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Abstract: The unidirectional consolidation theory of soils is widely used in certain conditions and
approximate calculations. The multidirectional theory of soil consolidation is more reasonable than
the unidirectional theory in practical applications but is much more complicated in terms of index
determination and solution. To address the above problem, in this paper, we propose a deep learning
method using physics-informed neural networks (PINN) to predict the excess pore water pressure of
two-dimensional soil consolidation. In the proposed method, (1) a fully connected neural network is
constructed; (2) the computational domain, partial differential equation (PDE), and constraints are
defined to generate data for model training; and (3) the PDE of two-dimensional soil consolidation
and the model of the neural network are connected to reduce the loss of the model. The effectiveness
of the proposed method is verified by comparison with the numerical solution of PDE for two-
dimensional consolidation. Moreover, the FEM and the proposed PINN-based method are applied
to predict the consolidation of foundation soils in a real case of Sichuan Railway in China, and the
results are quite consistent. The proposed deep learning approach can be used to investigate large
and complex multidirectional soil consolidation.

Keywords: engineering geology; soil consolidation; excess pore water pressure; deep learning;
physics-informed neural network (PINN)

MSC: 35-04

1. Introduction

Soil deformation and stability problems associated with soil consolidation occur dur-
ing the construction of large infrastructures such as highways, embankments, and airports.
Soil consolidation laws are complex and depend not only on the type and properties of the
soil but also on its boundary conditions, drainage conditions, and types of loading [1,2].
Therefore, to ensure the safety of infrastructures, the study of multidirectional soil con-
solidation theory, which is closer to the actual working conditions, has broad application
prospects and economic value.

There is much research work on soil consolidation. Terzaghi [3] in his seminal work
on soil mechanics presented his consolidation theory for soil in 1925 as part of his compre-
hensive theory of soil mechanics. Biot [4] proposed his consolidation theory based on the
effective stress principle, soil continuity, and equilibrium equation under the condition of
considering the relationship between pore pressure and the soil skeleton deformation dur-
ing soil consolidation. Schiffman [5] investigated the consolidation equation for the case of
a linear increase in load with time and presented an analytical solution for one-dimensional
soil consolidation under this situation. Indraratna [6] proposed a method for the radial
consolidation of clays using a compression index and varying horizontal permeability.

Currently, most consolidation problems are analyzed using finite element analysis.
The finite element method (FEM) is one of the most typical mesh-based numerical methods,
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which is quite powerful and widely used in various science and engineering applications.
However, when dealing with complex study areas or domains, the mesh generation in FEM
is quite computationally expensive. Notably, in some cases, high-quality meshes cannot
be achieved, thus leading to unsatisfactory computational accuracy [7,8]. Moreover, finite
element analysis requires detailed material parameters of the study areas or domains. In
some cases, detailed and accurate values of martial parameters are not easy to obtain.

Currently, there are two problems that occur when analyzing two-dimensional or
three-dimensional soil consolidation. (1) The modeling process of traditional numerical
methods is quite complicated for high-dimensional problems. (2) In general, traditional nu-
merical methods are computationally quite inefficient when investigating multidimensional
soil consolidation.

To address the above problems, in this paper, we propose a data-free deep learning
method to predict two-dimensional soil consolidation using PINNs. In the proposed
method, the prediction of excess pore water pressure is demonstrated for different boundary
conditions: drainage at the top boundary and drainage at the top and bottom boundaries.
First, we use DeepXDE [9], a library in Python, to define the computational domain, PDEs,
constraints, and the number of training and testing data generated under these conditions
for two-dimensional soil consolidation. Then, we construct the neural network. Finally,
we connect the PDE of two-dimensional soil consolidation and the model of the neural
network to reduce the loss of the model. Using this method, the excess pore water pressure
of the soil can be predicted simply and efficiently.

A physics-informed neural network (PINN) is a type of neural network for solving
PDEs using physical equations as operational constraints [10]. The idea behind a PINN is
to convert physical constraints as additional loss functions in deep neural networks [11].
More details about the PINN will be introduced in Section 2.2.

The rest of this paper is organized as follows. Section 2 describes the details of this
proposed method. Section 3 verifies this proposed method in two simple examples and
analyses the results. In Section 4, the FEM and the proposed PINN-based method are
applied to predict the consolidation of foundation soils in a real case of Sichuan Railway in
China and make a comparative analysis. Section 5 discusses the advantages and shortcom-
ings of the proposed deep learning method and points out future work. Finally, Section 6
concludes the paper.

2. Methods
2.1. Overview of the Proposed Deep Learning Method

In this paper, we propose a deep learning approach using PINN to predict the excess
pore water pressure of two-dimensional soil consolidation (see Figure 1). First, we construct
a fully connected neural network. Second, we define the PDE, time domain, and initial and
boundary conditions for two-dimensional soil consolidation in DeepXDE, a Python library.
Third, we connect the PDE to the neural network and tune the parameters to reduce the
model loss. Finally, we employ the trained model to predict the excess pore water pressure.
We verify this proposed method with two simple examples: two-dimensional consolidation
for drainage at the top boundary and drainage at the top and bottom boundaries.

2.2. Background and Theory of PINN

In this section, we introduce how to employ PINN to solve the PDE.
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Figure 1. Flowchart of the proposed deep learning method.

2.2.1. Background of PINN

The idea of applying prior knowledge to deep learning was first proposed by Owhadi [12].
Subsequently, Raissi et al. [13,14] used Gaussian process regression to establish a repre-
sentation of linear operator generalization to present uncertainty estimates for various
physical problems, introducing and illustrating the PINN method for solving nonlinear
PDEs [10]. Karniadakis et al. [15] proposed physics-informed machine learning as an
algorithm that combines incomplete data with physical prior knowledge and discussed its
various applications in forward and inverse problems.

Currently, PINNs have been increasingly used in various engineering problems, such
as fluid mechanics [16–19]. For example, Bandai et al. [20] proposed the constitutive relation
and soil water flux density for volumetric water content measurement based on a physical
information neural network. Zhang, Z. [21] used a physics-informed neural network to
simulate and predict the transient Darcy flow of unlabeled data in heterogeneous reser-
voirs. Bekele [22] used a PINN to solve forward and inverse problems of one-dimensional
consolidation of soils.

2.2.2. Theory of PINN

A PINN combines PDEs and physics-informed constraints into the computation of
a loss function to constrain the neural network and reduce the training loss, replacing



Mathematics 2022, 10, 2949 4 of 18

the actual observed data of the model, i.e., a “data-free” neural network. It approximates
the PDE solution by training the neural network to minimize the loss function, including
terms along the boundary of the space-time domain reflecting the initial and boundary
conditions and residuals of PDEs at selected points in the domain. By combining values in
the input domain with physical information, PINN generates an estimated solution to the
point differential equation after training.

The process of solving the PDE requires the derivative of the input values. There are
four methods for calculating derivatives: hand-coded, symbolic, numerical, and automatic.
However, it is impractical to calculate the derivatives manually in the face of complex
equations. The automatic differentiation (AD) used in a PINN uses exact expressions with
floating-point values rather than symbolic strings, and there is no approximation error [23].
Undoubtedly, the prediction accuracy and efficiency are improved.

A PINN is composed of physical information, neural networks, and feedback mecha-
nisms [24]. First, the physics-informed model is used to calculate the partial derivatives of
the functions and to determine the loss of the equation terms. Then, the model is trained by
connecting the two modular neural networks through a differentiation algorithm. Finally,
continuous feedback adjustments are made to minimize the training losses. The PINN
workflow schematic is illustrated in Figure 2.

Hidden Layers

U

x1

x2

t

Input Automatic 

Differentiation

Training Data

Residual on PDE

Boundary&Initial ConditionFeedback

Figure 2. Illustration of a PINN algorithm for solving partial differential equations. This method uses
AD technology to analyze and derive the integer derivative, and the obtained MSE is fed back to the
neural network.

Physics-informed neural networks learn by minimizing the loss of the mean squared
error. The mean square error formula of the neural network model is described in
Equation (1) [10,25].

MSE = MSEu + MES f + MSEb (1)

where

MSEu =
1

Nu

Nu

∑
i=1
|u(x, z, t)− û(x, z, t)|2 (2)

MSE f =
1

N f

N f

∑
i=1
| f (x, z, t)|2 (3)

MSEb =
1

Nb

Nb

∑
i=1
|gD(x, z, t)− ĝD(x, z, t) + gR(x, z, t)− ĝR(x, z, t)|2 (4)

Here, (x, z, t) is the input to the training of a neural network model. In the proposed
method, training points are randomly generated based on the physical constraints of the
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governing PDE. gD(x, z, t) represents the initial training points, and gR(x, z, t) represents
the boundary training points.

In this paper, we use the Python library DeepXDE to solve practical applications with
PINNs. Solving differential equations with DeepXDE uses built-in modules to specify
problems, including computational domains (geometry and time), PDEs, boundary/initial
conditions, and neural network architecture [9]. The workflow of DeepXDE is shown in
Figure 3. Furthermore, four boundary conditions (Dirichlet, Neumann, Robin, and periodic)
are provided by this library. Initial conditions can be defined by IC modules. For example,
the loss type, metric, optimizer, learning rate table, initialization, and regularization can be
adjusted and selected by themselves according to different needs.

Model.compile Model.train Model.predict

Geometry

PDE

BC&IC

Training 

data

Data.PDE or 

Data.TimePDE

Neural Net

Model

Figure 3. The workflow of DeepXDE. The green modules define the PDE and the training hyperpa-
rameters. The blue modules combine the PDE and training hyperparameters. The yellow modules
are the three steps to solve the PDE.

2.3. Problem 1: Two-Dimensional Soil Consolidation for Drainage at Top Boundary

In this section, we introduce how to employ the deep learning approach to solve the
problem of two-dimensional consolidation for drainage at a top boundary.

Rendulic [26] extended the one-dimensional consolidation theory to two or three
dimensions and proposed the Terzaghi–Rendulic theory, assuming that the sum of nor-
mal stresses at any point in soil under constant external loads is a constant in consolida-
tion. Therefore, the consolidation problem is the same as the thermal diffusion problem
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of consolidation, and its mathematical expression is also called the diffusion equation
(see Equation (5)).

∂u
∂t
− Cv

(
∂2u
∂x2 +

∂2u
∂z2

)
= 0 (5)

where u represents the excess pore water pressure, Cv represents the soil consolida-
tion coefficient, and x and z represent the horizontal and vertical directions of the soil
layer, respectively.

For two-dimensional consolidation of drainage at the top boundary, it is assumed that
the bottom boundary is impervious. The excess pore water pressure dissipates only at
the top boundary. The top boundary satisfies the Dirichlet boundary condition u(x) = 0,
and the bottom boundary satisfies the Neumann boundary condition ∂u

∂z = 0. A schematic
diagram of consolidation for drainage at a top boundary is displayed in Figure 4. Assume
that the initial excess pore water pressure distribution is q, and the initial excess pore
pressure is uniformly distributed and equal to the surface overload. We set the thickness of
the soil layer as H. The boundary conditions are mathematically expressed as Equation (6).

u = 0 (at Γb, t > 0)
∂u
∂z = 0 (at Γt, t > 0)
u|x=|A| = 0 (t > 0)

(6)

In the proposed method, we use the PDE, boundary, and initial conditions of consoli-
dation for drainage at a top boundary to generate training data, and then the trained model
is applied to predict the excess pore water pressure.

2B

H

Distributed load

Consolidating soil layer

Top boundary: drained

Bottom boundary: undrained

Figure 4. Schematic diagram of two-dimensional soil consolidation for drainage at a top boundary.

2.4. Problem 2: Two-Dimensional Soil Consolidation for Drainage at Top and Bottom Boundaries

In this section, we introduce how to employ the deep learning approach to solve the
problem of two-dimensional soil consolidation for drainage at the top and bottom boundaries.

When both the top and bottom of the foundation are drainable boundaries, the excess
pore water pressure is dissipated by both boundaries. The top and bottom boundaries
satisfy the Dirichlet boundary condition u(x) = 0. A schematic diagram of consolidation
drained at the top and bottom boundaries is displayed in Figure 5. Mathematically, this
condition of soil consolidation for drainage at the top and bottom boundaries is expressed
as Equation (7). {

u = 0 (at Γt ∪ Γb, t > 0)
u|x=|A| = 0 (t > 0) (7)

Similarly, we set the initial excess pore pressure distribution as q. However, the maxi-
mum drainage distance for consolidation for drainage at the top and bottom boundaries is
taken as half the thickness of the soil layer. Therefore, the thickness of the soil layer is set to
double the drained thickness at the top boundary, i.e., 2H. We use the PDE, boundary, and
initial conditions to generate training data, and then the trained model is applied to predict
the excess pore water pressure.
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2B

2H

Distributed load

Consolidating soil layer

Top boundary: drained

Bottom boundary: drained

Figure 5. Schematic diagram of two-dimensional soil consolidation for drainage at the top and
bottom boundaries.

3. Validation of the Proposed Deep Learning Approach

In this section, to verify the effectiveness of the proposed deep learning approach,
we applied this proposed method with simple data to different boundary conditions and
compared the results predicted by our approach with the numerical solutions obtained by
the improved weighted residual method.

3.1. Experimental Environment

The experiments were conducted on a laptop with an NVIDIA GeForce RTX3070
laptop GPU and an AMD Ryzen 7 5800H with Radeon graphics. In order to obtain a
better quantification of the machine, we tested the computer with CineBench R23, which
resulted in a CPU (multi core) of 10920 and a CPU (single core) of 1392. The library used to
implement the PINN was DeepXDE version 0.13.6.

3.2. Results of Consolidation with Drained Top Boundary

According to the weighted residual method, we assumed that there is drainage sand
well at the center of the substrate (load) and considered its influence range in the horizontal
direction to be limited, which is shown by the numerical analysis as A = 2B. Since there
is usually no drainage sand well at the center of the load in actual projects, the numerical
solution was obtained after excluding this condition (Equation (8)).

u =
16q
π2

∞

∑
m=1,3,5...

1
m2 sin(

πm
2A

(x + A)) sin(
πm
2H

Z)e−(
1
A + 1

4H2 )
2Cvm2π2t (8)

For a numerical example of a drained top boundary, we set the soil layer thickness
to H = 1 m, and the soil consolidation coefficient was Cv = 0.01 cm2/s. In addition, we
assumed that the foundation was subjected to a distributed load q = 10 kN/m2 and that
the load level affects the range A = 1 m. The numerical solution Equation (8) was used
as the reference solution for the training results. The geometry module of this example
was Rectangle [−1,0] [1,1]. Soil consolidation is a time-dependent PDE problem, and the
time domain calculated in this experiment ranged from 0 to 1. Finally, the input of the
PDE system and the construction of the physical information model were completed. The
residuals were tested by sampling 100 points in the domain, initial and boundary conditions
and using 1000 points to test the PDE residuals.

Here, we used a fully connected neural network of depth 6 (i.e., 5 hidden layers) and
width 32. Temporal and spatial partial derivatives of excess pore water pressure were
determined by AD in this neural network. Values of (x, z, t) were used as the input of the
neural network, where this model predicts the excess pore water pressure as the output.
The Adam optimizer was chosen to train 10,000 epochs for this experiment, and the time
required was approximately 15 s. The time spent on model training was proportional to the
number of hidden units, hidden layers, and training epochs, and we tuned the parameters
depending on the desired accuracy.

On the established soil consolidation for the drained top boundary model, 100 points
were randomly selected, the numerical solution and the predictive solution were entered,
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and the color maps of the numerical solution and the predictive solution at different times
were obtained by interpolation, as shown in Figure 6.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Color maps for numerical solution and predicted solution of two-dimensional soil consolida-
tion for drainage at a top boundary at different times. (a) Numerical solution (t = 0.1 s); (b) Predictive
solution (t = 0.1 s); (c) Numerical solution (t = 0.5 s); (d) Predictive solution (t = 0.5 s); (e) Numerical
solution (t = 1.0 s); (f) Predictive solution (t = 1.0 s).

The color maps of the numerical solution and the predictive solution of consolidation
with drained top boundary are illustrated in Figure 6. We can observe the excellent
consistency between the numerical solution and the predictive solution at different times.
The excess pore water pressure is at its maximum at the intersection of the load center and
the bottom of the soil layer and dissipates gradually with time.

The final train loss and test loss of this two-dimensional soil consolidation for drainage
in the top boundary model are displayed in Figures 7 and 8.
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Figure 7. Training results for two-dimensional consolidation model of drainage at a top boundary.
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Figure 8. Testing results for two-dimensional consolidation model of drainage at a top boundary.



Mathematics 2022, 10, 2949 10 of 18

According to Figures 7 and 8, it is observed that the loss of PDE, boundary, and initial
conditions of this model in training and testing has a good downward trend and gradually
tends to be stable after 2000 epochs of training.

The test measure in this experiment is the ratio of training loss to the numerical
solution, which better reflects the training results of the model (see Equation (9)). The
final mean squared error loss and test metric of a drained top boundary model with
two-dimensional consolidation are displayed in Figure 9.

test metric =
u− û

u
(9)

In this case, the training loss drops to 2.64 × 10−3, the test loss drops to 3.67 × 10−3,
and the test metric drops to 6.82 × 10−2.

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

S t e p s

 T r a i n  l o s s
 T e s t  l o s s
 T e s t  m e t r i c

Figure 9. Mean squared error loss and test metric for two-dimensional consolidation model of
drainage at a top boundary.

3.3. Results of Consolidation for Drained Top and Bottom Boundaries

For two-dimensional consolidation drained at the top and bottom boundaries, we
contemplated using the same neural network model as described in Section 3.2. However,
the excess pore water pressure in this condition was permitted to dissipate through both
boundaries, corresponding to the absence of pore water in the center of the soil layer. For
comparison, we set the soil layer thickness to 2H = 2 m, and the geometry module of
this example was Rectangle [−1,0] [1,2]. The other constraints were the same as those
in Section 3.2.

Similarly, we used a fully connected neural network of depth 6 (i.e., 5 hidden layers)
and width 32. The temporal and spatial partial derivatives of excess pore water pressure
were determined by AD in this neural network. Values of (x, z, t) were used as the input
of the neural network, where this model predicts the excess pore water pressure as the
output. The Adam optimizer was chosen to train 10,000 epochs for this experiment. Since
the boundary constraints of double-sided drainage are simpler than those of single-sided
drainage, the training time of the model was shorter.

On the established soil consolidation for the drainage at the top and bottom boundary
models, 100 points were randomly selected, the numerical solution and the predictive
solution were entered, and the color maps of the numerical solution and the predictive
solution at different times were obtained by interpolation, as displayed in Figure 10.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Color maps for numerical solution and predicted solution of two-dimensional soil con-
solidation for drainage at the top and bottom boundaries at different times. (a) Numerical solution
(t = 0.1 s); (b) Predictive solution (t = 0.1 s); (c) Numerical solution (t = 0.5 s); (d) Predictive solution
(t = 0.5 s); (e) Numerical solution (t = 1.0 s); (f) Predictive solution (t = 1.0 s).

The color maps of the numerical solution and the predictive solution of consolidation
with drained top and bottom boundaries are illustrated in Figure 10. We can observe
the excellent consistency between the numerical solution and the predictive solution at
different times. The excess pore water pressure is at its maximum at the intersection of the
load center and the middle of the soil layer and dissipates gradually with time.

The final train loss and test loss of this two-dimensional soil consolidation for drained
at the top and bottom boundary models are displayed in Figures 11 and 12.
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Figure 11. Training results for two-dimensional consolidation model of drainage at the top and
bottom boundaries.
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Figure 12. Testing results for two-dimensional consolidation model of drainage at the top and
bottom boundaries.
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According to Figures 11 and 12, it is observed that the loss of PDE, boundary, and
initial conditions of this model in training and testing have a good downward trend and
gradually tend to be stable after 2000 epochs of training.

The final mean squared error loss and test metric of two-dimensional consolidation
for drainage at the top and bottom boundaries are displayed in Figure 13.

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

S t e p s

 T r a i n  l o s s
 T e s t  l o s s
 T e s t  m e t r i c

Figure 13. Mean squared error loss and test metric for two-dimensional consolidation model of
drainage at the top and bottom boundaries.

In this case, the training loss drops to 2.27 × 10−3, the test loss drops to 2.34 × 10−3,
and the test metric drops to 7.96 × 10−2. We observed the great performance of the PINN
models in predicting excess pore water pressure.

4. Application of the Proposed Deep Learning Approach

In this section, the proposed deep learning approach was used to predict the excess
pore water pressure of soil layers in a real case. Details of the application are introduced
as follows.

4.1. Engineering Background

The case we studied was a railway subgrade. The railway runs from Chengdu West
Station to Pujiang Station, passing through the Sichuan Basin, the western part of the
Sichuan Plain, and the hilly edge of the basin, with an altitude of 500~600 m. We selected
one section of the railway. The length of this line is 182.6 m in the territory of Dayi D3K51 +
901 ~ D3K52 + 083.6 m section. For the parameters of the soil, see Table 1.

Table 1. Parameters of the soil.

Parameter
γunsat

(kN/m3)
γsat

(kN/m3)
kx

(m/day)
ky

(m/day)
E

(kN/m2)
c

(kN/m2)
ϕ
(◦)

ψ
(◦) µ

Clay 15 18 1 × 10−4 1 × 10−4 1000 2 24 0 0.33
Peat 8 11 2 × 10−3 2 × 10−3 350 5 20 0 0.35
Sand 16 20 1 1 3000 1 30 0 0.30

The shape of the subgrade was trapezoidal, filled with sand, with a width of 16 m and
a height of 4 m. The soil layers were peat and clay layers. For the geological profile of the
subgrade, see Figure 14.

The layered construction scheme was used in this case study area. Stage 1 involved
filling 2 m of the embankment and then consolidating the soil layers for 200 days. Stage
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2 involved filling 2 m of the embankment, and the soil layers will be consolidated for a
long time.

Embankment 

12m 12m16m

3m

3m

4m

Peat layer

Clay layer

Impermeable layer

Figure 14. Schematic diagram of geological section of the subgrade.

4.2. Results of Finite Element Analysis

To further verify the accuracy of the PINN results, PLAXIS software (https://www.
bentley.com/en/products/brands/plaxis, accessed on 1 August 2022) was used to numeri-
cally investigate the above engineering problems. The Mohr–Coulomb model was used
in PLAXIS. Due to the symmetry of the geometric model, the right half of the model was
intercepted for analysis. The plane strain model was selected and analyzed. The boundary
conditions are defined by standard fixed boundaries in the PLAXIS. The consolidation
control standard for this case is maximum excess pore water of less than 1 kN/m2.

By selecting a point in the middle of the soft soil layer near the left boundary to reflect
the development of excess pore water pressure under the subgrade during the construction
of the subgrade, the change process of excess pore water pressure is illustrated in Figure 15.
It can be observed that the excess pore water pressure rises rapidly with the filling of the
subgrade and decreases gradually with time during the consolidation period. It takes
approximately 650 days from the start of stage 1 to the complete consolidation of the
soil layers of the subgrade. The distribution of excess pore water pressure at 650 days is
illustrated in Figure 16. It can be observed that the excess pore water pressure under the
center of the subgrade is maximum and less than 1 kN/m2.

4.3. Results of PINN-Based Method

In this section, the proposed PINN approach was employed to predict the excess pore
water pressure of the subgrade in this case study area. The bottom of the foundation was the
impervious layer. This model was constructed in the same way as described in Section 2.3.

The load covered the range A = 20 m, and the thickness of the foundation soil layer
was H = 6 m. Therefore, the geometry module of the case study area was a Rectangle
[0,−6] [20,0]. Two different prediction models were developed based on the consolidation
coefficients of different soil layers. The residuals were tested by sampling 1000 points in the
domain, initial and boundary conditions and using 1000 points to test the PDE residuals.
Similarly, a fully connected neural network of depth 6 (i.e., 5 hidden layers) and width 32
was used. The Adam optimizer was chosen to train 50,000 epochs for this experiment.

https://www.bentley.com/en/products/brands/plaxis
https://www.bentley.com/en/products/brands/plaxis
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Figure 15. Line chart of excess water pressure change process during consolidation.

Figure 16. Color map of excess pore water pressure based on the finite element analysis.

After the training of the constructed model above, the excess pore water pressure in
the soil reaches a desirable value at approximately 650 days. The distribution of excess
pore water pressure at 650 days is illustrated in Figure 17.

Figure 17. Color map of excess pore water pressure based on the proposed PINN-based method.

4.4. Comparative Analysis

As illustrated in Figure 15, it was obtained that the consolidation control standard was
achieved after 600 days, and for comparison, the excess pore water pressure distribution
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within the soil layer at 650 days was plotted separately using two methods (i.e., the FEM
and the proposed PINN-based method).

The results obtained from the finite element analysis and the PINN-based method
are shown in Figures 16 and 17. The color plots are obtained by interpolation of the
nearest excess pore pressure values from the actual grid points and are chosen here only
for visualization.

Under the same conditions, the excess pore water pressure prediction by FEM and the
PINN-based method was compared, and the results were quite consistent. The consistency
between the FEM results and the PINN-based results indicates that the deep learning model
reasonably predicts the excess pore pressure based on the initial and boundary training
data alone. Moreover, the PINN-based method does not require generating meshes, and it
does require fewer detailed material parameters of the study area or domain than that of
the FEM. Therefore, using this method, the excess pore water pressure of the soil can be
predicted simply and efficiently. This demonstrates the remarkable accuracy of the physical
constraints and the potential of the PINN-based method applied to numerically investigate
the geotechnical consolidation under more complex conditions.

5. Discussion
5.1. Advantages of the Proposed Method

There are two advantages of the proposed deep learning approach.

(1) Compared with traditional methods, the proposed method is computationally simple.
In the proposed PINN method, the physical information including partial differential
equations, initial conditions, and boundary conditions of soil consolidation is defined
without having actual data, and the data in the computational domain are randomly
and automatically generated for model training.

(2) Compared with traditional methods, the proposed method is computationally efficient.
In the proposed PINN method, defined physical information is loosely coupled. The
prediction of excess pore water pressure in two-dimensional soil consolidation can be
adjusted and is highly adaptable to consolidation problems in different engineering
environments without the need for remodeling.

5.2. Shortcomings of the Proposed Method

The proposed method is proposed based on PINN. PINN has good performance in
solving two-dimensional soil consolidation, but complex high-dimensional PDEs usually
have no precise solutions, and there is no completely accurate reference value to judge
the training accuracy of the PINN training model. In addition, for complex engineering
problems, stronger boundary conditions are needed to improve the fit to the engineering
problems. Therefore, for some high-dimensional problems with weak boundary conditions,
deep neural networks, as a general function approximator, can only obtain an approximate
solution to the problem by minimizing the loss of the training model. How to further
improve the computational accuracy is the current problem with PINN.

5.3. Outlook and Future Work

In future work, we will consider various constraints to improve the training accuracy
of the neural network as much as possible and assess the applicability of this proposed
deep learning approach using PINN to other engineering geology problems.

There are several strategies to improve the accuracy of neural network model training
results. Adding more data is a good idea for ordinary models, but this idea does not apply
to complex geological engineering problems with a lack of observation data. At present,
the most effective method for PINN is algorithm optimization. It is well understood that
deep learning algorithms are driven by parameters that mainly affect the learning process
results. In the future, we plan to combine several algorithms to build high-precision models.
However, the choice of algorithm is difficult, and this intuition comes from experience and
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practice. Therefore, all relevant models should be applied, and comparative performance
should be checked.

The advantage of PINN in solving geotechnical problems is the use of prior knowledge
and logic to discover the characteristics of the problem, but it lacks the ease of consistency
with real data [27]. Further research is needed to achieve a perfect combination of physical
knowledge and neural networks. Many improvements to the methods currently pro-
posed are still possible, and some theoretical problems remain unresolved. There is still
potential for development in optimizing training PINNs and expanding PINNs to solve
multiple equations.

We present a simple PINN problem for predicting the excess pore water pressure
of two-dimensional consolidation, but this method can be extended to many large and
complex multidirectional soil consolidation problems. The combination of deep learning
models and physical laws is a new trend in the development of engineering geology, which
is still in the initial stage of research and has not yet been widely applied to practical
engineering. In the future, such as in foundation deformation monitoring of large facilities,
the monitoring and early warning of landslides can be attempted using the proposed deep
learning method.

6. Conclusions

In this paper, we propose a deep learning method using a PINN to predict the excess
pore water pressure of two-dimensional soil consolidation. The essential idea behind
the proposed method is to implement data-free model training with physics-informed
constrained neural networks. In the proposed method, we present two simple examples of
how to predict soil excess pore water pressure with different boundary conditions. In the
proposed method, (1) a fully connected neural network is constructed, (2) the computational
domain, partial differential equation (PDE), and constraints are defined to generate data
for model training, and (3) the PDE of two-dimensional soil consolidation and the model
of the neural network is connected to reduce the loss of the model. The effectiveness
of the method is verified by comparing it with the numerical solution of the PDE for
two-dimensional consolidation. Moreover, the excess pore water pressure prediction by
FEM and the PINN- based method is compared, and the results are quite consistent. The
consistency between the FEM results and the PINN-based results indicates that the deep
learning model reasonably predicts the excess pore pressure based on the initial and
boundary training data alone. In the future, the proposed deep learning approach can be
used to investigate large and complex multi-directional soil consolidation.
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