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Abstract: Precise streamflow estimation plays a key role in optimal water resource use, reservoirs
operations, and designing and planning future hydropower projects. Machine learning models
were successfully utilized to estimate streamflow in recent years In this study, a new approach,
covariance matrix adaptation evolution strategy (CMAES), was utilized to improve the accuracy of
seven machine learning models, namely extreme learning machine (ELM), elastic net (EN), Gaussian
processes regression (GPR), support vector regression (SVR), least square SVR (LSSVR), extreme
gradient boosting (XGB), and radial basis function neural network (RBFNN), in predicting streamflow.
The CMAES was used for proper tuning of control parameters of these selected machine learning
models. Seven input combinations were decided to estimate streamflow based on previous lagged
temperature and streamflow data values. For numerical prediction accuracy comparison of these
machine learning models, six statistical indexes are used, i.e., relative root mean squared error
(RRMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Nash–Sutcliffe
efficiency (NSE), and the Kling–Gupta efficiency agreement index (KGE). In contrast, this study
uses scatter plots, radar charts, and Taylor diagrams for graphically predicted accuracy comparison.
Results show that SVR provided more accurate results than the other methods, especially for the
temperature input cases. In contrast, in some streamflow input cases, the LSSVR and GPR were better
than the SVR. The SVR tuned by CMAES with temperature and streamflow inputs produced the
least RRMSE (0.266), MAE (263.44), and MAPE (12.44) in streamflow estimation. The EN method
was found to be the worst model in streamflow prediction. Uncertainty analysis also endorsed
the superiority of the SVR over other machine learning methods by having low uncertainty values.
Overall, the SVR model based on either temperature or streamflow as inputs, tuned by CMAES, is
highly recommended for streamflow estimation.

Keywords: streamflow prediction; extreme learning machine; support vector regression; elastic net;
covariance matrix adaptation evolution strategy

MSC: 68T20

1. Introduction

Reliable streamflow prediction is vital for many hydrological and environmental
studies, such as flood risk assessment, hydroelectric power, water allocations, irrigation
scheduling, and water protection [1,2]. Many factors, such as temperature, precipitation,
evapotranspiration, soil types, and urbanization affect the reliability of prediction [3–5]. In
recent years, due to climate change in the whole world, water resources faced much change,
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which resulted in extreme events such as frequent floods and drought. These extreme
events not only cause the loss of many human lives but also create economic instability [6,7].
Therefore, precise estimation of streamflow is necessary to avoid and mitigate this loss by
extreme events. The basic characteristic of the whole process is a nonlinear connection
between these factors and streamflow.

There are two groups of streamflow prediction techniques: (1) physically based mod-
els and (2) data-driven techniques. Numerous previous studies concluded that nonlinear
data-driven approaches often outperform physically based models and linear data-driven
techniques [8–11]. Among the data-driven techniques, a series of existing studies indi-
cated the potential of machine learning methods (MLMs) in streamflow prediction [12–14].
Kagoda et al. [15] successfully applied RBFNN to predict monthly streamflow in South
Africa. Sun et al. [16] introduced the GPR model to predict monthly streamflow using the
US MOPEX database. GPR produced more accurate predictions than artificial neural net-
works (ANN) and linear regression (LR). Mehr et al. [17] compared three ANN techniques.
They concluded that RBFNN yielded the best results in monthly streamflow prediction in
the Coruh Basin (Turkey). Kisi [18] reported that the LSSVR models outperformed the adap-
tive neuro-fuzzy embedded fuzzy c-means clustering (ANFIS-FCM) and autoregressive
moving average (ARMA) models in monthly streamflow prediction in the Dicle Watershed
(Turkey). Yaseen et al. [19] found that LSSVR yielded superior results to the M5 Tree and
MARS models in predicting streamflow from observed precipitation.

Modaresi et al. [20] found that LSSVR performed better than the ANN model for
monthly streamflow prediction nonlinear conditions in Iran. Worland et al. [21] compared
EN, support vector machines (SVM), and the gradient boosting machine (GBM) with the
null physically based model for weekly streamflow prediction. The results show that MLMs
made more reliable predictions than physically based models. Hadi et al. [22] employed a
hybrid XGB-ELM model. XGB was applied as an input selection technique, and ELM as a
predicting technique. Climatic data predicted monthly streamflow, including temperature,
precipitation, and evapotranspiration from the Goksu-Himmeti basin (Turkey). Overall
results prove that the XGB-ELM model improved the streamflow prediction. The authors
concluded that reliable streamflow prediction is possible using only temperature data;
however, other meteorological variables enhance the model’s capability. Li et al. [23]
investigated EN, XGB, and SVR in monthly streamflow prediction using data from China.
XGB outperformed EN, and SVR approaches. The authors concluded that MLMs could be
used for monthly prediction.

Ni et al. [24] successfully predicted monthly streamflows by using a new hybrid
technique based on XGB coupled with the Gaussian mixture model. The new technique per-
formed better compared to SVM. Adnan et al. [25] applied multivariate adaptive regression
splines (MARS), least square SVM (LSSVM), M5 model tree (M5 Tree), optimally pruned
extreme learning machines (OP-ELM), and the seasonal autoregressive moving average
(SARIMA) for predicting river flow using the temperature and precipitation data of two
mountainous stations of Pakistan. The LSSVM and MARS models yielded the best results in
Kalam station and Chakdara station, respectively. Only temperature data from Kalam sta-
tion provided a successful streamflow prediction. LSSVM, OP-ELM, and MARS performed
better than the SARIMA model. Thapa et al. [26] used SVR and GPR models for predicting
snowmelt streamflow in the Langtang basin (Nepal). Jiang et al. [27] implemented the
new ELM model with enhanced particle swarm optimization (ELM-IPSO) for simulat-
ing discharge from the Chaohe River basin (China). The ELM-IPSO made more reliable
monthly streamflow predictions than ANN, the auto-regression method (AR), ELM with
PSO algorithm (ELM-PSO), and ELM with genetic algorithm (ELM-GA). Malik et al. [28]
applied SVR models to predict daily river flow in the Naula basin (India). They employed
six meta-heuristic algorithms for optimizing SVR models. Authors reported that Harris
hawks optimization (HHO) provided the best performance to the hybrid SVR-HHO model.
Parisouj et al. [29] investigated ANN, ELM, and SVR in daily and monthly streamflow
prediction using temperature and precipitation input data from four basins in the western
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USA. The results show that SVR made more reliable daily and monthly predictions than
ELM and ANN models. Niu and Feng [30] applied ANFIS, ANN, SVM, ELM, and GPR for
daily streamflow prediction using data from south China. Obtained results show that ELM,
GPR, and SVM models outperformed ANN and ANFIS models.

In recent years, hybrid machine learning models (MLMs) became preferred over
standalone models and are successfully applied in the difference fields to model different
variables; e.g., for load forecasting [31], to estimate the international airport freight vol-
umes [32], to predict electricity prices [33], and for modeling of the tensile strength of the
concrete [34]. Due to the nonlinear nature of hydrological variables’ time series, researchers
found more precise and accurate results by utilizing hybrid MLMs than standalone MLMs.
Numerous meta-heuristic algorithms, such as Harris Hawks optimization (HHO), Particle
Swarm Optimization (PSO), Ant Lion Optimization (ALO), Grey Wolf Optimizer (GWO),
and the Fruit Fly Algorithm (FFA) were integrated with MLMs for streamflow prediction
in recent studies [28,35,36]. However, in addition to the precision of meta-heuristics al-
gorithms, the robustness and simplicity of meta-heuristic algorithms are also considered.
Therefore, in this study, instead of complex metaheuristic algorithms, a simple robust
meta-heuristic algorithm, the covariance matrix adaptation evolution strategy (CMAES),
is introduced to build hybrid machine learning methods [37]. CMAES was successfully
applied to solve many engineering problems [38–41]. However, CMAES was so far never
used to predict streamflow. That fact was the key motivation for this study. This study
demonstrates that CMAES is an alternative to perform the selection of different machine
learning models in flow prediction. In this research, the hybrid explores the CMAES al-
gorithm’s search potential to generate benefits for machine learning models through the
suitable selection of internal parameters. Furthermore, this study also performs an uncer-
tainty analysis of the developed models, contributing to ensuring the robustness of the
generated models and assisting in faster decision making. The computational framework
is flexible and has the potential to embed different machine learning models that were not
addressed in this study. The proposed strategy can be used by environmental monitoring
and water management agencies, delivered as a web service and serving to issue short-term
alerts, mitigating the effect of flash floods and assisting in managing water resources along
the river studied in this research.

The objectives of this study are: (1) to predict monthly streamflow using antecedent
streamflow observations and/or temperatures by different hybrid machine learning meth-
ods (MLMs), such as elastic net (EN), extreme learning machine (ELM), least squares
support vector regression (LSSVR), support vector regression (SVR), radial basis function
neural network (RBFNN), extreme gradient boosting (XGB) and Gaussian processes regres-
sion (GPR) (2) to implement CMAES as an optimization algorithm for these MLMs and (3)
to evaluate the results of the applied hybrid machine learning methods.

2. Materials and Methods
2.1. Study Region and Datasets

The Upper Indus basin is selected as a case study in this study. The Upper Indus
basin (UIB) is part of the world’s largest transboundary river basin, i.e., the Indus Basin,
with a catchment area of 289,000 km2, almost covering 56% of the main Indus basin.
UIB is located in the western area of Pakistan with a catchment elevation variation of
200 m to 8500 m. UIB is chosen due to the backbone role of this basin in the country’s
agriculture sector. UIB fulfills the 90% irrigation requirements of the agriculture sector of
Pakistan. However, the agriculture sector was affected in recent years due to insufficient
water supplies. Therefore, precise measurement in this key basin is important for proper
water supply management. For streamflow estimation, the Bunji sub-basin in this key
basin is selected in this study (Figure 1). Monthly streamflow data of the Bunji hydraulic
station (latitude: 35.4, longitude: 74.4) and temperature data of the Bunji meteorological
station from 1977 to 2008 is obtained from WAPDA. Thirty-two years of monthly data
are partitioned into calibration and testing parts for streamflow analysis with training
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and testing proportions of 75% and 25% training and testing proportions, respectively.
Table 1 shows the statistical parameters of the streamflow and temperature data. Bunji
basin is located at the confluence of the three biggest mountain ranges in the world, i.e.,
Hindu Kush, the Karakoram, and the Himalaya (HKH) mountains. This basin is selected
as it directly drains to UIB. A key hydropower project is planned in this basin, i.e., Bunji
Hydropower with 7100 MW generation capacity. Therefore, precise discharge simulation in
this key basin can help the water manager optimize the scheduling of planned hydropower
projects. Figure 2 shows the training (blue) and test set (orange) used in this study.
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Table 1. The statistical parameters of the streamflow and temperature data.

Dataset Parameter Min Mean Std Max

Training T (C) −3.33 13.80 8.72 29.45

Q (m/s) 251.72 1784.68 1971.37 7799.4

Test T (C) −1.22 14.15 9.03 28.65

Q (m/s) 272.50 1844.64 1941.29 1941.29
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2.2. Streamflow Estimation Models

The prediction model considers the present streamflow as a function of antecedent
streamflow and/or temperatures. The predictive model has the following form:

Qt = F
(

Tt−1, · · · , Tt−k
︷︸︸︷ temperatures, Qt−1, · · · , Qt− k︸︷︷︸ stream f lows

)
(1)

where Qt−k represent streamflow at month t − k, Tt−k is the temperature measured at
month t− k, and F(·) is an estimation function. Table 2 shows the input combinations to
the model presented in Equation (1). Each input combination represents a case shown in
the first column. The databases in the input and output nodes were normalized between
−1 and 1 as below:

XtN =
2(Xi − Xmin)

Xmax − Xmin
− 1 (2)

where XtN = normalized data of Q and T, whereas i = t, t − 1, t − 2, t − 3, and t − 4.



Mathematics 2022, 10, 2971 6 of 30

Table 2. Input features associated with models tested in this paper.

Case. Input Features

Case 1 Tt−1

Case 2 Tt−1, Tt

Case 3 Tt−11, Tt−1, Tt

Case 4 Tt−12, Tt−11, Tt−1, Tt

Case 5 Qt−1

Case 6 Qt−11, Qt−1

Case 7 Qt−12, Qt−11, Qt−1

2.2.1. Elastic Net (EN)

The EN uses a generalized linear regression [42] to best fit the coefficients
w =

[
w0, w1, w2, . . . , wp

]
by minimizing the residual of the fitted model. The optimiza-

tion problem of EN can be stated as,

min
w

1
2N
‖ Xw− y ‖2

2 +αρ ‖ w ‖1 +
α(1− ρ)

2
‖ w ‖2

2 (3)

where N represents sample size, X is the dataset, y is the outputs, α ≥ 0, ‖ w ‖2 and
‖ w ‖1 represent the L2- and L1-norm of the parameter vector, respectively, and ρ represents
the L1-ratio parameter. EN model is trained with L1 and L2 for learning a sparse model
with few non-zero weights while maintaining regularization properties. This trade-off is
controlled using the parameter ρ, and the so-called L1-ratio parameter. EN is suitable for
developing a model with multiple inter-correlated inputs [43].

2.2.2. Extreme Learning Machine (ELM)

ELM is a kind of a feedforward ANN consisting of a single hidden layer. It can
learn fast and is generalized efficiently, and therefore, suitability for modeling [44]. ELMs
have three stages of randomness: (1) completely connected hidden node parameters are
created randomly; (2) inputs to hidden node connections are produced randomly; and (3) a
hidden node acts as a subnetwork consisting of several nodes. ELM can be mathematically
presented as [45],

ŷ(x) = ∑L
i=1 βiG(wi, bi, x) (4)

where ŷ represents the output for the input x, wi denotes the ith hidden node’s weight,
bi denotes the hidden node’s biases of the neurons in the hidden layer, βi represents the
output weight, G(·) represents the activation function, and L denotes the hidden node
number. The parameters (w, b) are random numbers, N(0, 1) having a normal distribution,
while βi is decided logically. Table 3 provides the G(w, b, x) for (w, b).

Table 3. Activation functions used in ELM.

# Name Activation Function G

1 Identity G(w, b, x) = (w · x + b)

2 Sigmoid G(w, b, x) = 1
1+exp(−w·x+b)

3 Hyperbolic tangent G(w, b, x) = 1−exp(w·x+b)
1+exp(w·x+b)

4 Gaussian G(w, b, x) = exp

5 Swish G(w, b, x) = (w·x+b)
1+exp(w·x+b)

6 ReLU G(w, b, x) = maxi(0, (w · x + b))
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The values of [β1, . . . , βL] are estimated by minimizing [46],

minβ∈R

(
‖Hβ− y‖+ C‖β‖2

)
(5)

where H represents the hidden layer output matrix. The optimal weight (β) can be estimated as,

β =
(

HT H
)−1

HTy = H†y (6)

where H† is the pseudoinverse of H.

2.2.3. Least Squares Support Vector Regression (LSSVR)

The LSSVR method [47] assumes that a nonlinear function (φ) represents a dataset
S = {(x1, y1), (x2, y2), . . . , (xn, yn),} as,

f (x) = ωTφ(x) + b (7)

where x ∈ Rn, y ∈ R, ω represents weight, and b denotes bias. The unknown parameters
can be estimated by minimizing a residual function R(w, e, b)

minR(ω, ε, b) =
1
2
‖ ω ‖2 +

1
2

C ∑n
i=1 ε2

i (8)

where C is the regularization constant, and εi represents error. The objective function
R(w, e, b) consists of a loss and a regularization term, such as a feedforward ANN. However,
R(w, e, b) is hard to solve for larger ω. The Lagrange multiplier optimal programming
method is generally employed for its solution,

L(ω, b, ε, ζ) = R(ω, ε, b)−∑n
i=1 ζi

(
ωT ϕ(xi) + b + εi − yi

)
(9)

where ζk is a Lagrange multiplier. It is solved by optimizing the following criteria:

∂L
∂ω = 0→ ω = ∑n

i=1 ζi ϕ(xi) = 0 ∂L
∂b = 0→ ∑n

i=1 ζi = 0 ∂L
∂εi

= 0→ ζi =

Cεk, i = 1, · · · , n ∂L
∂ζi

= 0→ ωϕ(xk) + b + εi − yi, i = 1, · · · , n
(10)

Eliminating ε and ω, the optimization problem can be presented as below:[
0 1T

v 1v ω +
1
C

]
[b ζ ] = [0 y ] (11)

where y = [ y1, · · · , yn], 1v = [1, · · · , 1], and ζ = [ζ1, · · · , ζ], as well as the kernel function
are defined as

ω = ϕ(xi)
T ϕ(xk) = K(xi, xk) (12)

where

K(xi, xk) = exp
‖ xi − xk ‖2

2γ
(13)

is the radial basis function (RBF) kernel. The LSSVR model output can be written as,

y(x) =
n

∑
i=1

ζiK(xi, xk) + b (14)

where ζk and b are the solutions to the linear system, and γ represents the kernel function
parameter. The tuning parameters (C, γ) are generally defined by the user.
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2.2.4. Support Vector Regression (SVR)

SVR is a classical algorithm [48] applied to solve regression problems [49]. It can be
presented as,

f (x) = ∑N
j=1 wjK

(
x, xj

)
+ (15)

where K(·, ·) represents kernel function, w = [w1, · · · , wN ] represent weights, b and N de-
note bias and sample size, respectively. RBF is used in this study, which can be presented as,

K(x, xi) = ∑N
i=1 exp

(
−γ‖x− xi‖2

)
(16)

where γ is the bandwidth parameter; w and b is determined by minimizing

J = ∑N
i=1 w2

i +
C
N ∑N

i=1 Lε(yi − f (xi)), Lε(y− f (x)) = {0i f ∨ y− f (x)∨ ≤ ε y− f (x) ∨ otherwise (17)

where yi presents the output for inputs xi, Lε denotes the ε-insensitive loss function, and C
denotes the regularization parameter [50]. In the SVR model presented in this paper, the
parameters C and ε are to be adjusted to improve the SVR ability to model the regression
problem [51].

2.2.5. Radial Basis Function Neural Network (RBFNN)

RBFNN [52] is a three-layer ANN commonly used for function interpolation problems.
RBFNN is different from other ANN types in its universal approximation and rapid
learning ability. The first and the last layers of RBFNN are used for attaining inputs
and providing output, respectively. The hidden layer is composed of several radial basis
nonlinear activation units. Compared to multilayer neural networks, RBFNN presents
some differences: (1) the RBF network has only one hidden layer, (2) the activation function
is according to distances instead of an inner product in multilayer networks; and (3) the
approximation for an RBFNN network is a local one, while multilayer networks realize
global approximation for the entire space.

For an array of points {xi; i = 1, · · · , N}, xi ∈ Rn and their respective functional values,
yi = f (xi), i = 1, · · · , N, where f (·) is a functional input/output relationship, the RBFNN
constructs an approximation to f (·) in the form

ŷ(x) =
N

∑
i=1

wiφ(xi, ε) (18)

where
φ(xi, ε)= φ(||x− xi||, ε), ε > 0 (19)

is the ith hidden layer’s activation function, xi id denotes the ith data point, and ε is the
width of the activation function. Inserting the condition displayed in the previous equations
gives the following set of linear equations f = Aw where, A =

[
aij
]
, f = [yi], and w =

[
wj
]
.

The training procedure for the RBFNN includes calculating the widths and weights. The
adjustment of weights is performed using least squares, adding a smoothing parameter

f = (A + λI)w⇒ w = (A + λI)−1 f (20)

where l is the smooth parameter. The smoothness of the approximation is increased when
l > 0 and l = 0 is for interpolation. As a result, the function will always go through the
nodal points in this case. The activation function in the RBFNN formulation is crucial to
its performance. Table 4 shows a set of radial basis activation functions used in this study.
The smooth parameter ε is only used in multiquadric, inverse multiquadric, and Gaussian
activation functions.
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Table 4. Activation functions used in RBFNN.

# Name Activation Function φ

1 Linear φ(r, ε) = r

2 Multiquadrics φ(r, ε) =
√( r

ε

)2
+ 1

3 Inverse multiquadrics φ(r, ε) = 1√
( r

ε )
2
+1

4 Gaussian φ(r, ε) = exp( )

5 Cubic φ(r, ε) = r3

6 Quintic φ(r, ε) = r5

7 Thin plate φ(r, ε) = r2log(r)

2.2.6. eXtreme Gradient Boosting (XGB)

XGB [53] is an ensemble algorithm that combines several weak learners to predict bet-
ter. In XGB, weak learners are regularized decision trees [54]. The XGB can mathematically
be presented as,

y = Fm(xi) =
Mest

∑
m=1

hm(xi) (21)

where Mest is the number of estimators, hm represents weak learners (decision trees) with
depth defined by parameter mdepth. XGB is developed greedily,

Fm(x) = Fm−1(x) + ηhm(x) (22)

where η is a learning rate and the newly added tree hm(x) is fitted to minimize a sum of
losses Lm and is given by

hm = argmin
h

Lm = argmin
h

∑N
i=1 l(yi, Fm−1(xi) + h(xi)) + Ω(Fm−1) (23)

In the XGB formulation, the loss function is written as

l(yi, Fm(x)) = [yi − Fm(xi)]
2 (24)

where N is the number of samples and

Ω(Fm) = T +
1
2

λreg‖w‖2 (25)

is the regularization term, where T represents the number of leaves, w denotes leaf weights,
and λreg is the L2 regularization term on weights.

2.2.7. Gaussian Processes Regression (GPR)

The GPR predicts output based on the distribution over function instead of considering
the function’s parameter distribution [55]. A Gaussian process model is represented as:

y = f (x) + ε (26)

where f (·) is a nonlinear function that is used to infer output, y from inputs, x, ε is Gaussian
noise with zero means (i.e., ε ∼ N

(
O, σ2

v
)
). The prior for f (·) is a Gaussian process, and

f (·) ∼ G(µ, C) and C represent the covariance matrix.
The predictive distribution of the output parameter ŷ, given its input x, is formulated

as [56],
ŷ(x) = kT(x)(K + αI)−1y (27)
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where y = [y1, y2, . . . , yN]T is the vector of training data, k = [K(x, x1), K(x, x2), . . . , K(x,
xN)]T, and K represents the function of covariance matrix, and a refers to regularization
parameter. Equation (28) gives the covariance between xi and xj [57] as,

Kij = K
(

xi, xj
)
= k0

21−ν

Γ(ν)
(
∣∣∣∣x− xj

∣∣∣∣√2νl−1)
ν

Kν

(∣∣∣∣x− xj
∣∣∣∣√2νl−1

)
(28)

where ν and l are positive parameters, Γ(·) and Kν(·) are the gamma and the modified
Bessel function [58].

2.3. Parameter Tuning Guided by a CMAES

CMAES as an evolutionary algorithm [59] applies iterative optimization by sampling
population involving λ solutions obtained from multi-dimensional normal distribution.
CMAES is dependent on a means vector m and a covariance matrix C using a step size σ [60].
The pseudocode of CMAES is shown in Algorithm 1. Details of CMAES are provided
in [61]. In CMAES, each candidate solution x encodes the internal parameters of the
machine learning model in the form x = (θ1, θ2, . . . , θM), where M is the hyperparameter
number of the machine learning model. Table 5 shows the internal parameters and their
respective description and range.

Algorithm 1. Pseudocode of the CMAES searches the internal parameters of the machine learning
models.
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Table 5. Encoding of candidate solutions. The column IP indicates the internal parameter in the CMAES encoding.

Method IP Description Settings/Range

q1 No. neurons in the hidden layer [1, 500]

q2 Regularization parameter, C [0.0001, 10,000]ELM

q3 Activation function, G 1: Identity; 2: Sigmoid; 3: Hyperbolic Tangent; 4: Gaussian; 5: Swish; 6: ReLU;

q1 Penalty term, a [10−6, 1]
EN

q2 L1-ratio parameter, r [0, 1]

q1 Kernel parameter, k0 [0.001, 10]

q2 Kernel parameter, n [0.001, 10]

q3 Kernel parameter, k0 [0, 100]
GPR

q4 Regularization parameter, a [10−8, 1]

q1 Regularization parameter, C [1, 1000]
LSSVR

q2 Bandwidth parameter, g 0.001, 100]

q1 Activation function width, e [1, 500]

q2 Smoothing parameter, l [0.0001, 10,000]RBFNN

q3 Activation function, f 1: Linear; 2: Multiquadric; 3: Inverse Multiquadric; 4: Gaussian; 5: Cubic; 6: Quintic; 7: Thin Plate;

q1 Loss parameter, e [10−5, 1]

q2 Regularization parameter, C [1, 10,000]SVR

q3 Bandwidth parameter, g [0.001, 10]

q1 Learning rate, l [10−6, 1]

q2 No. weak estimators, Mest [10, 500]

q3 Maximum depth, mdepth [1, 20]
XGB

q4 Regularization parameter, lreg [0, 100]
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Root mean squared error (RMSE) between simulated and actual values is used as the
objective function in CMAES to evaluate the solutions. For assessing an individual’s fitness,
5-fold was set and cross validation was employed. In this method, data are randomly split
into 5 subsets. The machine learning model using the internal parameter vector x is trained
using 4 subsets, and the remaining subset is used for RMSE calculation. The process is
iterated 5 times and the average RMSE is computed. According to the RMSE, the population
is evolved over NG generations. The objective is the estimate of the optimal parameter
x with the least RMSE. At each iteration k, the parameters mk, Ck, and σk are updated
considering the evaluated population based on the algorithm (see Algorithm 1). Figure 3
shows the architecture of the proposed approach and the integration of CMAES with
machine learning models. The training modeling phase involves fine tuning the internal
estimator parameters using the CMAES. The model decoded from the best individual is
employed for predictions during testing.

Figure 3. Framework used in this paper showing the combination of the CMAES evolutionary
algorithm and the machine learning models.

2.4. Performance Metrics

Six metrics are used in this paper to assess the model’s performance. Table 6 represents
the metrics applied and their expressions. In Table 6, MAE, RRMSE, and WI represent
the mean absolute error, relative root mean squared error, and agreement index, respec-
tively [62]. MAPE and NSE refer to the mean absolute percentage error and Nash–Sutcliffe
efficiency [63]. KGE represents the Kling–Gupta efficiency between simulated and ob-
served values [64]. The metrics used in this study were commonly and successfully used in
recent years to model streamflow and hydrological variables [65–67]. The purpose of using
multiple metrics was to show that the optimized models present good performance in
many aspects. KGE and NSE metrics were explicitly developed for hydrological modeling
and are used by hydrologists for decision making regarding the accuracy and consistency
of models. MAE and MAPE metrics are widely used in machine learning research. RRMSE
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allows for evaluating the performance of models in rivers with flows of different mag-
nitudes and is helpful in cases where it is desired to assess the performance of the same
model and rivers with wide channels (higher flows) or narrow ones (smaller flows). The
WI index represents the ratio between the mean square error and the potential error and
brings relevant information to specialists/hydrologists in the analysis of the calibration of
forecast models. In Table 6, Oi and Pi represent observation and prediction, respectively. O
represents observation mean, r represents Pearson product–moment correlation coefficient,
a is the standard deviation (SD) of the predictions, and the SD of observation. B is the ratio
of the prediction and observation means.

Table 6. Performance metrics used in the study.

Metric Acronym Expression

MAE 1
N ∑ |(Oi − Pi)|

MAPE 100×1
N

∑ |O(i)−P(i)|
|O(i)|

NSE 1− ΣN
i=1(Oi−Pi)

2

∑ i=1n(Oi−O−)2

KGE 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2

WI 1− ∑ (Oi−Pi)
2

∑ (|Pi−O− |+|Oi−O− |)2

RRMSE
√

1
N ∑ (Oi−Pi)

2

O−

3. Results and Discussion
3.1. Results

This section presents the results and compares the performances of seven machine
learning methods tuned by CMAES: ELM, EN, GPR, LSSVR, RBFNN, SVR, and XGB for
predicting monthly streamflow. Methods were assessed considering the metrics given
in Table 6. Various internal parameters were attempted in order to reach the optimal
models for each method and input case. Table 5 sums up the considered ranges of the
internal parameters.

Figure 4 displays the SVR internal parameters C, g, and e. C refers to the penalization
parameter, e defines the penalization related to training loss function, and g refers to the
kernel coefficient. Analyzing the boxplots, the distributions of the parameters g and e
are similar in both cases. In addition, the parameter values of C are higher for Case 1
compared to other cases. C as a regularization parameter has an important role in support
vector machines. The strength of regularization is directly proportional to 1/C. Thus, the
estimations are smoother for Case 0 compared to Case 1. The lower RMSE for Case 1
illustrated in the bar plots in Figure 4 (averaged in 50 runs) supports this interpretation.

Test outcomes of the optimal hybrid ELM, EN, GPR, LSSVR, RBFNN, SVR, and XGB
models calibrated by CMAES are shown in Tables 7–13 for seven input cases. For input
Case 1 (Table 7), SVR showed the best accuracy with the lowest RRMSE (0.375), MAE
(412.98), and MAPE (25.91), and the highest WI (0.970), NSE (0.876), and KGE (0.915) in
streamflow prediction, and the GPR follows it. At the same time, the EN acts worse than
the other models. In other temperature-based input cases, the SVR offers the best accuracy,
generally having the lowest SD (values within brackets). The models’ efficiency decreases
by adding more temperature inputs (from input Case 1 to 3), whereas the Tt−12 input
decreases the prediction results. The third input case provides the highest accuracy for all
models among the temperature inputs. The temperature-based SVR model (input Case 3
with Tt−11, Tt−1, and Tt) has the lowest RRMSE (0.290), MAE (289.21), and the highest WI
(0.981), NSE (0.925), and KGE (0.962), and EN provides the worst efficiency. From input
Case 1 to Case 3, improvements in the RRMSE (NSE) accuracy of the ELM, EN, GPR, LSSVR,
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RBFNN, SVR, and XGB are 22.1 (6.8), 0.5 (0.6), 21.3 (5.8), 19.5 (5.3), 18.9 (5.3), 22.7 (5.6), and
14% (4%) in streamflow prediction, respectively. The best SVR model utilizing the input
Case 3 improves the prediction accuracy (concerning RRMSE) by 7.3, 50, 4.3, 6.5, 7.6, and
12.9% compared to ELM, EN, GPR, LSSVR, RBFNN, and XGB, respectively.
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Table 7. Model results for Case 1.

Estimator WI RRMSE MAE MAPE NSE Kq + GE

ELM 0.965
(0.007)

0.402
(0.044)

441.44
(26.13)

28.28
(3.500)

0.855
(0.037)

0.898
(0.025)

EN 0.908
(0.000)

0.578
(0.000)

875.05
(0.000)

120.11
(0.000)

0.703
(0.000)

0.774
(0.000)

GPR 0.968
(0.001)

0.385
(0.008)

427.99
(10.56)

26.69
(0.300)

0.868
(0.005)

0.904
(0.003)

LSSVR 0.968
(0.001)

0.385
(0.007)

428.95
(11.08)

27.18
(0.726)

0.869
(0.005)

0.904
(0.002)

RBFNN 0.968
(0.004)

0.387
(0.022)

442.57
(53.73)

30.55
(10.98)

0.867
(0.017)

0.904
(0.007)

SVR 0.970
(0.000)

0.375
(0.003)

412.98
(4.13)

25.91
(0.620)

0.876
(0.002)

0.915
(0.004)

XGB 0.968
(0.002)

0.387
(0.012)

434.24
(14.39)

27.37
(0.534)

0.867
(0.009)

0.898
(0.011)

Table 8. Model results for Case 2.

Estimator WI RRMSE MAE MAPE NSE KGE

ELM 0.971
(0.004)

0.363
(0.022)

394.59
(42.45)

26.54
(8.130)

0.883
(0.015)

0.922
(0.013)

EN 0.909
(0.000)

0.577
(0.000)

881.96
(0.000)

118.81
(0.000)

0.704
(0.000)

0.777
(0.000)

GPR 0.971
(0.004)

0.360
(0.023)

350.88
(14.52)

17.21
(1.540)

0.884
(0.015)

0.932
(0.010)

LSSVR 0.968
(0.005)

0.382
(0.026)

369.83
(10.97)

20.53
(1.300)

0.870
(0.018)

0.921
(0.003)

RBFNN 0.971
(0.001)

0.366
(0.009)

358.07
(9.61)

17.40
(0.438)

0.881
(0.006)

0.932
(0.002)

SVR 0.975 (0.00) 0.339
(0.003)

342.25
(5.11)

17.36
(0.646)

0.898
(0.002)

0.943
(0.002)

XGB 0.968
(0.002)

0.389
(0.015)

386.32
(19.42)

17.61
(0.987)

0.866
(0.010)

0.909
(0.009)

Table 9. Model results for Case 3.

Estimator WI RRMSE MAE MAPE NSE KGE

ELM 0.979
(0.003)

0.313
(0.021)

352.43
(40.86)

27.06
(6.670)

0.913
(0.012)

0.929
(0.011)

EN 0.910
(0.000)

0.575
(0.000)

879.59
(0.003)

118.37
(0.001)

0.707
(0.000)

0.778
(0.000)

GPR 0.980
(0.001)

0.303
(0.009)

307.32
(13.57)

16.12
(1.730)

0.918
(0.005)

0.947
(0.007)
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Table 9. Cont.

Estimator WI RRMSE MAE MAPE NSE KGE

LSSVR 0.979
(0.002)

0.310
(0.013)

328.71
(21.43)

20.91
(1.880)

0.915
(0.007)

0.938
(0.004)

RBFNN 0.978
(0.002)

0.314
(0.015)

328.96
(34.73)

18.91
(8.270)

0.913
(0.009)

0.947
(0.009)

SVR 0.981 (0.00) 0.290
(0.001)

289.21
(5.09)

16.19
(0.669) 0.925 (0.00) 0.962

(0.001)

XGB 0.976
(0.003)

0.333
(0.019)

342.84
(23.62)

16.99
(1.520)

0.902
(0.011)

0.928
(0.012)

Table 10. Model results for Case 4.

Estimator WI RRMSE MAE MAPE NSE KGE

ELM 0.972
(0.012)

0.356
(0.063)

394.67
(36.17)

31.46
(8.530)

0.884
(0.053)

0.908
(0.026)

EN 0.909
(0.000)

0.578
(0.000)

885.37
(0.000)

119.59
(0.000)

0.704
(0.000)

0.777
(0.000)

GPR 0.973
(0.002)

0.350
(0.014)

358.39
(17.63)

18.14
(2.580)

0.891
(0.009)

0.931
(0.014)

LSSVR 0.976
(0.000)

0.334
(0.006)

347.08
(5.79)

20.15
(1.150)

0.901
(0.004)

0.915
(0.005)

RBFNN 0.925
(0.192)

0.900
(0.620)

376.58
(6.103)

21.21
(9490.7)

0.876
(0.005)

0.864
(0.309)

SVR 0.979
(0.000)

0.308
(0.003)

307.08
(5.060)

17.06
(0.820)

0.916
(0.002)

0.956
(0.002)

XGB 0.975
(0.002)

0.340
(0.017)

364.48
(22.67)

17.95
(2.210)

0.897
(0.010)

0.930
(0.012)

Table 11. Model results for Case 5.

Estimator WI RRMSE MAE MAPE NSE KGE

ELM 0.858
(0.020)

0.700
(0.090)

915.48
(45.45)

71.82
(2.850)

0.558
(0.142)

0.647
(0.052)

EN 0.834
(0.000)

0.715
(0.000)

999.14
(0.000)

85.40
(0.000)

0.547
(0.000)

0.562
(0.000)

GPR 0.854
(0.013)

0.761
(0.053)

919.25
(33.68)

72.80
(2.110)

0.484
(0.068)

0.718
(0.008)

LSSVR 0.887
(0.001)

0.647
(0.006)

848.64
(5.78)

65.94
(0.455)

0.628
(0.007)

0.748
(0.002)

RBFNN 0.851
(0.011)

0.775
(0.048)

931.38
(27.37)

72.58
(3.280)

0.465
(0.063)

0.715
(0.009)
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Table 11. Cont.

Estimator WI RRMSE MAE MAPE NSE KGE

SVR 0.871
(0.002)

0.719
(0.004)

825.33
(13.78)

42.27
(3.210)

0.541
(0.005)

0.746
(0.004)

XGB 0.873
(0.007)

0.707
(0.030)

862.83
(14.08)

70.24
(1.310)

0.556
(0.036)

0.747
(0.004)

Table 12. Model results for Case 6.

Estimator WI RRMSE MAE MAPE NSE KGE

ELM 0.983
(0.002)

0.273
(0.017)

303.21
(26.09)

17.69
(3.960)

0.934
(0.009)

0.958
(0.007)

EN 0.959
(0.000)

0.409
(0.000)

527.22
(0.000)

47.25
(0.000)

0.852
(0.000)

0.893
(0.000)

GPR 0.983 (0.00) 0.275
(0.007)

292.42
(3.24)

13.49
(0.306)

0.933
(0.003)

0.950
(0.005)

LSSVR 0.983 (0.00) 0.280
(0.007)

294.22
(3.01)

13.41
(0.416)

0.930
(0.003)

0.948
(0.004)

RBFNN 0.982
(0.001)

0.287
(0.011)

295.48
(7.48)

12.14
(0.594)

0.927
(0.005)

0.956
(0.002)

SVR 0.983 (0.00) 0.277
(0.004)

283.49
(4.91)

13.24
(1.030)

0.932
(0.002)

0.960
(0.00400)

XGB 0.979
(0.002)

0.309
(0.015)

315.66
(15.48)

15.98
(1.900)

0.915
(0.008)

0.948
(0.007)

Table 13. Model results for Case 7.

Estimator WI RRMSE MAE MAPE NSE KGE

ELM 0.984
(0.003)

0.266
(0.019)

288.71
(14.91)

15.54
(1.690)

0.937
(0.010)

0.962
(0.005)

EN 0.972
(0.000)

0.341
(0.000)

389.77
(0.000)

24.34
(0.000)

0.897
(0.000)

0.926
(0.000)

GPR 0.985 (0.00) 0.261
(0.009)

256.68
(9.810)

11.69
(0.597)

0.939
(0.004)

0.967
(0.003)

LSSVR 0.985 (0.00) 0.256
(0.007)

255.54
(13.78)

12.28
(1.310)

0.942
(0.003)

0.966
(0.003)

RBFNN 0.978
(0.020)

0.301
(0.092)

293.20
(70.77)

13.11
(4.670)

0.912
(0.082)

0.950
(0.039)

SVR 0.984 (0.00) 0.266
(0.009)

263.44
(7.080)

12.44
(0.715)

0.937
(0.004)

0.962
(0.006)

XGB 0.977
(0.002)

0.317
(0.017)

338.54
(27.27)

17.01
(3.410)

0.910
(0.009)

0.949
(0.006)
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Tables 11–13 sum up the testing outcomes of the implemented hybrid models for
the discharge inputs (input Cases 5 to 7). The tables clearly show that only discharge
(streamflow) of one previous month (Qt−1) is insufficient in modeling streamflow. However,
inclusion of Qt−11 and Qt−12 considering correlation analysis considerably increases the
models’ accuracies; increase (decrease) in RRMSE (NSE) of the ELM, EN, GPR, LSSVR,
RBFNN, SVR, and XGB is 62 (68), 52 (64), 66 (94), 60 (50), 61 (96), 63 (73), and 55% (64%)
from input Case 5 (Table 11) to input Case 7 (Table 13), respectively. The best discharge-
based LSSVR model (input Case 7 with Qt−12, Qt−11, and Qt−1) has the lowest RRMSE
(0.256) and MAE (255.54) and the highest WI (0.985) and NSE (0.942), while the GPR has
the lowest MAPE (11.69) and the highest WI (0.985) and KGE (0.967). The LSSVR performs
slightly better than the GPR. SVR also has good accuracy and closely follows the LSSVR
and GPR in streamflow prediction, using only previous values as inputs.

Comparison of the outcomes provided by the temperature-based and discharge-based
models reveals that the discharge-based models have higher accuracy than the temperature-
based models; decrease in RRMSE from 0.290 (SVR) to 0.256 (LSSVR), in MAE from 289.21
(SVR) to 255.54 (LSSVR), in MAPE from 16.12 (SVR) to 11.69 (GPR) and increase in WI from
0.981 (SVR) to 0.985 (GPR), in NSE from 0.925 (SVR) to 0.942 (LSSVR), and in KGE from
0.962 (SVR) to 0.967 (GPR). However, TB models also provide good accuracy.

For Cases 1 to 7, Figure 5 depicts the scatterplots of the observed and best model (SVR)-
predicted streamflow in the test stage. As clearly observed from the graphs, temperature-
based models also provide good predictions, especially with input Case 3. Considerable
improvement in prediction efficiency by including Qt−11 and Qt−12 inputs (Case 6 and 7) is
observed. Figure 6 illustrates the radar charts of the metrics used for model assessments.
They were obtained, averaging over 50 runs for each method. These graphs were provided
for visually justifying the statistics given in Tables 7–13.

The lowest accuracy of EN is observed from the charts, while the SVR generally
provides superior accuracy. In some cases (Case 6 and 7), the LSSVR and XGB may perform
better than the SVR. Taylor diagrams of the optimal models for all cases (averaged over
50 runs) are given in Figure 7. The diagrams show that the SVR generally has the lowest
square error, highest association, and similar SD to observation than the other models. The
inferior output of EN is depicted in the diagrams.

3.2. Uncertainty Analysis

The uncertainty analysis is based on the logarithm of the prediction errors for the test
dataset ej = log10(Qtpj)− log10(Qtmj), j = 1, . . . , N that are used to calculate the mean and
standard deviation of the prediction errors given by:

e =
N

∑
j=1

ej (29)

and

e =

√
∑N

j=1 (ej − e)

N − 1
(30)

where e and Se are the mean and standard deviation of the logarithm errors, Qtmj is the
measured streamflow and Qtpj is the predicted streamflow for the ith sample. Using the
error above, an approximately 95% confidence band around the predicted value Qtmj is

defined by
(

Qtmj × 10−e−1.96Se , Qtmj × 10−e+1.96Se
)

.
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The uncertainty analysis allows for comparing the proposed models and the input
cases in this study. Table 14 presents a quantitative evaluation of uncertainties in river
flow forecasting for each machine learning model and each input case to see the effects
of the uncertainty study, the models’ mean prediction errors, the width of the uncertainty
band, and the 95% prediction interval error. Negative mean prediction error averages
indicate that the prediction models underestimated the observed values. On the other hand,
positive values indicate that they overestimated the outcomes. Smaller mean predicted
errors represent the ability to model the streamflow. The SVR model leads to smaller
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overall mean prediction errors for all input cases. The uncertainty bands for both models
ranged from 0.071 to 0.320, with SVR, XGB, LSSVR, and RBFNN models having smaller
uncertainty bands.
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Table 14. Uncertainty estimates for machine learning models.

Model Case Mean
Prediction Error

Width of
Uncertainty Band

95% Prediction
Error Interval

ELM

Case 1 −0.009 0.157 0.502 to 2.07

Case 2 −0.031 0.154 0.535 to 2.15

Case 3 −0.027 0.176 0.481 to 2.36

Case 4 −0.034 0.157 0.533 to 2.19

Case 5 +0.061 0.320 0.205 to 3.68

Case 6 +0.013 0.085 0.663 to 1.42

Case 7 +0.009 0.074 0.701 to 1.37

EN

Case 1 +0.166 0.260 0.211 to 2.21

Case 2 +0.148 0.298 0.185 to 2.73

Case 3 +0.161 0.265 0.209 to 2.28

Case 4 +0.162 0.265 0.208 to 2.28

Case 5 +0.131 0.281 0.208 to 2.63

Case 6 −0.096 0.294 0.331 to 4.70

Case 7 −0.008 0.125 0.579 to 1.79

GPR

Case 1 +0.007 0.140 0.524 to 1.85

Case 2 −0.007 0.110 0.618 to 1.67

Case 3 −0.006 0.101 0.642 to 1.60

Case 4 −0.012 0.108 0.632 to 1.67

Case 5 +0.084 0.259 0.256 to 2.65

Case 6 +0.016 0.076 0.684 to 1.36

Case 7 +0.009 0.071 0.710 to 1.35

LSSVR

Case 1 +0.003 0.144 0.519 to 1.90

Case 2 −0.006 0.122 0.586 to 1.76

Case 3 −0.012 0.115 0.611 to 1.73

Case 4 −0.017 0.126 0.590 to 1.84

Case 5 +0.080 0.262 0.255 to 2.71

Case 6 +0.015 0.075 0.688 to 1.36

Case 7 +0.009 0.076 0.695 to 1.38
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Table 14. Cont.

Model Case Mean
Prediction Error

Width of
Uncertainty Band

95% Prediction
Error Interval

RBFNN

Case 1 −0.020 0.159 0.509 to 2.15

Case 2 −0.010 0.111 0.622 to 1.69

Case 3 −0.004 0.101 0.639 to 1.59

Case 4 −0.016 0.126 0.587 to 1.83

Case 5 +0.088 0.268 0.243 to 2.74

Case 6 +0.015 0.078 0.678 to 1.38

Case 7 +0.009 0.073 0.704 to 1.36

SVR

Case 1 −0.002 0.143 0.526 to 1.92

Case 2 −0.018 0.118 0.611 to 1.77

Case 3 −0.014 0.107 0.636 to 1.67

Case 4 −0.020 0.112 0.632 to 1.74

Case 5 +0.002 0.282 0.278 to 3.55

Case 6 +0.005 0.076 0.703 to 1.39

Case 7 +0.00 0.076 0.708 to 1.41

XGB

Case 1 +0.006 0.155 0.490 to 1.98

Case 2 −0.014 0.110 0.629 to 1.70

Case 3 −0.013 0.103 0.648 to 1.64

Case 4 −0.017 0.102 0.655 to 1.65

Case 5 +0.085 0.259 0.256 to 2.64

Case 6 +0.011 0.082 0.674 to 1.41

Case 7 +0.012 0.092 0.643 to 1.47

In the experiments conducted for this research, the variations of the input parameters
were modeled using the uniform distribution with the lower and upper bounds given
by the minimum and maximum values for each parameter, as shown in Table 1. The
deterministic outcome is calculated for each model developed in this paper for each MCS
run. A total of 250,000 outcomes were calculated. The mean absolute deviation (MAD)
around the median of the output distribution is written as

MAD =
1

250, 000 ∑250,000
i=1 Qtpi −median

(
Qtp
)
∨ (31)

while the uncertainty of the model output can be given by

Uncertainty% =
100×MAD
median

(
Qtp
) (32)

where Qtpi is the predicted streamflow for the ith sample. A detailed description of the MCS
method can be found in [68]. Uncertainty analysis results for the Qt using the developed
models are presented in Table 14. The uncertainty analysis shows that the SVR generally
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has lower uncertainty than other machine learning methods in streamflow prediction,
except for the EN. Even though EN has the lowest uncertainty, its prediction efficiency is
very low in all cases. It is clear from the figure that the SVR generally has lower uncertainty
compared to other methods. Additionally, increasing input parameters increases the
methods’ prediction efficiency (decrease in RMSE).

Table 15 shows the uncertainty analysis using the Monte Carlo simulation. The uncer-
tainty analysis shows that SVR, LSSVR, GPR, and XGB produced lower uncertainty than
other machine learning methods in streamflow prediction. Figure 8 shows the scatterplot
of uncertainty (%) and relative root mean squared error for all models. Each pair (x,y) rep-
resents a particular model, depicted differently. The size of the point represents the number
of features in the model. To facilitate the visualization, Cases 1–7 are shrunk to C1–C7. The
scatter plots presented in Figure 8 show that the machine learning models using the input
Cases 6 and 7 are near the left bottom corner of the figure, indicating that the input of these
cases produced models with smaller uncertainty and smaller RRMSE. Cases C2 and C3
lead to models with higher uncertainties and moderate RRMSE. In contrast, input Case 5,
although producing models with small uncertainties, leads to higher RRMSE values.

Table 15. Uncertainty analysis for the test set using Monte Carlo simulation (MCS).

Model Case No. Features Median MAD Uncertainty %

ELM

Case 1 1 591.9 1307.0 220.8

Case 2 2 500.6 1233.0 246.3

Case 3 3 385.6 1325.2 343.7

Case 4 4 712.2 967.9 135.9

Case 5 1 3494.0 1177.7 33.7

Case 6 2 4492.1 1519.7 33.8

Case 7 3 4517.9 1644.5 36.4

EN

Case 1 1 1763.3 1381.6 78.4

Case 2 2 1765.9 1240.2 70.2

Case 3 3 1768.0 1085.4 61.4

Case 4 4 1765.5 987.8 55.9

Case 5 1 3159.1 1248.7 39.5

Case 6 2 3989.3 1335.2 33.5

Case 7 3 3787.5 1126.0 29.7

GPR

Case 1 1 572.1 1307.3 228.5

Case 2 2 722.6 1018.9 141.0

Case 3 3 664.4 891.6 134.2

Case 4 4 770.5 815.7 105.9

Case 5 1 3595.2 1120.7 31.2

Case 6 2 4846.8 1531.6 31.6

Case 7 3 4594.2 1321.5 28.8
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Table 15. Cont.

Model Case No. Features Median MAD Uncertainty %

LSSVR

Case 1 1 495.7 1317.2 265.7

Case 2 2 739.8 1421.5 192.1

Case 3 3 1162.0 835.6 71.9

Case 4 4 707.2 1300.9 184.0

Case 5 1 3307.0 1190.1 36.0

Case 6 2 4626.8 1303.6 28.2

Case 7 3 4736.3 1452.5 30.7

RBFNN

Case 1 1 449.8 1353.0 300.8

Case 2 2 987.7 1033.0 104.6

Case 3 3 939.3 844.1 89.9

Case 4 4 1540.7 1018.3 66.1

Case 5 1 3593.4 1109.9 30.9

Case 6 2 4803.6 1587.2 33.0

Case 7 3 4771.2 1678.5 35.2

SVR

Case 1 1 560.0 1264.4 225.8

Case 2 2 917.8 932.8 101.6

Case 3 3 1208.9 680.6 56.3

Case 4 4 682.6 499.3 73.1

Case 5 1 4407.5 1305.1 29.6

Case 6 2 4700.0 1480.9 31.5

Case 7 3 3852.7 1264.5 32.8

XGB

Case 1 1 629.4 1271.1 201.9

Case 2 2 726.5 1035.4 142.5

Case 3 3 768.3 823.1 107.1

Case 4 4 633.9 625.6 98.7

Case 5 1 3868.2 1085.5 28.1

Case 6 2 4840.9 1374.7 28.4

Case 7 3 3749.9 1262.1 33.7
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3.3. Discussion

By the presented study, the accuracy of seven machine learning methods, ELM, EN,
GPR, SVR, LSSVR, XGB, and RBFNN, tuned with covariance matrix adaptation evolution
strategy, was assessed and compared in streamflow prediction considering different input
combinations involving temperature and previous discharge values. The inputs of the
models were decided using correlation analysis and it was observed that this method
is very useful in the determination of the most suitable inputs for the machine learning
methods. This finding is consistent with the previous research [25,69–72], which reported
the necessity of correlation analysis in defining optimal inputs. It is clearly observed from
quantitative and graphical assessments that the EN method provides inferior predictions.
The low accuracy of the EN method may be explained by its linear structure, which prevents
it from adequately mapping the streamflow phenomenon. It is observed from statistical
and graphical comparison that the temperature-based models also provide good accuracy
in streamflow prediction. They can be considered better alternatives to the discharge-based
models, especially in case of unavailability of discharge (streamflow) data. Measuring
streamflow is a very difficult task, especially in developing countries, for technical reasons.
In such cases, temperature-based models can be successfully implemented. The results align
with the earlier studies [25,72]. Adnan et al. [25] employed LSSVR, MARS, and optimally
pruned ELM and M5 model trees in streamflow prediction and found good accuracies from
the temperature-based models. In the study by Adnan et al. [72], they implemented the
group method of data handling neural networks, dynamic evolving neural fuzzy system,
and MARS methods in monthly streamflow prediction. They obtained promising accuracies
from the temperature-based models. An advantage of using the machine learning model is
the accurate streamflow prediction commonly reported in the literature. On the other hand,
the machine learning model’s performance mainly depends on the proper choice of internal
parameters, which is a challenge for data modelers. Moreover, parameters can vary across
different data sets and result in performance disparities. In this context, an advantage of
the proposed approach is the automatic adjustment of models’ parameters through the
CMAES algorithm, allowing for the exploitation of the models’ capabilities, considering the
data’s specificities. Furthermore, the proposed strategy employs a cross-validation strategy
to avoid data leakage, providing a realistic forecast of monthly flow data. However, the
lack of interpretability is an intrinsic aspect of machine learning models. Although they
produce accurate predictions, the relationships between input and output variables are
challenging for humans to interpret. Although they have a rigid and concise mathematical
formulation, machine learning models can be built with several data processing procedures,
which makes a posteriori analysis difficult.
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Adnan et al. [5] compared the accuracy of optimally pruned ELM, MARS, ANN, M5
model tree, and neuro-fuzzy tuned with particle swarm optimization in streamflow predic-
tion, and the best ELM gave the NSE of 0.761 and 0.711 for the Fujiangqiao and Shehang
stations in China. Adnan et al. [27] compared the abovementioned machine learning meth-
ods and they obtained an NSE of 0.886 from the best MARS model, which uses precipitation,
temperature, and streamflow inputs in prediction streamflow. Adnan et al. [72] assessed
the abovementioned three machine learning methods in streamflow prediction and they
found that the dynamic evolving neural fuzzy system performed the best with the NSE
of 0.915. Compared to the abovementioned studies, the accuracy of the best SVR-CMAES
model developed in this study seems promising, with the NSE of 0.937.

4. Conclusions

- This research evaluated the feasibility of seven hybrid machine learning methods
in monthly streamflow forecasting. In the hybridization process, the metaheuristic
covariance matrix adaptation evolution strategy assisted in adjusting the internal
parameters of the models. In addition, an uncertainty analysis was performed on the
resulting models. Methods were compared to each other considering the several met-
rics (e.g., WI, RRMSE, MAE, MAPE, NSE, and KGE together with standard deviation)
and visual methods, such as radar chart, scatter, and Taylor diagrams. Seven input
cases were taken into account, including temperature and discharge data. All the
implemented methods provided better efficiency for discharge input cases, while tem-
perature input cases also produced promising predictions. Among the implemented
methods, the SVR generally performed superior to the other methods, especially for
the temperature input cases. In contrast, the LSSVR and GPR were found to do better
than the SVR in some discharge input cases. The EN method provided the worst
streamflow predictions, according to all evaluation statistics and visual comparison.
Uncertainty analysis revealed that the SVR generally has low uncertainty compared
to other machine learning methods and the EN has the lowest uncertainty. Overall,
temperature-based SVR models are highly recommended in monthly streamflow
prediction. These outcomes are very useful in practical applications, especially in
developing countries. Temperature data are easily measured, and the models that
only use such data will be very beneficial for streamflow predictions in the basins
where streamflow data are missing because of technical/economic reasons. The main
limitation of this study is the use of limited data from one location. More data from
different climatic regions are required to justify the accuracy of the proposed models.
The covariance matrix adaptation evolution strategy was successfully applied for im-
proving the accuracy of the ELM, EN, GPR, LSSVR, RBFNN, SVR, and XGB methods.
This strategy can also be employed for other machine learning methods, such as ANN,
ANFIS, and deep learning in future studies.
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