint

distribution of the vectors Y and b is obtained as follows:

f (y, b) = 2φq

(
b
∣∣∣0, σ2Σ

)
φn

(
y
∣∣∣Xβ + Ub, σ2In

)
×Φ

(
λ>ε (y−Xβ−Ub)/σ

)
(2)

where φn(|µ, Σ ) stands for the n-variate normal density function with mean µ and covari-
ance matrix Σ and Φ(·) represents the cumulative distribution function of N(0, 1).

From (2), the marginal density of Y would be as follows:

f (y) =
∫
Rq

2φq

(
b
∣∣∣ΣU>V−1(y−Xβ), σ2ΣT

)
φn

(
y
∣∣∣Xβ, σ2V

)
×Φ

(
λ>ε (y−Xβ−Ub)/σ

)
db

= 2φn

(
y
∣∣∣Xβ, σ2V

)
E
(

Φ
(

λ>ε (y−Xβ−UB)/σ
))

= 2φn

(
y
∣∣∣Xβ, σ2V

)
Φ

(
λ>ε V−1(y−Xβ)

σδ

)
; y ∈ Rn

where V = In +UΣU> = In + ∑m
i=1 γiUiU>i , T =

(
Iq +U>UΣ

)−1
so that ΣT is a symmetric,

non-singular matrix; B ∼ Nq

(
ΣU>V−1(y−Xβ), σ2ΣT

)
; and where δ2 = 1 + λ>ε

(
In −V−1)λε.

Therefore, Y has a generalized SN distribution.

Based on the distribution of Y, the log-likelihood function of θ =
(

β>, σ2, γ>, λ>ε
)>

is
given by

l(θ; X, y) ∝ − n
2 log

(
σ2)− 1

2 log(|V|)

− 1
2σ2

[
(y−Xβ)>V−1(y−Xβ)

]
+ log Φ

(
λ>ε V−1(y−Xβ)

σδ

)
,

(3)

where γ = (γ1, . . . ,γm)
>.

As can be seen, there is no obvious solution for the direct maximization of Equation (3),
and the likelihood function has to be maximized numerically. Using numerical approaches,
besides the high computational costs and lack of robustness to the starting values, causes
some problems for the maximization due to the term log(Φ(·)). Therefore, corresponding to
previous studies in the field of using the skew family in modeling (see, e.g., [8,9,18–20,22,27]),
an EM algorithm was applied to reduce computation complexity with high efficiency.

The EM algorithm, introduced by Dempster et al. [32], is a famous iterative algorithm
for ML estimation in incomplete data models. One of the major reasons for its popularity
is the M-step that includes maximization of a likelihood function based on complete
data, which is often computationally simple. It is also not very sensitive to the starting
parameter values.
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Let TN
(
ξ,η2; a, b

)
represent the truncated normal distribution with parameters ξ and

η2 and truncation range (a, b). If the distribution of y is written as

f (y) = 2φn

(
y
∣∣∣Xβ, σ2V

) ∫ +∞

0
φ
(

z
∣∣∣λ>ε V−1(y−Xβ), σ2δ2

)
dz; y ∈ Rn,

the joint distribution of Y and the missing variable Z will be

f (y, z) = 2φn

(
y
∣∣∣Xβ, σ2V

)
φ
(

z
∣∣∣λ>ε V−1(y−Xβ), σ2δ2

)
; y ∈ Rn, z > 0.

Based on the above joint distribution, the conditional distribution of Z|y is obtained as

f ( z|y) =
φ
(
z
∣∣λ>ε V−1(y−Xβ), σ2δ2)∫ +∞

0 φ
(
z
∣∣λ>ε V−1(y−Xβ), σ2δ2

)
dz

; z > 0.

Hence, Z|y ∼ TN
(
λ>ε V−1(y−Xβ), σ2δ2; 0,+∞

)
. Now, with the help of the properties

of the truncated normal distribution [33], we have

E(Z|y) = λ>ε V−1(y−Xβ) + σδW

(
λ>ε V−1(y−Xβ)

σδ

)
, (4)

and
E
(

Z2
∣∣∣y) =

(
λ>ε V−1(y−Xβ)

)2
+ σ2δ2

+ σδλ>ε V−1(y−Xβ)W

(
λ>ε V−1(y−Xβ)

σδ

)
, (5)

To predict the random effects, we first need the conditional distribution of b|y given by

f (b|y) = f (y,b)
f (y)

= 1
α φq

(
b
∣∣∣ΣU>V−1(y−Xβ), σ2ΣT

)
Φ
(
λ>ε (y−Xβ−Ub)/σ

)
,

where

α = Φ

(
λ>ε V−1(y−Xβ)

σδ

)
.

Now, the conditional log-likelihood function of b—-given θ, X and y—-is obtained as

l∗(b; θ, X, y) ∝ − q
2 log

(
σ2)− 1

2 log(|ΣT|)
− 1

2σ2

(
b− ΣU>V−1(y−Xβ)

)>
(ΣT)−1(b− ΣU′V−1(y−Xβ)

)
+ log

(
Φ
(
λ>ε (y−Xβ−Ub)/σ

))
− log(α).

As seen again, l∗ like l has the term log(Φ(·)) and so, to predict b, based on the ML
method, we use the EM algorithm.

To do this, we first rewrote the conditional distribution of b|y as

f (b|y) = 1
α φq

(
b
∣∣∣ΣU>V−1(y−Xβ), σ2ΣT

)
×
∫ +∞

0 φ
(
z∗
∣∣λ>ε (y−Xβ−Ub), σ2)dz∗; b ∈ Rq, y ∈ Rn.

So, the conditional distribution of b and the missing variable Z∗ given y is equal to

f (b, z∗|y)
= 1

α φq

(
b
∣∣∣ΣU>V−1(y−Xβ), σ2ΣT

)
×φ
(
z∗
∣∣λ>ε (y−Xβ−Ub), σ2); b ∈ Rq, y ∈ Rn, z∗ > 0.

(6)
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The above equation concludes that the conditional distribution of the missing variable
Z∗ given b and y is equal to

f ( z∗|b, y) =
φ
(
z∗
∣∣λ>ε (y−Xβ−Ub), σ2)∫ +∞

0 φ
(
z∗
∣∣λ>ε (y−Xβ−Ub), σ2

)
dz∗

, z∗ > 0.

As seen, Z∗|(b, y) ∼ TN
(
λ>ε (y−Xβ−Ub), σ2; 0,+∞

)
and hence,

E(Z∗|(b, y)) = λ>ε (y−Xβ−Ub) + σW
(

λ>ε (y−Xβ−Ub)/σ
)

, (7)

and
E
(

Z∗2
∣∣(b, y)

)
=
(
λ>ε (y−Xβ−Ub)

)2
+ σ2

+σλ>ε (y−Xβ−Ub)W
(
λ>ε (y−Xβ−Ub)/σ

)
.

(8)

3. Parameter Estimation via the EM Algorithm

Now, let y = (y1, . . . , yn)
′ be a vector of observed responses and z be a missing

observation. Then, the complete log-likelihood function associated with yc = (y′, z)
′

will
be obtained as

lc(θ; X, yc) = C− n
2 log

(
σ2)− 1

2 log(|V|)
− 1

2σ2

[
(y−Xβ)>V−1(y−Xβ)

]
− 1

2 log
(
σ2δ2)− 1

2σ2δ2

(
z− λ>ε V−1(y−Xβ)

)2

where C does not depend on unknown parameters.

If θ̂(r) =

(
β̂>(r), σ̂2(r), γ̂>(r), λ̂ε

>(r)
)>

is the estimate in the rth iteration, then the

expected complete log-likelihood function would be

Q
(

θ| θ̂(r)
)

= E
[

lc(θ; X, yc)|θ̂(r)
]

∝ − n
2 log

(
σ2)− 1

2 log(|V|)

− 1
2σ2

[
(y−Xβ)>V−1(y−Xβ)

]
− 1

2 log
(
σ2δ2)

− 1
2σ2δ2

(
ẑ2(r) − 2ẑ(r)λ>ε V−1(y−Xβ) +

(
λ>ε V−1(y−Xβ)

)2
) (9)

where ẑ(r) = E
[

Z|y; θ̂(r)
]

and ẑ2(r) = E
[

Z2
∣∣y; θ̂(r)

]
are calculated by substituting θ̂(r) in

Equations (4) and (5), respectively.
To obtain a new estimate θ̂(r+1), the M-step maximizes Q

(
θ| θ̂(r)

)
with respect to θ.

This was obtained as a solution of the following equations:

∂Q
(

θ| θ̂(r)
)

∂β
= 0,

∂Q
(

θ| θ̂(r)
)

∂σ2 = 0,

and
∂Q
(

θ| θ̂(r)
)

∂γi
= 0; i = 1, . . . , m.
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If we define h = V−1λε, then from the Equation (9), the estimation of β, is given by

β̂(r+1) =

(
X>
(

V̂(r)−1
+ ĥ(r)ĥ>(r)/δ̂2(r)

)
X
)−1

×
(

X>
(

V̂(r)−1
+ ĥ(r)ĥ>(r)/δ̂2(r)

)
y− ẑ(r)X>ĥ(r)

/δ̂2(r)
)

Before the estimation of variance components, we presented a realized value of the
random effects. In a similar way for fixed effects (See Appendix A.1 for more details.), the
ML prediction of b was given by

b̂(r+1)
=

^
Σ

(r)

U>V̂(r)−1
[(

In +
1

δ̂2(r)
λ̂ε

(r)
λ̂ε
>(r)

V̂(r)−1
)(

y−Xβ̂(r)
)
− 1

δ̂2(r)
ẑ∗(r)λ̂ε

(r)
]

.

where ẑ∗(r) = E
[

Z∗|
(

b̂(r), y
)

; θ̂(r)
]

and ˆz∗2
(r)

= E
[

Z∗2
∣∣(b̂(r), y

)
; θ̂(r)

]
were calculated by

substituting θ̂(r) and b̂(r) into Equations (7) and (8), respectively.
Then, for the ith random-effect factor, we have

b̂i
(r+1)

= γ̂i
(r)U>i V̂(r)−1

[(
In +

1

δ̂2(r)
λ̂ε

(r)
λ̂ε
>(r)

V̂(r)−1
)(

y−Xβ̂(r)
)
− 1

δ̂2(r)
ẑ∗(r)λ̂ε

(r)
]

.

From Equation (9), the estimates of variance components were derived as

σ̂2(r+1)
=

1
n + 1

[(
y−Xβ̂(r)

)>(
V̂(r)−1

+ ĥ(r)ĥ>(r)/δ̂2(r)
)(

y−Xβ̂(r)
)
+

(
ẑ2(r) − 2ẑ(r)ĥ>(r)

(
y−Xβ̂(r)

))
/δ̂2(r)

]
.

and

σ̂2
i
(r+1)

= γ̂i
(r)2

qi−tr(Tii)

{(
y−Xβ̂(r)

)>
V̂(r)−1UiU>i V̂(r)−1

(
y−Xβ̂(r)

)
− σ̂2(r)

δ̂2(r)
ĥ>(r)UiU>i h

+ 1

δ̂2(r)2

[
ẑ2(r) − 2ẑ(r)ĥ>(r)

(
y−Xβ̂(r)

)
+
(

ĥ>(r)
(

y−Xβ̂(r)
))2

]
ĥ(r) ′UiU

′
iĥ

(r)

+ 2

δ̂2(r)

[(
y−Xβ̂(r)

)>
ĥ(r)ĥ>(r)UiU>i V̂(r)−1

(
y−Xβ̂(r)

)
−ẑ(r)ĥ>(r)UiU>i V̂(r)−1

(
y−Xβ̂(r)

)}
where Tii is ith diagonal block of the matrix T (See Appendix A.2 for more details.). By

substituting ẑ(r) and ẑ2(r) with ẑ∗(r) and ẑ∗(r)2, respectively, in the above equation, one can

obtain another estimator for σ2
i based on b̂i

(r+1)
similar to its corresponding estimator in

the normal LMM. This estimator would be as follows:

σ̃2
i

(r+1)
=

1
qi − tr(Tii)

b̂i
(r+1)b̂i

>(r+1) − σ̃2
(r)

δ̂(r)
d>i di

,

where di = U>i ĥ(r)
.

Finally, the ML estimates of skewness parameters would be

λ̂ε
(r+1)

= argmaxλε

(
Q
(

β̂(r+1), σ̂2(r+1)
, γ̂(r+1), λε

∣∣∣∣θ̂(r))),
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where Q
(

β̂(r+1), σ̂2(r+1)
, γ̂(r+1), λε

∣∣∣∣θ̂(r)) is Q
(

θ| θ̂(r)
)

evaluated at updated β̂(r+1), σ̂2(r+1)

and γ̂(r+1).
The above algorithm stops when a reasonable convergence rule is satisfied (e.g.,

θ̂(r+1) − θ̂(r) < 10−6). A set of adequate starting values can be obtained by solving the
normal LMM for β, σ2 and σ2

i , i = 1, . . . , m and the sample skewness coefficient of the
residuals or zero values for λε. But, as recommended in the literature, the EM algorithm
should be run several times with different starting values.

4. Local Influence Analysis

Cook’s local influence method was used to evaluate the influence of various minor
model perturbations on the parameter estimates. Inspired by the general idea of the EM
algorithm, Zhu and Lee [24] generalized the local influence diagnostic method to general
statistical models with incomplete data based on a Q-function. Here, we briefly studied a
natural extension of this procedure to SN–LMM. In this section, we assumed that the γi’s
were known. If the γi’s were unknown, the ML estimates would have been placed back

into Σ, so the vector θ would have been θ =
(

β>, σ2, λ>ε
)>

.
If we let ω = (ω1, ω2, · · · , ωn) be a n-dimensional vector of perturbations varying

in open region Ω ∈ Rn, the perturbed complete-data log-likelihood function would be
denoted by lc(θ, ω; X, yc). It is assumed that there exists w0, a vector of no perturba-

tion, such that lc(θ, ω0; X, yc) = lc(θ; X, yc) for all θ. Let Q
(

θ̂(ω)
∣∣θ̂(r)) be the maximum

value of the Q
(

θ, ω|θ̂(r)
)
= E(lc(θ, ω; X, yc)), where θ̂(ω) denotes the ML estimate under

Q
(

θ, ω|θ̂(r)
)

. To evaluate the influence of minor perturbations on the ML estimate θ̂, one
may regard the Q-displacement function, defined as follows:

QD(ω) = 2
{

Q
(

θ̂
∣∣θ̂(r))−Q

(
θ̂(ω)

∣∣θ̂(r))}
Zhu and Lee [24] suggested studying the local behavior of QD(ω) around ω0. Cor-

responding to their proposal, the normal curvature in the direction of some unit vector d,
given by CQD,d = −2d>

..
Qω0

d, can be employed to summarize the local behavior of the
Q-displacement function, where

−
..
Qω0

= ∆>ω0

{
−

..
Qθ

(
θ̂
)}−1

∆ω0

in which
..
Qθ

(
θ̂
)
=

∂2Q
(

θ| θ̂(r)
)

∂θ∂θ>

∣∣∣∣∣∣
θ=θ̂

and

∆ω =
∂2Q

(
θ, ω|θ̂(r)

)
∂θ∂ω>

∣∣∣∣∣∣
θ=θ̂(ω)

.

Since most influence measures proposed in the statistical literature are closely re-
lated to a spectral decomposition of −2

..
Qω0

, we used this expression to detect influ-

ential observations. Let ∑n
k=1 ξkeke>k be the spectral decomposition of −2

..
Qω0

where

{(ξi, ei) : i = 1, . . . , n} are the eigenvalue–eigenvector pairs of the matrix −2
..
Qω0

with

ξ1 ≥ . . . ≥ ξq, ξq+1 = . . . = ξn = 0 and
{

ek =
(

ek1, . . . , ekq

)
: k = 1, . . . , n

}
is the associated

orthonormal basis.
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Following Zhu and Lee [24] and Lu and Song [34], the assessment of influential
observations was based on

M(0)i =
q

∑
k=1

ξ̃ke2
ki, i = 1, . . . , n

where ξ̃k = ξk/
(
ξ1 + . . . + ξq

)
. The influence measure M(0)i may be obtained through

BQD,di =
−2d>i

..
Qω0

di

tr
(
−2

..
Qω0

)
where di is an n× 1 vector with the ith element equal to one and all other elements equal to
zero. Moreover, corresponding to Lee and Xu [35], we used the cut-off point 1/n+ c∗SM(0)
to consider the ith observation as influential, where c∗ is a constant, chosen according to
the real application, and SM(0) denotes the standard deviation of {M(0)i : i = 1, . . . , n}.

4.1. The Hessian Matrix

To achieve the local influence diagnostic measures for a particular perturbation scheme,

we needed to compute
∂2Q( θ| θ̂(r))

∂θ∂θ>
. It follows from (9) that the Hessian matrix has elements

given by
∂2Q

(
θ| θ̂(r)

)
∂β∂β>

= − 1
σ2 X>

(
V−1 +

1
δ2 hh>

)
X,

∂2Q
(

θ| θ̂(r)
)

∂β∂σ2 = − 1
σ4 X>

{(
V−1 +

1
δ2 hh>

)
(y−Xβ)− ẑ(r)

δ2 h

}
,

∂2Q( θ| θ̂(r))
∂β∂λ>ε

= 2
σ2δ4

{
ẑ(r) − h>(y−Xβ)

}
X>h(λε − h)>

− 1
σ2δ2 X>V−1

[{
ẑ(r) − h>(y−Xβ)

}
In − λε(y−Xβ)>V−1

]
,

∂2Q
(

θ| θ̂(r)
)

∂σ2∂σ2 =
n + 1
2σ4 −

1
σ6 (y−Xβ)>V−1(y−Xβ)− 1

σ6δ2

[
ẑ2(r) − 2ẑ(r)h>(y−Xβ) +

{
h>(y−Xβ)

}2
]

,

∂2Q( θ| θ̂(r))
∂σ2∂λ>ε

= − 1
σ4δ4

[
ẑ2(r) − 2ẑ(r)h>(y−Xβ) +

{
h>(y−Xβ)

}2
]
(λε − h)>

− 1
σ4δ2

{
ẑ(r) − h>(y−Xβ)

}
(y−Xβ)>V−1,

∂2Q( θ| θ̂(r))
∂λε∂λ>ε

= 2
δ4 (λε − h)(λε − h)> − 1

δ2

(
In − V−1)

− 1
σ2δ4

[
ẑ2(r) − 2ẑ(r)h>(y−Xβ) +

{
h>(y−Xβ)

}2
][

4
δ2 (λε − h)(λε − h)> −

(
In − V−1)]

− 2
σ2δ4

{
ẑ(r) − h>(y−Xβ)

}
(λε − h)(y−Xβ)>V−1

− 1
σ2δ2 V−1(y−Xβ)

[
2
δ2

{
ẑ(r) − h>(y−Xβ)

}
(λε − h)> + (y−Xβ)>V−1

]
.

4.2. Perturbation Schemes

In this section, we present three distinct perturbation schemes for the model defined
in (1).
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4.2.1. Perturbation of the Response Variable

A perturbation of the response variable y is defined as yω = y + syω, where sy is the
standard deviation of y. In this case, ω0 = 0 and

Q
(

θ, ω|θ̂(r)
)

∝ − n
2 log

(
σ2)− 1

2 log(|V|)
− 1

2σ2

[
(yω −Xβ)>V−1(yω −Xβ)

]
− 1

2 log
(
σ2δ2)

− 1
2σ2δ2

[
ẑ2(r) − 2ẑ(r)h>(yω −Xβ) +

{
h>(yω −Xβ)

}2
]

.

(10)

From (10), the matrix

∆ω0 =
∂2Q

(
θ, ω|θ̂(r)

)
∂θ∂ω>

∣∣∣∣∣∣
ω=ω0

has the following elements.

∆β =
sy

σ2 X>
(

V−1 +
1
δ2 hh>

)

∆σ2 =
sy

σ4 (y−Xβ)>V−1 −
sy

σ4δ2

{
ẑ(r) − h>(y−Xβ)

}
h>

∆λε
= − 2sy

σ2δ4

{
ẑ(r) − h>(y−Xβ)

}
(λε − h)h>

+
sy

σ2δ2

[{
ẑ(r) − h>(y−Xβ)

}
V−1 − V−1(y−Xβ)h>

]
4.2.2. Perturbation of the kth Column of the Matrix X

We considered altering the kth column matrix X, i.e., xk, by taking xkω = xk + skω
where sk is the standard deviation of xk and ω0 = 0 represents no perturbation. In this case,
the perturbed Q-function took the form

Q
(

θ, ω|θ̂(r)
)

∝ − n
2 log

(
σ2)− 1

2 log(|V|)

− 1
2σ2

[
(y−Xωβ)>V−1(y−Xωβ)

]
− 1

2 log
(
σ2δ2)

− 1
2σ2δ2

[
ẑ2(r) − 2ẑ(r)h>(y−Xωβ) +

{
h>(y−Xωβ)

}2
]

,

(11)

where Xω =
(
x1ω, . . . ,xpω

)
. It follows from (11), that the elements of the matrix ∆ω0 were

given by

∆β =
st

σ2

{
ut(y−Xβ)>V−1 − βtX>V−1

}
− st

σ2δ2

[{
ẑ(r) − h>(y−Xβ)

}
uth> + βtX>hh>

]
∆σ2 = − stβt

σ4 (y−Xβ)>V−1 +
stβt

σ4δ2

{
ẑ(r) − h>(y−Xβ)

}
h>

∆λε
=

stβt

σ2

[{
ẑ(r) − h>(y−Xβ)

}{ 2
δ4 (λε − h)h> − 1

δ2 V−1
}
+

1
δ2 V−1(y−Xβ)h>

]
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4.2.3. Perturbation of the Dispersion Matrix of the Errors

We modified the dispersion matrix of errors, i.e., σ2In, to σ2D(ω) where D(ω) is a
diagonal matrix with diagonal elements ω = (ω1, ω2, · · · , ωn)

>. The point representing no
perturbation is ω0 = (1, 1, · · · , 1)>. In this case, the perturbed Q-function was obtained as

Q
(

θ, ω|θ̂(r)
)

∝ − n
2 log

(
σ2)− 1

2 log(|V(ω)|)

− 1
2σ2

[
(y−Xβ)>V(ω)−1(y−Xβ)

]
− 1

2 log
(
σ2δ2(ω)

)
− 1

2σ2δ2(ω)

[
ẑ2(r) − 2ẑ(r)h(ω)>(y−Xβ) +

{
h(ω)>(y−Xβ)

}2
]

,

(12)

where V(ω) = D(ω) + UΣU>, h(ω) = V−1(ω)λε, and δ2(ω) = 1 + λ>ε (D(ω)−D(ω)V−1

(ω)D(ω))λε. From (12), we obtained the elements of ∆ω0 .
The kth column of the matrix ∆β was given by

− 1
σ2 X>ckc>k (y−Xβ) + 1

σ2δ4

{
d>k (λε − h)

}2
{

ẑ(r) − h>(y−Xβ)
}

X>h

− 1
σ2δ2

[
λ>ε ckc>k (y−Xβ)X>h

−
{

ẑ(r) − h>(y−Xβ)
}

X>ckc>k λε

]
where ck is the kth column of matrix V−1. Also, the kth element of the vector ∆σ2 was
obtained by

− 1
2σ2 (y−Xβ)>ckc>k (y−Xβ)− 1

2σ4δ4

{
d>k (λε − h)

}2
[

ẑ2(r) − 2ẑ(r)h>(y−Xβ) +
{

h>(y−Xβ)
}2
]

+ 1
σ4δ2

{
ẑ(r) − h>(y−Xβ)

}
λ>ε ckc>k (y−Xβ)

Finally, the kth column of the matrix ∆λε
was achieved by

rk − 1
σ2δ2

[[
ẑ2(r) −2ẑ(r)h>(y−Xβ) +

{
h>(y−Xβ)

}2
](

2rk +
1
δ2 Hkλε

)
+ 1

δ2

{
d>k (λε − h)

}2{
ẑ(r) − h>(y−Xβ)

}
V−1(y−Xβ)

−λ>ε ckc>k (y−Xβ)
[

2
δ2

{
ẑ(r) − h>(y−Xβ)

}(
In − V−1)λε

+V−1(y−Xβ)
]
+
{

ẑ(r) − h>(y−Xβ)
}

ckc>k (y−Xβ)
]

where
Hk =

(
In − V−1

)
D(dk)

(
In − V−1

)
,

and
rk =

1
δ4

{
d>k (λε − h)

}2(
In − V−1

)
λε −

1
δ2 Hkλε.

5. Empirical Studies

In this section, we presented a simulation study and a real data example. The R
software (version 4.1.2) Vienna, Austria, [36] was used to conduct all programs.
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5.1. Simulation Study

Here, we considered a Monte Carlo simulation to evaluate the performance of the ML
estimates in finite sample sizes. The model was taken as follows:

Yij = x(1)ij β1 + x(2)ij β2 + b1j + εij; i = 1, . . . , s; j = 1, . . . , q,

where q, according to [37], is the number of independent clusters, and s is the cluster
size in a longitudinal study; hence, the total sample size was n = sq. If this model were
represented in a matrix form as in (1), we would have m = 1, b = b1 =

(
b11, . . . , b1q

)>;

Y =
(
Y11, . . . , Y1q, Y21, . . . , Y2q, . . . , Ys1, . . . , Ysq

)>; and X =
(

x>(1), x>(2)
)>

, where x(k) =(
x(k)11 , . . . , x(k)1q , x(k)21 , . . . , x(k)2q , . . . , x(k)s1 , . . . , x(k)sq

)>
and ε has the same structure as Y. We

considered the following combinations for simulation: q = 50 or 100 and s = 3, which
are usual sample sizes in longitudinal studies, β1 = −1, β2 = 2, x(k) ∼ Nn(0, In), b1 ∼
Nq
(
0, σ2

1 Iq
)
, ε ∼ SNn

(
0, σ2In, λε = (λ1 = −3, λ2 = 0, λ3 = 3)> ⊗ 1q/n

)
, where 1q is a

q× 1 vector of 1s. To see the effect of variability in data on the estimation of the parameters,
we took σ2

1 = 0.52 and σ2 = 0.42 as a low dispersion and σ2
1 = 0.92 and σ2 = 0.82 as a high

dispersion in the response data. We also considered two cases for obtaining our estimates:
(I) without taking into account skewness in the model and using the ML estimates under
normal errors, which is called here the Normal estimates; and (II), using the estimates in this
work named by the SN estimates. For each combination of the parameters, 1000 iterations
were performed. We applied the mvtnorm and sn packages to generate random samples
from the multivariate normal and SN distributions, respectively.

In each iteration, we obtained parameter estimates based on both scenarios, and then
the mean and the standard deviation (SD) of the Normal and SN estimators were calculated.
The summary results are presented in Tables 1–4.

Table 1. Mean and SD of each estimator for both cases with n = 150, σ2 = 0.42 and σ2
1 = 0.52.

Normal SN

Parameter True Value Mean SD Mean SD

β1 −1 −1.0031 0.0409 −0.9990 0.0385
β2 2 1.9992 0.0411 2.0019 0.0406
σ2 0.16 0.1871 0.0233 0.1580 0.0222
σ2

1 0.25 0.2198 0.0611 0.2455 0.0575
λ1 −3 - - −3.1239 0.3321
λ2 0 - - −0.0083 0.0963
λ3 3 - - 2.9146 0.3275

Table 2. Mean and SD of each estimator for both cases with n = 300, σ2 = 0.42 and σ2
1 = 0.52.

Normal SN

Parameter True Value Mean SD Mean SD

β1 −1 −0.9989 0.0298 −1.0012 0.0268
β2 2 1.9978 0.0297 2.0001 0.0274
σ2 0.16 0.1893 0.0167 0.1587 0.0160
σ2

1 0.25 0.2212 0.0389 0.2505 0.0433
λ1 −3 - - −2.9564 0.2249
λ2 0 - - 0.0015 0.0635
λ3 3 - - 3.0650 0.2268
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Table 3. Mean and SD of each estimator for both cases with n = 150, σ2 = 0.82 and σ2
1 = 0.92.

Normal SN

Parameter True Value Mean SD Mean SD

β1 −1 −0.9995 0.0837 0.9988 0.0800
β2 2 1.9989 0.0820 1.9980 0.0778
σ2 0.64 0.7462 0.0942 0.6204 0.0868
σ2

1 0.81 0.6872 0.2089 0.8138 0.1884
λ1 −3 - - −2.9000 0.6506
λ2 0 - - 0.0056 0.2007
λ3 3 - - 2.9032 0.6644

Table 4. Mean and SD of each estimator for both cases with n = 300, σ2 = 0.82 and σ2
1 = 0.92.

Normal SN

Parameter True Value Mean SD Mean SD

β1 −1 −0.9970 0.0576 −0.9982 0.0545
β2 2 2.0019 0.0579 1.9981 0.0547
σ2 0.64 0.7580 0.0670 0.6330 0.0644
σ2

1 0.81 0.6883 0.1336 0.8059 0.1432
λ1 −3 - - −3.0679 0.2716
λ2 0 - - −0.0049 0.1386
λ3 3 - - 2.9507 0.2694

It can be seen from Tables 1–4, that the ML estimates of fixed effects were unbiased for
both cases. However, the SN estimates had a lower dispersion compared to the Normal
estimates. Both cases showed better results by increasing the sample size, but the SN
estimates performed better. Increasing the values of variance components did not have
much effect on the biases, but their SDs increased, and the precision of the estimates
decreased. In addition, we observed that the Normal estimates of variance components
were biased and hade larger SDs. In contrast, the SN estimates were unbiased and had
smaller SDs. As was seen, increasing the values of variance components had a much worse
effect on the biases and precision of the Normal estimates of the variance components.
However, for the SN estimates, there were some rises in SDs, which was completely
natural, but we still had unbiasedness. Furthermore, in both aspects (bias and SD), the SN
estimates had better performance concerning the Normal estimates. For these, increasing
the sample size did not affect demolishing biases; however, it decreased the SD to some
extent. Nevertheless, it decreased bias and SD for the SN estimates. The simulation results
in Tables 1–4 showed that the skewness estimates were unbiased. These estimates were
made worse by increasing variability in the data and made better by increasing the sample
size (see Figures 1 and 2). Furthermore, the histograms in Figures 1 and 2 indicate that the
distribution of the estimators, even for small sample sizes, was approximately normal.
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Figure 1. The histograms of the estimators of λ1, λ2 and λ3 for σ2
1 = 0.52 and σ2 = 0.42. The left

histograms are for n = 150 and the right histograms are for n = 300.
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Figure 2. The histograms of the estimators of λ1, λ2 and λ3 for σ2
1 = 0.82 and σ2 = 0.92. The left

histograms are for n = 150 and the right histograms are for n = 300.

5.2. An Example

The metallic oxide data given by Fellner [2] was used to illustrate the usefulness
of our method in applications. Following Fellner [2], a nested model was fitted with
raw material for fixed effects, while the random effects were lot, sample, chemist, and
analysis. We considered normal and SN distributions for the random errors in this model
for comparative purposes, and both assumptions (heteroscedasticity and homoscedasticity)
in the random-effect factors were considered. Therefore, we had four scenarios:

(a) Normal random errors and homoscedasticity in random-effect factors.
(b) SN random errors and homoscedasticity in random-effect factors.
(c) Normal random errors and heteroscedasticity in random-effect factors.
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(d) SN random errors and heteroscedasticity in random-effect factors.

The estimates of the parameters and some model selection criteria, including the
log-likelihood values (l(θ)), AIC, and BIC, are given in Table 5. In all cases, the Type 1
mean was approximately the same. The Type 2 mean was the same in the Normal cases
(homoscedasticity and heteroscedasticity). This was approximately true in the SN cases
as well. Under both assumptions in random-effect factors, the Type 2 mean in the SN
case was greater than for the Normal case. In addition, the variance of the error term
(analysis variance) and the lot variance were reduced in the SN case compared to the
Normal case. As we expected, the model selection criteria showed that the fitted model
under heteroscedasticity and SN random errors had the best fit.

Table 5. Metallic oxide summary results for four scenarios.

Parameter (a) (b) (c) (d)

Type 1 mean 3.865 3.858 3.863 3.856
Type 2 mean 3.064 3.107 3.064 3.134

Lot variance
0.175 0.123

0.607 0.565
Sample variance 0.043 0.044
Chemist variance 0.032 0.033
Analysis variance 0.045 0.041 0.043 0.037

Skewness parameter - −4.396 - −3.674

l(θ) −122.762 −118.602 −91.322 −88.176
AIC 253.524 247.204 194.644 190.352

We continued by conducting the local influence approach to detect influential obser-
vations based on M(0) for this dataset. Figures 3–6 depict, respectively, the index plots of
M(0) for all scenarios under perturbations of the response variable, the dispersion matrix
of the errors, and the columns of matrix X. In all the perturbation schemes, we used c∗ = 3
to construct the benchmarks. Furthermore, the influential observations are numbered in
all figures.

Figure 3 indicates that observation #192 stood out as the most influential of the four
scenarios under response variable perturbation. There were some suspicious points in the
three first scenarios that were regular points in scenario 4. It could be claimed that the
effects of these points in this scenario were controlled as the most flexible model in this
work. Under the perturbation of the dispersion matrix of the errors in Figure 4, observation
#192 again appeared as the most influential. As can be seen, the effects of other observations
in scenario 4 were lower when compared with other scenarios. For the perturbation of the
columns of matrix X, as depicted in Figures 5 and 6, the results were approximately the same.
In these schemes, observation #192 seemed to be the most influential again. Furthermore,
for the two first scenarios (the models under homoscedasticity), observation #191 was
also influential. Except for the two last scenarios (the models under heteroscedasticity),
observation #234 was an influential case. Generally, in all figures, suspicious points in the
less flexible models were more numerous than in the more flexible models. In other words,
when we used a more flexible model, we decreased the effects of anomalous observations
in our statistical results.
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Figure 3. Index plots of M(0) for the perturbation of the response variable for the four scenarios.
Dotted lines show the yardstick for M(0) with c∗ = 3.

Figure 4. Index plots of M(0) for the perturbation of the dispersion matrix of the errors for the four
scenarios. Dotted lines show the yardstick for M(0) with c∗ = 3.
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Figure 5. Index plots of M(0) for the perturbation of the first column of X for the four scenarios.
Dotted lines show the yardstick for M(0) with c∗ = 3.

Figure 6. Index plots of M(0) for the perturbation of the second column of X for the four scenarios.
Dotted lines show the yardstick for M(0) with c∗ = 3.
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6. Conclusions

The study of a multifactor normal LMM under heteroscedasticity was done by authors
such as [1,2]. They showed that the ML method for estimation of the parameters performed
well and the estimates had good properties such as consistency and asymptotic normal
distribution. When the normality test of model errors or random effects was rejected, the
derived estimates did not lead to satisfactory results. Therefore, LMMs (only with a random-
effect factor) based on skewed distributions were presented by several authors. When
the normality assumption did not hold for the model errors or the random-effect factor,
these models performed well in comparison to those under the normality assumption.
Additionally, diagnostic analyses showed these models decreased the effect of outliers.
Recent research showed that new generalized skewed distributions usually have a better
fit than simpler skewed distributions (see e.g., [38,39]). Clearly, using these distributions
in LMMs can be also considered (see e.g., [40]), but, as mentioned before, the complexity
of calculations in complicated models makes a case for using the simple but flexible
SN distribution (See using SN distribution in some new complicated models [13,14]).
Therefore, we considered SN distribution for the model errors in the multifactor LMM under
heteroscedasticity in random-effect factors. Our main goals involved parameter estimation
and the local influence method for the multifactor SN–LMM under heteroscedasticity
in random-effect factors. At first, we expanded an EM-based algorithm, as many in the
literature proposed, to estimate the model parameters. We also obtained a closed form to
estimate variance components using this method. Then, we applied Zhu and Lee’s approach
to extend the local influence method to this model. Empirical studies, a simulation study
and a real data example, were carried out to see the behavior of our estimators. Our findings
followed previous results in this field. The simulation results—-consistency, low dispersion,
and asymptotic normal distribution—-showed that the estimators performed well, even for
finite sample sizes. It was also observed that ignorance of skewness when the error model
followed from a skewed distribution like SN made unsuitable outcomes. Finally, through
a real example, it was shown that taking into account both heteroscedasticity in random-
effect factors and election a skewed distribution for random errors in the fitted model
improved statistical results in comparison to other works that considered at most one of
them. Additionally, in this case, we observed the robustness of the ML estimators through
the local influence method. Finally, any skewed distributions contained symmetrical
distributions in special cases. When the assumption of symmetry held for random variables
in a sensitivity analysis of any model, skewed distributions were not recommended due
to additional parameter costs. Extending this work when both random-effect factors and
model errors have SN distribution is theoretically and computationally hard, but that will
be our goal in a subsequent work. Moreover, generalized skewed distributions for the
model errors or the random-effect factors in the multifactor LMM, along with diagnostic
measures, are proposed for future work.
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BIC The Bayesian Information Criterion

Appendix A.

Appendix A.1. ML Prediction of Random Effects

Let y = (y1, . . . , yn)
> and b =

(
b>1 , b>2 , . . . , b>m

)>
be vectors of observed responses

and the random effects, respectively, and z∗ be a missing observation. It follows from (6)

that the conditional complete log-likelihood function of b given θ, X and y∗c =
(
y>, z∗

)>
may be expressed as

l∗c (b; θ, X, y∗c )
= C− q+1

2 log
(
σ2)− 1

2 log(|ΣT|)
− 1

2σ2

(
b− ΣU>V−1(y−Xβ)

)>
(ΣT)−1

(
b− ΣU>V−1(y−Xβ)

)
− 1

2σ2

(
z∗ − λ>ε (y−Xβ−Ub)

)2 − log(α),

where C does not depend on unknown parameters. If θ̂(r) and b̂(r) are the estimates in the
rth iteration, the expected conditional complete log-likelihood function would be

Q∗
(

b| θ̂(r), b̂(r)
)

= E[ l∗c (b; θ, X, y∗c )| θ̂(r), b̂(r)
]

∝ − q+1
2 log

(
σ2)− 1

2 log(|ΣT|)

− 1
2σ2

{
b>
[
(ΣT)−1 +U>λελ>ε Ub

]
−2b>

[
U>(y−Xβ)− ẑ∗(r)U>λε + U>λελ>ε (y−Xβ)

]
+(y−Xβ)

′(
In − V−1 + λελ>ε

)
(y−Xβ)− 2ẑ∗(r)λ>ε (y−Xβ)

+ ˆz∗2(r)
}

Then, the M-step maximizes Q∗
(

b| θ̂(r), b̂(r)
)

with respect to b. So, we solve the
following equation:

∂Q∗
(

b| θ̂(r),b̂(r)
)

∂b
= − 1

σ2

[(
(ΣT)−1 +U>λελ>ε U

)
b

−
(

U′(y−Xβ)− ẑ∗(r)U′λε + U>λελ>ε (y−Xβ)
)]

= 0.
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Appendix A.2. ML Estimation of Variances of Random Effects

To find a solution for γi and hence for σ2
i , i = 1, . . . , m, in Equation (9) using the re-

lations |V| =
∣∣∣Iq + U>UΣ

∣∣∣ = |T|−1, ∂V−1/∂γi = −V−1UiU>i V−1, ∂Σ/∂γi = diag(0, . . . , 0,
Iqi , 0, . . . , 0) and

∂ log
∣∣∣Iq + U>UΣ

∣∣∣/∂γi = tr
(

TU>U
∂Σ

∂γi

)
= γ−1

i (qi − tr(Tii)),

we have

∂Q( θ| θ̂(r))
∂γi

= − 1
2 γ−1

i (qi − tr(Tii))

+ 1
2σ2δ2

[
ẑ2(r) − 2ẑ(r)h>(y−Xβ) +

(
h′(y−Xβ)

)2
]

h>UiU>i h

+ 1
2σ2 (y−Xβ)>V−1UiU>i V−1(y−Xβ)− 1

2δ h>UiU>i h

+ 1
σ2δ

[
(y−Xβ)>hh>UiU>i V−1(y−Xβ)− ẑ(r)h>UiU>i V−1(y−Xβ)

]
Then, by solving the equations

∂Q
(

θ| θ̂(r)
)

∂γi
= 0, i = 1, . . . , m

the ML estimates of γi’s are obtained. Thus, the ML estimate of σ2
i is taken to satisfy

σ̂2
i = σ̂2γ̂i, i = 1, . . . , m.
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