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1. Introduction

One of the newly developed concepts in nonlinear optics, applicable to a variety of
optoelectronic devices, is highly dispersive (HD) solitons. This emerges out of dire necessity
when chromatic dispersion (CD) runs low. Thus, to replenish this low count, additional
dispersion terms are taken into consideration. These are sixth-order dispersion (6OD);
fifth-order dispersion (5OD); fourth-order dispersion (4OD); third-order dispersion (3OD);
and inter–modal dispersion (IMD). The effect of soliton radiation, with such higher order
dispersion terms to offset the low count of CD, is neglected to keep the model simple. Other
means to compensate for the low count of CD is to introduce Bragg gratings in the fiber
structure so that the dispersive reflectivity that it produces additionally replenishes this
low count [1–32]. The current paper is the first of its kind to include both effects to offset
this low CD. Such a model would also lead to soliton solutions.

The model would, therefore, be handled with the Kerr law of nonlinearity. The
method of integrability would be two-fold and both due to Kudryashov. The first approach
is the generalized Kudryashov’s approach, followed by the lately developed enhanced
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Kudryashov’s scheme [9–16]. These two approaches can collectively yield a full spectrum
of solitons, which are recovered and enumerated in the present paper. The parametric
restrictions, also known as certain conditions, are extracted for the solitons to exist. The
remaining details are presented in the rest of the paper via the unique integration tools that
are discussed.

Governing Model

The perturbed HD nonlinear Schrödinger’s equation is firstly introduced as below:

iϕt + ia1 ϕx + a2 ϕxx + ia3 ϕxxx + a4 ϕxxxx + ia5 ϕxxxxx + a6 ϕxxxxxx + b|ϕ|2 ϕ
= i
[
λ
(
|ϕ|2 ϕ

)
x + µ

(
|ϕ|2

)
x ϕ + θ|ϕ|2 ϕx

]
,

(1)

such that θ, µ, λ, b and al , (l = 1–6) depict real-valued constant parameters, whereas
ϕ(x, t) purports a complex-valued function. Setting λ = µ = θ = 0 extracts the governing
equation [16]. a1 comes from the IMD, a2 implies to the CD, a3 is related to the 3OD, a4
stems from the 4OD, a5 purports the 5OD and a6 stands for the 6OD. The first term arises
from the temporal evolution, where i =

√
−1. µ and θ yield the nonlinear dispersions, b

arises from Kerr law nonlinearity, λ comes from the self-steepening (SS) and ϕ = ϕ(x, t)
purports the soliton wave.

For the first time in fiber Bragg gratings, the strategic governing model derived from
(1) reads as

iUt + ia11Vx + a12Vxx + ia13Vxxx + a14Vxxxx + ia15Vxxxxx + a16Vxxxxxx
+
(
b11|U|2 + b12|V|2

)
U + iα1Ux + β1V + σ1U∗V2

= i
[
λ1
(
|U|2U

)
x + µ1

(
|U|2

)
xU + θ1|U|2Ux

]
,

(2)

and
iVt + ia21Ux + a22Uxx + ia23Uxxx + a24Uxxxx + ia25Uxxxxx + a26Uxxxxxx

+
(
b21|V|2 + b22|U|2

)
V + iα2Vx + β2U + σ2V∗U2

= i
[
λ2
(
|V|2V

)
x + µ2

(
|V|2

)
xV + θ2|V|2Vx

]
,

(3)

such that σj, λj, µj, αj, β j, θj, bj1, bj2 and ajl , (1 ≤ l ≤ 6, j = 1, 2) depict real-valued constant
parameters, whereas V(x, t) and U(x, t) purport complex-valued functions. aj1 and αj
come from the IMD, aj2 imply the CD, aj3 are related to the 3OD, aj4 stem from the 4OD,
aj5 purport the 5OD and aj6 stand for the 6OD. The first terms arise from the temporal
evolution, where i =

√
−1. µj and θj yield the nonlinear dispersions, σj denote the four-

wave mixing, bj1 arise from the self-phase modulation, β j signify the detuning parameters,
bj2 denote the cross-phase modulation, λj signify the SS, whilst V(x, t) and U(x, t) purport
the soliton waves.

2. Mathematical Analysis

The governing model admits the analytical solutions

U(x, t) = g1(ξ) exp[iΩ(x, t)],

V(x, t) = g2(ξ) exp[iΩ(x, t)],
(4)

such that
Ω(x, t) = −κx + ωt + θ0, ξ = x− vt. (5)

Here, gj(ξ) and Ω(x, t) signify real-valued functions, whereas v, k, ω and θ0 purport
real-valued constants. For the soliton wave, Ω(x, t) depicts the phase component, ξ depicts
the wave variable, θ0 arises from the phase constant, v stems from the velocity, ω denotes
the wave number, gj(ξ) come from the amplitude components and κ depicts the frequency.

Placing (4) and (5) into (2) and (3) extracts the strategic equations
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a16g(6)2 +
(
a14 − 5a15κ − 15a16κ2)g(4)2

+
(
a12 + 3a13κ − 6a14κ2 − 10a15κ3 + 15a16κ4)g′′2

+(α1k−ω)g1 +
(

β1 − a12κ2 + a11κ + a14κ4 − a13κ3 − a16κ6 + a15κ5)g2
+[b11 − κ(λ1 + θ1)]g3

1 + (b12 + σ1)g1g2
2 = 0,

(6)

a26g(6)1 +
(
a24 − 5a25κ − 15a26κ2)g(4)1

+
(
a22 + 3a23κ − 6a24κ2 − 10a25κ3 + 15a26κ4)g′′1

+(α2k−ω)g2 +
(
a21κ + β2 − a23κ3 − a22κ2 + a25κ5 + a24κ4 − a26κ6)g1

+[b21 − κ(λ2 + θ2)]g3
2 + (b22 + σ2)g2

1g2 = 0,

(7)

(a15 − 6a16κ)g(5)2 +
(
a13 − 4a14κ − 10a15κ2 + 20a16κ3)g′′′2

−[3λ1 + 2µ1 + θ1]g2
1g′1 + (α1 − v)g′1

+
(
a11 − 2a12κ − 3a13κ2 + 4a14κ3 + 5a15κ4 − 6a16κ5)g′2 = 0,

(8)

(a25 − 6a26κ)g(5)1 +
(
a23 − 4a24κ − 10a25κ2 + 20a26κ3)g′′′1

−[3λ2 + 2µ2 + θ2]g2
2g′2 + (α2 − v)g′2

+
(
a21 − 2a22κ − 3a23κ2 + 4a24κ3 + 5a25κ4 − 6a26κ5)g′1 = 0.

(9)

Set
g2(ξ) = Πg1(ξ), Π 6= 0, Π 6= 1, (10)

where Π depicts real-valued constant parameters. Hence, Equations (6)–(9) appear as

a16Πg(6)1 +
(
a14 − 5a15κ − 15a16κ2)Πg(4)1

+
(
a12 + 3a13κ − 6a14κ2 − 10a15κ3 + 15a16κ4)Πg′′1

+
[
α1k−ω +

(
β1 − a12κ2 + a11κ + a14κ4 − a13κ3 − a16κ6 + a15κ5)Π]g1
+
[
b11 − κ(λ1 + θ1) + (b12 + σ1)Π2]g3

1 = 0,

(11)

a26g(6)1 +
(
a24 − 5a25κ − 15a26κ2)g(4)1

+
(
a22 + 3a23κ − 6a24κ2 − 10a25κ3 + 15a26κ4)g′′1

+
[
(α2k−ω)Π + a21κ + β2 − a23κ3 − a22κ2 + a25κ5 + a24κ4 − a26κ6]g1

+
[
b22 + σ2 + b21Π2 − κ(λ2 + θ2)Π2]Πg3

1 = 0,

(12)

(a15 − 6a16κ)Πg(5)1 +
(
a13 − 4a14κ − 10a15κ2 + 20a16κ3)Πg′′′1

−[3λ1 + 2µ1 + θ1]g2
1g′1

+
[
α1 − v +

(
a11 − 2a12κ − 3a13κ2 + 4a14κ3 + 5a15κ4 − 6a16κ5)Π]g′1 = 0,

(13)

(a25 − 6a26κ)g(5)1 +
(
a23 − 4a24κ − 10a25κ2 + 20a26κ3)g′′′1

−[3λ2 + 2µ2 + θ2]Π3g2
1g′1

+
[
(α2 − v)Π + a21 − 2a22κ − 3a23κ2 + 4a24κ3 + 5a25κ4 − 6a26κ5]g′1 = 0.

(14)

Equations (13) and (14) yield the certain restrictions

κ =
aj5

6aj6
, (15)

aj3 − 4aj4κ − 10aj5κ2 + 20aj6κ3 = 0, (16)

3λj + 2µj + θj = 0, (17)

v = −α1 +
(
a11 − 2a12κ − 3a13κ2 + 4a14κ3 + 5a15κ4 − 6a16κ5)Π,

v = −α2 +
1
Π
(
a21 − 2a22κ − 3a23κ2 + 4a24κ3 + 5a25κ4 − 6a26κ5), (18)

while Equation (18) extracts the constraint relation

α2 =

α1Π +
(
a21 − 2a22κ − 3a23κ2 + 4a24κ3 + 5a25κ4 − 6a26κ5)

−
(
a11 − 2a12κ − 3a13κ2 + 4a14κ3 + 5a15κ4 − 6a16κ5)Π2

Π
. (19)
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Moreover, Equations (11) and (12) admit the strategic constraints

a16Π
a26

=
(a14−5a15κ−15a16κ2)Π

a24−5a25κ−15a26κ2

=
(a12+3a13κ−6a14κ2−10a15κ3+15a16κ4)Π

a22+3a23κ−6a24κ2−10a25κ3+15a26κ4

=
α1k−ω+(β1+a11κ−a12κ2−a13κ3+a14κ4+a15κ5−a16κ6)Π
(α2k−ω)Π+β2+a21κ−a22κ2−a23κ3+a24κ4+a25κ5−a26κ6

= b11−κ(λ1+θ1)+(b12+σ1)Π2

[b22+σ2+b21Π2−κ(λ2+θ2)Π2]Π
,

(20)

and the certain parametric restrictions

ω =

Π

[
17κ2(a26a12 − a16a22)− 11κ3(a16a23 − a26a13)
+20a16(Πα2k + β2 + a21κ)− 20a26(β1 + κa11)

]
−20a26α1k

20(a16Π2−a26)
,

a24 = a16a22+3a16a23κ−a26a12−3a26a13κ+8a26a14κ2

8a16κ2 ,

a25 = 40a26a15κ3+a16a22+3a16a23κ−a26a12−3a26a13κ
40a16κ3 ,

b22 =

a26b11 − a26κλ1 − a26κθ1 + (a16κλ2 − a16b21 + a16κθ2)Π4

+(a26b12 + a26σ1 − a16σ2)Π2

a16Π2 .

(21)

Equation (11) is also extracted as

g(6)1 + Ω4g(4)1 + Ω2g′′1 + Ω1g1 + Ω3g3
1 = 0, (22)

where
Ω4 = a14−5a15κ−15a16κ2

a16
,

Ω2 = a12+3a13κ−6a14κ2−10a15κ3+15a16κ4

a16
,

Ω1 = − α1k−ω+(β1−a12κ2+a11κ+a14κ4−a13κ3−a16κ6+a15κ5)Π
a16Π ,

Ω3 = b11−κ(λ1+θ1)+(b12+σ1)Π2

a16Π .

(23)

From the standpoint of electromagnetic theory, Equations (1)–(3) are a far cry from the
basic alphabets of electromagnetic theory, namely Maxwell’s equation. It is well known
that Maxwell’s equation led to the derivation of the nonlinear Schrodinger’s equation
(NLSE) with the Kerr law of nonlinear refractive index by the aid of multiple scales. This
is alternatively known as the cubic Schrodinger’s equation. It is interesting to point out
here that NLSE is a special case of the Schrodinger’s equation that appears in Quantum
Mechanics when the potential function is the intensity of light. This so happens since
the refractive index of light is intensity dependent. Thus, there exists a close proximity
between Schrodinger’s equation in Quantum Mechanics and NLSE in Quantum Optics. The
extended or perturbed version of NLSE is also derived from Maxwell’s equation with the
inclusion of higher order perturbation terms. These are typically some of the Hamiltonian
type of perturbation terms that would include self-steepening effect, self-frequency shift,
inter-modal dispersion, detuning effect, and others.

Later, it was realized that the CD alone turns out to be insufficient to maintain the
much-needed delicate balance between CD and self-phase modulation (SPM) because of its
depletion with trans-continental and trans-oceanic distance soliton transmission through
optical fibers. This would lead to a catastrophic pulse collapse. Thus, to circumvent
this situation, the concept of HD solitons was conceived a couple of years ago where the
low count of CD would be supplemented with higher order dispersion terms. Another
engineering marvel that was proposed a couple of decades ago is the introduction of the
gratings structure by Bragg, which would lead to the arrest of the pulse collapse and
introduce dispersive reflectivity which would maintain the necessary balance between CD
and SPM. The current paper is a combination of both, namely introducing HD solitons as
well as Bragg grating’s structure to ensure the uninterrupted long-distance transmission of
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solitons. Thus, Equations (2) and (3) can be derived from (1), just as the coupled equation
for birefringent fibers are derived from the scalar version of the NLSE. Here, in (2) and (3),
the variables U and V represent the forward and backward propagating waves in the cubic
nonlinear core.

In this paper, the higher order dispersion terms as well as the nonlinear dispersion due
to θj (j = 1, 2) are all taken to be strong dispersion. This would only slow down the soliton of
the soliton and would introduce some constraints or connectivity between these dispersions
and other Hamiltonian perturbation parameters. These are reflected in relations (15)–(17)
and the velocity slowdown is reflected in (18) along the two core components. However,
the integrability of model (2) and (3) would not be affected. Evidently, these dispersion
terms would introduce a considerable amount of soliton radiation. This effect is discarded
in the current paper since the study of soliton radiation falls in the continuous regime
and can be handled as a separate project with the usage of the variational principle or the
method of moments, or even by the theory of unfoldings. Finally, if the dispersive effect
was taken to be weak, it would lead to the emergence of quasi-monochromatic solitons
that can be recovered only with the usage of multiple scales [21]. However, again, this is
outside the scope of the current work.

While the governing equation with Hamiltonian perturbation terms is integrable
with the application of the inverse scattering transform which would have additionally
revealed soliton radiation effects analytically, this paper focuses on the retrieval of bound
state solitons only by the aid of the generalized Kudryashov’s approach and the enhanced
Kudryashov’s method. The details of the retrieval of solitons using these two algorithms
are presented in the subsequent sections.

3. Generalized Kudryashov’s Method

The integration technique satisfies the analytical solution

g1(ξ) =
∑N

k=0 AkFk(ξ)

∑M
h=0 BhFh(ξ)

, AN 6= 0, BM 6= 0, (24)

such that F(ξ) admits the ancillary equation

F′(ξ) = F(ξ)[F(ξ)− 1] ln H, 0 < H 6= 1, (25)

and the explicit solutions

F(ξ) =
1

1 + ε expH(ξ)
, (26)

F(ξ) =
1

1 + ε[cosh(ξ ln H) + sinh(ξ ln H)]
. (27)

Here, ε = ±1, expH(ξ) = H(ξ), Ak (k = 1− N) and Bh (h = 1−M) denote constants,
whereas N and M arise from the balance principle.

Setting ε = 1, Equation (27) evolves as the dark soliton

F(ξ) =
1
2

[
1− tanh

(
1
2

ξ ln H
)]

, (28)

whilst setting ε = −1, Equation (27) yields the singular soliton

F(ξ) =
1
2

[
1− coth

(
1
2

ξ ln H
)]

. (29)

Balancing g3
1 with g(6)1 extracts the restriction

N −M + 6 = 3(N −M) =⇒ N = 3 + M. (30)

When M = 1, Equation (24) reads as
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g1(ξ) =
A4F4(ξ) + A3F3(ξ) + A2F2(ξ) + A1F(ξ) + A0

B1F(ξ) + B0
, A4 6= 0, B1 6= 0. (31)

Placing (31) with the usage of (25) into (22) leaves us the results

A4 = 24B1

√
− 35

Ω3
ln3 H, A3 = 0, A2 = −54B1

√
− 35

Ω3
ln3 H,

A1 = 6B1

√
− 35

Ω3
ln3 H, A0 = 9B1

√
− 35

Ω3
ln3 H, B1 = B1, B0 = 3

2 B1,

(32)

Ω4 = −83 ln2 H, Ω2 = 946 ln4 H, Ω1 = 1260 ln6 H, Ω3 < 0. (33)

Inserting (32) together with (27)–(29) into (31) acquires the explicit solutions:

(I) The combo bright-singular soliton solutions:

U(x, t) = ±9
√
− 35

Ω3

(
ln3 H

)1 +
4−6

{
1 + εsinh[(x− vt) ln H]
+ε cosh[(x− vt) ln H]

}
{

1 + εsinh[(x− vt) ln H]
+ε cosh[(x− vt) ln H]

}3


× exp[i(−κx + ωt + θ0)],

(34)

V(x, t) = ±9Π
√
− 35

Ω3

(
ln3 H

)1 +
4−6

{
1 + εsinh[(x− vt) ln H]
+ε cosh[(x− vt) ln H]

}
{

1 + εsinh[(x− vt) ln H]
+ε cosh[(x− vt) ln H]

}3


× exp[i(−κx + ωt + θ0)].

(35)

(II) The singular soliton solutions:

U(x, t) = ±3
√
− 35

Ω3

(
ln3 H

){
coth2

[
1
2 (x− vt) ln H

]
− 3
}

coth
[

1
2 (x− vt) ln H

]
× exp[i(−κx + ωt + θ0)],

(36)

V(x, t) = ±3Π
√
− 35

Ω3

(
ln3 H

){
coth2

[
1
2 (x− vt) ln H

]
− 3
}

coth
[

1
2 (x− vt) ln H

]
× exp[i(−κx + ωt + θ0)].

(37)

(III) The dark soliton solutions:

U(x, t) = ±3
√
− 35

Ω3

(
ln3 H

){
tanh2

[
1
2 (x− vt) ln H

]
− 3
}

tanh
[

1
2 (x− vt) ln H

]
× exp[i(−κx + ωt + θ0)],

(38)

V(x, t) = ±3Π
√
− 35

Ω3

(
ln3 H

){
tanh2

[
1
2 (x− vt) ln H

]
− 3
}

tanh
[

1
2 (x− vt) ln H

]
× exp[i(−κx + ωt + θ0)].

(39)

4. Enhanced Kudryashov’s Method

The integration algorithm admits the explicit solution

g1(ξ) =
N

∑
j=0

KjZj(ξ), KN 6= 0, (40)

such that Z(ξ) holds the ancillary equation

Z′2(ξ) = Z2(ξ)
[
1− πZ2s(ξ)

]
ln2 H, 0 < H 6= 1, (41)

and the analytical solution
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Z(ξ) =
[

4η

(4η2 − π)sinh(sξ ln H) + (4η2 + π) cosh(sξ ln H)

] 1
s
. (42)

Here π, Kj (j = 0− N), s and η depict real-valued constant parameters. Balancing g3
1

and g(6)1 in (22) secures the certain restriction

3N = N + 6s =⇒ N = 3s. (43)

Case 1 : When s = 1, Equation (40) evolves as

g1(ξ) = K3Z3(ξ) + K2Z2(ξ) + K1Z(ξ) + K0, K3 6= 0. (44)

Inserting (44) with the help of (41) into (22) leaves us the results:
Result 1:

K3 = −24π

√
35π

Ω3
ln3 H, K2 = 0, K1 =

288
17

√
35π

Ω3
ln3 H, K0 = 0, (45)

Ω4 =
581
17

ln2 H, Ω2 =
92659
289

ln4 H, Ω1 = −102825
289

ln6 H, πΩ3 > 0. (46)

Plugging (45) with the usage of (42) into (44) formulates the combo solitons

U(x, t) = ±24
√

35π
Ω3

(
ln3 H

) 4η(
4η2 − π

)
sinh[(x− vt) ln H]

+
(
4η2 + π

)
cosh[(x− vt) ln H]


×
{

12
17 − π

(
4η

(4η2−π)sinh[(x−vt) ln H]+(4η2+π) cosh[(x−vt) ln H]

)2
}
× exp[i(−κx + ωt + θ0)],

(47)

V(x, t) = ±24Π
√

35π
Ω3

(
ln3 H

) 4η(
4η2 − π

)
sinh[(x− vt) ln H]

+
(
4η2 + π

)
cosh[(x− vt) ln H]


×
{

12
17 − π

(
4η

(4η2−π)sinh[(x−vt) ln H]+(4η2+π) cosh[(x−vt) ln H]

)2
}
× exp[i(−κx + ωt + θ0)].

(48)

When Ω3 > 0 and π = 4η2, the bright solitons evolve as

U(x, t) = ± 24
17

√
35
Ω3

(
ln3 H

){
12− 17 sech 2[(x− vt) ln H]

}
×sech [(x− vt) ln H] exp[i(−κx + ωt + θ0)],

(49)

V(x, t) = ± 24
17 Π

√
35
Ω3

(
ln3 H

){
12− 17 sech 2[(x− vt) ln H]

}
×sech [(x− vt) ln H] exp[i(−κx + ωt + θ0)],

(50)

where as setting Ω3 < 0 and π = −4η2 secures the singular solitons

U(x, t) = ± 24
17

√
− 35

Ω3

(
ln3 H

){
12 + 17 csch 2[(x− vt) ln H]

}
×csch [(x− vt) ln H] exp[i(−κx + ωt + θ0)],

(51)

V(x, t) = ± 24
17 Π

√
− 35

Ω3

(
ln3 H

){
12 + 17 csch 2[(x− vt) ln H]

}
×csch [(x− vt) ln H] exp[i(−κx + ωt + θ0)].

(52)

Result 2:

K3 = 24π

√
35π

Ω3
ln3 H, K2 = 0, K1 = 0, K0 = 0, (53)
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Ω4 = −83 ln2 H, Ω2 = 1891 ln4 H, Ω1 = −11025 ln6 H, πΩ3 > 0. (54)

Placing (53) with the help of (42) into (44) formulates the combo solitons

U(x, t) = ±24π
√

35π
Ω3

 4η ln H(
4η2 − π

)
sinh[(x− vt) ln H]

+
(
4η2 + π

)
cosh[(x− vt) ln H]


3

× exp[i(−κx + ωt + θ0)],

(55)

V(x, t) = ±24Ππ
√

35π
Ω3

 4η ln H(
4η2 − π

)
sinh[(x− vt) ln H]

+
(
4η2 + π

)
cosh[(x− vt) ln H]


3

× exp[i(−κx + ωt + θ0)].

(56)

When Ω3 > 0 and π = 4η2, the bright solitons read as

U(x, t) = ±24

√
35
Ω3

(
ln3 H

)
sech 3[(x− vt) ln H] exp[i(−κx + ωt + θ0)], (57)

V(x, t) = ±24Π

√
35
Ω3

(
ln3 H

)
sech 3[(x− vt) ln H] exp[i(−κx + ωt + θ0)], (58)

whereas Ω3 < 0 and π = −4η2 retrieves the singular solitons

U(x, t) = ±24

√
− 35

Ω3

(
ln3 H

)
csch 3[(x− vt) ln H] exp[i(−κx + ωt + θ0)], (59)

V(x, t) = ±24Π

√
− 35

Ω3

(
ln3 H

)
csch 3[(x− vt) ln H] exp[i(−κx + ωt + θ0)]. (60)

Case 2 : When s = 2, Equation (40) reads as

g1(ξ) = K6Z6(ξ) + K5Z5(ξ) + K4Z4(ξ) + K3Z3(ξ)
+K2Z2(ξ) + K1Z(ξ) + K0, K6 6= 0.

(61)

Plugging (61) with the help of (41) into (22) reveals the results:
Result 1:

K6 = − 192
17 π

√
10115π

Ω3
ln3 H, K5 = 0, K4 = 0, K3 = 0,

K2 = 2304
289

√
10115π

Ω3
ln3 H, K1 = 0, K0 = 0,

(62)

Ω4 =
2324

17
ln2 H, Ω2 =

1482544
289

ln4 H, Ω1 = −6580800
289

ln6 H, πΩ3 > 0. (63)

Inserting (62) with the usage of (42) into (61) extracts the combo solitons

U(x, t) = ±192
√

35π
Ω3

(
ln3 H

) 4η(
4η2 − π

)
sinh[2(x− vt) ln H]

+
(
4η2 + π

)
cosh[2(x− vt) ln H]


×
{

12
17 − π

(
4η

(4η2−π)sinh[2(x−vt) ln H]+(4η2+π) cosh[2(x−vt) ln H]

)2
}
× exp[i(−κx + ωt + θ0)],

(64)
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V(x, t) = ±192Π
√

35π
Ω3

(
ln3 H

) 4η(
4η2 − π

)
sinh[2(x− vt) ln H]

+
(
4η2 + π

)
cosh[2(x− vt) ln H]


×
{

12
17 − π

(
4η

(4η2−π)sinh[2(x−vt) ln H]+(4η2+π) cosh[2(x−vt) ln H]

)2
}

× exp[i(−κx + ωt + θ0)].

(65)

When Ω3 > 0 and π = 4η2 the bright solitons come out as

U(x, t) = ± 192
17

√
35
Ω3

(
ln3 H

)
sech[2(x− vt) ln H]

{
12− 17 sech 2[2(x− vt) ln H]

}
× exp[i(−κx + ωt + θ0)],

(66)

V(x, t) = ± 192
17 Π

√
35
Ω3

(
ln3 H

)
sech[2(x− vt) ln H]

{
12− 17 sech 2[2(x− vt) ln H]

}
× exp[i(−κx + ωt + θ0)],

(67)

whilst setting Ω3 < 0 and π = −4η2 acquires the singular solitons

U(x, t) = ± 24
17

√
− 35

Ω3

(
ln3 H

)
csch[2(x− vt) ln H]

{
12 + 17 csch 2[2(x− vt) ln H]

}
× exp[i(−κx + ωt + θ0)],

(68)

V(x, t) = ± 24
17 Π

√
− 35

Ω3

(
ln3 H

)
csch[2(x− vt) ln H]

{
12 + 17 csch 2[2(x− vt) ln H]

}
× exp[i(−κx + ωt + θ0)].

(69)

Result 2:

K6 = 192π

√
35π

Ω3
ln3 H, K5 = 0, K4 = 0, K3 = 0,K2 = 0, K1 = 0, K0 = 0, (70)

Ω4 = −332 ln2 H, Ω2 = 30256 ln4 H, Ω1 = −705600 ln6 H, πΩ3 > 0. (71)

Putting (70) with the usage of (42) into (61) secures the combo solitons

U(x, t) = ±192π
√

35π
Ω3

 4η ln H(
4η2 − π

)
sinh[2(x− vt) ln H]

+
(
4η2 + π

)
cosh[2(x− vt) ln H]


3

× exp[i(−κx + ωt + θ0)],

(72)

V(x, t) = ±192Ππ
√

35π
Ω3

 4η ln H(
4η2 − π

)
sinh[2(x− vt) ln H]

+
(
4η2 + π

)
cosh[2(x− vt) ln H]


3

× exp[i(−κx + ωt + θ0)].

(73)

When Ω3 > 0 and π = 4η2, the bright solitons shape up as

U(x, t) = ±192

√
35
Ω3

(
ln3 H

)
sech 3[2(x− vt) ln H] exp[i(−κx + ωt + θ0)], (74)

V(x, t) = ±192Π

√
35
Ω3

(
ln3 H

)
sech 3[2(x− vt) ln H] exp[i(−κx + ωt + θ0)], (75)

where as setting Ω3 < 0 and π = −4η2 formulates the singular solitons
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U(x, t) = ±192

√
− 35

Ω3

(
ln3 H

)
csch 3[2(x− vt) ln H] exp[i(−κx + ωt + θ0)], (76)

V(x, t) = ±192Π

√
− 35

Ω3

(
ln3 H

)
csch 3[2(x− vt) ln H] exp[i(−κx + ωt + θ0)]. (77)

5. Conclusions

The current work is the first of its kind to combine the two compensatory means
to offset the low count of CD that is being implemented in optoelectronics for the first
time. HD solitons were implemented together with a Bragg gratings structure to produce
dispersive reflectivity that would work together to create performance enhancement. The
effect of soliton radiation and slowdown of solitons due to the presence of higher order
dispersions are neglected. The retrieval of solitons for the model has been successfully
achieved by the two Kudryashov approaches. The enhanced Kudryashov’s approach
turned out to be especially useful for bright solitons, while the generalized Kudryashov’s
scheme failed to recover the much-needed bright solitons.

This successful retrieval of solitons paves the way for further developments in this
newly formulated model. An immediate thought would be to obtain the conservation laws
to the governing model that would give a plethora of physical insight into the governing
model, which would follow up with additional features such as the quasi-monochromatic
soliton dynamics and others. Later, this model would also be taken up with additional
forms of self–phase modulation. We are awaiting the results that align with the latest
findings [17–20] and expect to receive them soon.
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